Program "SCATMAN": User Instructions

by

James E. Hines and William A. Link

USGS, Biological Resources Division Patuxent Wildlife Research Center 11510 American Holly Drive Laurel, Maryland 20708

Introduction

This program is used to test the hypothesis of prey-selectivity based on random samples of predator scats. Suppose that prey species i has population density d_i , and that a single kill of species i typically results in λ_i scats. Under the null hypothesis of no prey specificity (i.e., that the frequencies of prey species in a predators' diet is proportional to availability), the proportion of scats identified to species i is expected to be

$$\begin{array}{c} d_i\lambda_i \\ \pi_i = & ----- \\ \sum_i d_i\lambda_i \end{array}$$

If the quantities d_i and λ_i are known, a chi-squared goodness of fit test can be used to test the hypothesis of no prey specificity (Manly et al. 1972, Chesson 1978). Typically, however, d_i and λ_i are estimated rather than precisely known; furthermore, the number of scats produced by a single kill is variable. These sources of variation cause an inflation of the Type 1 error rate of the hypothesis test (Link and Karanth 1994). This program implements a parametric bootstrap designed to handle these problems; for details, see Link and Karanth (1994).

Data input:

The input file for program **SCATMAN** consists of a list of prey species, a list of estimated densities, standard errors of estimated densities, scat production rates, and scat production variability. The user also specifies the number of bootstrap replications.

Example (Tiger scat data from Link and Karanth, 1994):

Sample data

Prey:	SBR	PIG	CHT	GAR	MJK	LGR
Scat Freq:	118.5	35	143	82.5	24	16
Scat Production:	22.55	11.48	14.09	23.87	7.46	3.54
SD(Scat Production):	9.02	4.59	5.64	9.55	2.98	1.42
Density:	1.80	1.28	5.94	0.84	3.80	4.77
SE(Density):	0.62	0.23	0.81	0.34	1.55	0.63

Explanation:

In this example, the predator species is the tiger (Panthera tigris); prey species are

- SBR: Sambar (Cervus unicolor)
- PIG: Wild pig (Sus scrofa)
- CHT: Chital (Axis axis)
- GAR: Gaur (Bos gaurus)
- MJK: Muntjac (Muntiacus muntjak)
- LGR: Hanuman Langur (Presybtis entellus)

Input file: (scatman2.inp):

```
200,54321

SBR

118.5,1.8,0.62,22.553

PIG

35,1.28,.23,11.48

CHT

143,5.94,.81,14.085

GAR

82.5,.84,.34,23.867

MJK

24,3.8,1.55,7.463

LGR

16,4.77,.63,3.54
```

The line containing 200,54321 tells the program how many bootstrap replications (200) to perform, and a seed number (54321) for the random number generator. You probably don't need to change these.

The next line is the first prey species name (SBR). The following line contains the scat frequency for SBR (118.5), the density for SBR (1.8), the standard error of the density (0.62), and the scat production (22.55).

The other pairs of lines contain the data for the other 5 prey species.

Program Operation:

The first step is to create an input file. The easiest way to do this is to look at the sample input file provided, scatman.inp. Use any editor and create an input file similar to the sample input file. Just make sure to save the file as ASCII text. Next, run the program as described below, then view the output using your editor. If you are running Windows, open a MSDOS window and type the following:

```
cd \scatman
scatman <scatman.inp >scatman.out
```

Variability in scat production rates was set at 40% of the mean level.

Program Output

200 ix=		5432	21
118.5000	1.8000	0.6200	22.5530
35.0000	1.2800	0.2300	11.4800
143.0000	5.9400	0.8100	14.0850
82.5000	0.8400	0.3400	23.8670
24.0000	3.8000	1.5500	7.4630
16.0000	4.7700	0.6300	3.5400
	118.5000 35.0000 143.0000 82.5000 24.0000	118.5000 1.8000 35.0000 1.2800 143.0000 5.9400 82.5000 0.8400 24.0000 3.8000 16.0000 4.7700	118.5000 1.8000 0.6200 35.0000 1.2800 0.2300 143.0000 5.9400 0.8100 82.5000 0.8400 0.3400 24.0000 3.8000 1.5500

estimated species observed expected

~~~~~				
707070707070	~~~~~~	~~~~~~		
SBR	118.5000	83.2785		
PIG	35.0000	30.1445		
CHT	143.0000	171.6323		
GAR	82.5000	41.1276		
MJK	24.0000			
		58.1772		
LGR	16.0000	34.6400		
			• /	
	CV(SCATE		10%	
******	**********	*********	******	******
	Chi	Unadjusted	Adjusted	standard
species	squared	p-value	p-value	error
~~~~~	~~~~~	~~~~~~	~~~~~	~~~~~~
SBR	18.5917	0.0000	0.0010	0.0003
PIG		0.3586		
	0.8427		0.3887	0.0024
CHT	8.0907	0.0044	0.0539	0.0046
GAR	46.1486	0.0000	0.0000	0.0000
MJK	23.3153	0.0000	0.0003	0.0001
LGR	10.9342	0.0009	0.0027	0.0002
Composite	92.1822	0.0000	0.0000	0.0000
	CV(SCATE	ATE\-	20%	
*********		MIL)- **********		******
4 4 4 4 4 4 4 4 4 4 4 4 4				
_	Chi	Unadjusted	Adjusted	standard
species	squared	p-value	p-value	error
~~~~~	~~~~~~	~~~~~~	~~~~~~	~~~~~~
SBR	18.5917	0.0000	0.0026	0.0006
PIG	0.8427	0.3586	0.4043	0.0035
CHT	8.0907	0.0044	0.0536	0.0054
GAR	46.1486	0.0000	0.0000	0.0000
MJK	23.3153	0.0000	0.0009	0.0003
LGR	10.9342	0.0009	0.0030	0.0002
C	02 1022	0.0000	0.0000	0.0000
Composite	92.1822	0.0000	0.0000	0.0000
			0/	
	CV(SCATE		30%	
******	******	*********	******	*****
	Chi		Adiust ad	
	CIII	Unadjusted	Adjusted	standard
species			-	
species	squared		p-value	
~~~~~	squared	p-value	p-value	error ~~~~~~
SBR	squared ~~~~~ 18.5917	p-value ~~~~~ 0.0000	p-value ~~~~~ 0.0042	error ~~~~~ 0.0010
SBR PIG	squared ~~~~~ 18.5917 0.8427	p-value ~~~~~ 0.0000 0.3586	p-value ~~~~ 0.0042 0.4227	error ~~~~~ 0.0010 0.0052
SBR PIG CHT	squared ~~~~~ 18.5917 0.8427 8.0907	p-value 0.0000 0.3586 0.0044	p-value ~~~~~ 0.0042 0.4227 0.0812	error ~~~~~ 0.0010 0.0052 0.0094
SBR PIG CHT GAR	squared ~~~~~ 18.5917 0.8427 8.0907 46.1486	p-value 0.0000 0.3586 0.0044 0.0000	p-value 0.0042 0.4227 0.0812 0.0000	error ~~~~~ 0.0010 0.0052 0.0094 0.0000
SBR PIG CHT GAR MJK	squared ~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153	p-value 0.0000 0.3586 0.0044 0.0000 0.0000	p-value 0.0042 0.4227 0.0812 0.0000 0.0011	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003
SBR PIG CHT GAR	squared ~~~~~ 18.5917 0.8427 8.0907 46.1486	p-value 0.0000 0.3586 0.0044 0.0000	p-value 0.0042 0.4227 0.0812 0.0000	error ~~~~~ 0.0010 0.0052 0.0094 0.0000
SBR PIG CHT GAR MJK	squared ~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153	p-value 0.0000 0.3586 0.0044 0.0000 0.0000	p-value 0.0042 0.4227 0.0812 0.0000 0.0011	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003
SBR PIG CHT GAR MJK LGR	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342	p-value 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009	p-value 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044	error 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004
SBR PIG CHT GAR MJK	squared ~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153	p-value 0.0000 0.3586 0.0044 0.0000 0.0000	p-value 0.0042 0.4227 0.0812 0.0000 0.0011	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003
SBR PIG CHT GAR MJK LGR	squared ~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822	p-value 0.0000 0.3586 0.0044 0.0000 0.0000 0.0000	p-value 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000	error 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004
SBR PIG CHT GAR MJK LGR Composite	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATE	p-value 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009 0.0000	p-value 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000	error 0.0010 0.0052 0.0094 0.0000 0.0004
SBR PIG CHT GAR MJK LGR Composite	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATE	p-value 0.0000 0.3586 0.0044 0.0000 0.0000 0.0000 0.0000	p-value ~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0004 0.0000
SBR PIG CHT GAR MJK LGR Composite	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATE************************************	p-value ~~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009 0.0000 RATE)= ************************************	p-value ~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 *********** standard
SBR PIG CHT GAR MJK LGR Composite ***********************************	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATE ************ Chi squared	p-value ~~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009 0.0000 RATE)= ************************************	p-value ~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ********** standard error
SBR PIG CHT GAR MJK LGR Composite ***********************************	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATE *********** Chi squared ~~~~~~~	p-value ~~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009 0.0000 RATE)= ************************************	p-value ~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 ******** standard error ~~~~~~
SBR PIG CHT GAR MJK LGR Composite ************* species ~~~~~ SBR	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATF ********** Chi squared ~~~~~~ 18.5917	p-value ~~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009 0.0000 RATE)= ************************************	p-value ~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ******** standard error ~~~~~~ 0.0018
SBR PIG CHT GAR MJK LGR Composite ***********************************	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATE *********** Chi squared ~~~~~~~	p-value ~~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009 0.0000 RATE)= ************************************	p-value ~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 ******** standard error ~~~~~~
SBR PIG CHT GAR MJK LGR Composite ************* species ~~~~~ SBR	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATF ********** Chi squared ~~~~~~ 18.5917	p-value ~~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0009 0.0000 RATE)= ************************************	p-value ~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ******** standard error ~~~~~~ 0.0018
SBR PIG CHT GAR MJK LGR Composite *********** species ~~~~~~ SBR PIG	squared ~~~~~~ 18.5917 0.8427 8.0907 46.1486 23.3153 10.9342 92.1822 CV(SCATF ********** Chi squared ~~~~~ 18.5917 0.8427 8.0907	p-value ~~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0000 RATE)= ************************************	p-value ~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************************************	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ******** standard error ~~~~~ 0.0018 0.0064 0.0128
SBR PIG CHT GAR MJK LGR Composite *********** species CHT SBR PIG CHT GAR	squared	p-value ~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0000 RATE)= *********** Unadjusted p-value ~~~~~~ 0.0000 0.3586 0.0044 0.0000	p-value ~~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************ Adjusted p-value ~~~~~~ 0.0062 0.4402 0.1268 0.0000	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ******** standard error ~~~~~ 0.0018 0.0064 0.0128 0.0000
SBR PIG CHT GAR MJK LGR Composite ********** species CHT CHT GAR MJK MJK MJK	squared	p-value 0.0000 0.3586 0.0044 0.0000 0.0000 0.0000 RATE)= ***********************************	p-value ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ******** standard error ~~~~~ 0.0018 0.0064 0.0128 0.0000 0.0007
SBR PIG CHT GAR MJK LGR Composite *********** species CHT SBR PIG CHT GAR	squared	p-value ~~~~~~ 0.0000 0.3586 0.0044 0.0000 0.0000 0.0000 RATE)= *********** Unadjusted p-value ~~~~~~ 0.0000 0.3586 0.0044 0.0000	p-value ~~~~~~~ 0.0042 0.4227 0.0812 0.0000 0.0011 0.0044 0.0000 40% ************ Adjusted p-value ~~~~~~ 0.0062 0.4402 0.1268 0.0000	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ******** standard error ~~~~~ 0.0018 0.0064 0.0128 0.0000
SBR PIG CHT GAR MJK LGR Composite ********** species CHT CHT GAR MJK MJK MJK	squared	p-value 0.0000 0.3586 0.0044 0.0000 0.0000 0.0000 RATE)= ***********************************	p-value ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	error ~~~~~ 0.0010 0.0052 0.0094 0.0000 0.0003 0.0004 0.0000 ******** standard error ~~~~~ 0.0018 0.0064 0.0128 0.0000 0.0007

Chesson, J. (1989). The effect of alternative prey on the functional response of *Notonecta hoffmani*. *Ecology* 70: 1227-1235.

Link, W.A. and Karanth, K.U. (1994). Correcting for overdispersion in tests of prey selectivity. *Ecology* 75: 2456-2459.

Manly, B.F.J., Miller, P., and Cook, L.M. (1972). Analysis of a selective predation experiment. *American Naturalist* 106: 719-736.

If you have questions, problems or comments with this program please contact:

Jim Hines, USGS-PWRC 11510 American Holly Dr. #201 Laurel, Md. 20708-4017

Phone: (301) 497-5661

email: Jim_Hines%40usgs.gov

web: http://www.mbr-pwrc.usgs.gov/software