Modeling abundance with counts of unmarked individuals in closed populations: binomial or N-mixture model
Module 5
Patuxent workshop

2–5 April 2012

5.1. Introduction to abundance estimation with unmarked individuals
Abundance is a state variable related to the number of individuals N at a site i during time point t. It is probably the most important state variable in all of ecology as well as in management. The importance of abundance in ecology is illustrated well by the fact that some of the most influential ecology textbooks have abundance right in their title (e.g., Andrewartha and Birch 1954; Krebs 20xx, Begon et al. ?). This focus on N in ecology and its applications is certainly not entirely unnatural: a population can be seen as analogous to your bank account. In the latter, your first question will typically be “How many rubels do I currently have ?”.
Abundance in wild populations is typically assessed with an systematic error: false-negative detection error. This means that typically one is not able to enumerate all Nit individuals present at site i during time t. Instead, only a fraction pit of the population of size N will be detected and the complement, (1 - pit), will be overlooked or overheard, or generally remain undetected.
Over literally centuries, a very large number of models, methods and associated sampling designs have been developed that deal with this problem of imperfect detection when estimating abundance (see for instance the treatises by Seber 1982; Williams et al. 2002; Borchers et al. 2002; King et al. 2009). In their essence, most of these methods consist of obtaining an estimate of the fraction of individuals that are detected, p. Intuitively, it is clear that with a count (C) and an estimate of detection probability (p_hat), one can estimate abundance N as the ratio of C over p_hat.

Most approaches to estimating p in the context of the abundance of population(s) require capture-recapture data, i.e., repeated observations of individuals that are naturally or artificially marked. The latter may be rings (bands), PIT transponders, genetic identity, or many other marking methods that allow one to unambiguously determine the identity of an individual that is physically captured or otherwise can be observed in such a way as to being able to record the mark. Typically, capture-recapture are rather expensive data, because they may require physical capture of the animals or the application of complex and expensive lab analysis methods (e.g., microsatellite analysis). In addition, the handling of the animals may be risky in the case of rare or endangered animals.
This chapter deals with an appealing alternative modeling framework and data collection protocol, called N-mixture model or Poisson-Binomial mixture model (Royle 2004). In this model, all that is required to estimate detection probability and abundance is counts of unmarked individuals that are replicated in two dimensions: there must be a number of sites and there must be a number of replicate observations (i.e., counts) for at least some of the sites. No individual recognition is required. Such data are usually very “cheap” to obtain compared to the typical capture-recapture data. Therefore, this modeling framework and its associated data collection protocol enables one to conduct inference about abundance about larger spatial or temporal scales than what one might be able to do with a more typical capture-recapture protocol, or even with distance sampling.
As shown in chapter 1, the N-mixture model is a hierarchical model that combines a submodel for the latent state, abundance N, with another submodel for the actual observations, C, which is conditional on abundance. The observation component of the model is the same old binomial distribution that forms the backbone of practically all of capture-recapture, while the model for the latent abundance state is typically a Poisson, but can really be any of a number of statistical distributions for discrete, positive-valued numbers. In the next section, we will
5.2. Derivation of the N-mixture model from first principles: an exercise in hierarchical modeling
One of the neatest things about hierarchical models is that they allow you, no, they even invite you, to shape your statistical model according to how you perceive the stochastic process you’re interested in. So let us look at how replicated count data (C) likely arise as a combination of two processes, one ecological and one observational.To motivate the N-mixture model ask yourself the following questions:

1. Suppose you knew the value of abundance (N) at each of 100 sites, e.g., 2, 5, 5, 0, 3, 2, 2, 3, …. How would you describe this spatial variation ? That is, what would be a customary statistical distribution to describe the mean and the variability of N ?

2. Then, assume that we wanted to acknowledge the presence of nondetection errors in the measurement of N, i.e., the observed counts C. This means that at site 2, say, with N=5, we might obtain the following repeated ‘measurements’ of abundance N: 4, 2, 4, 3, … What would be a useful starting point to model the variability of the measurements of N ?
First, arguably, most people, when confronted with the kind of data described in (1), would start with a Poisson distribution to model the spatial variation in abundance N. By adding covariate effects and perhaps latent structure (random effects), the Poisson gives considerable flexibility to capture a wide variety of patterns in N. Second, knowing that there are N individuals at a site exposed to detection and that detection probability is less than 1, would lead most people to choose a binomial distribution to describe the variation in the counts at a specific site. Again, GLM-type modeling of the binomial success parameter (detection probability) yields great flexibility in this model.
Excitingly, we have just re-invented the basic N-mixture model from first principles ! First, we have chosen the Poisson distribution as a description of the ecological (or state) process that distributes individuals in space and thus creates the latent abundance state N. The Poisson is the basic building block for modeling of abundance (Royle and Dorazio 2008). Second, we have chosen the binomial distribution as a description of the observation process, where we typically have a special kind of measurement error, one that does not cancel out, but instead leads to observations (counts C) that are biased with respect to the measured quantity (abundance N).
Here is the simplest N-mixture model written in algebra:

1. State process:

[image: image1.wmf]~()

i

NPoisson

l

2. Observation process:

[image: image2.wmf]~(,)

ijiij

CBinomialNp

Here, Ni is the latent abundance state at site i (i = 1…M) and
[image: image3.wmf]l

 is the expected abundance, i.e., the mean abundance over all sites.
[image: image4.wmf]ij

C

 is the count at site i during survey j (j = 1…T) and
[image: image5.wmf]ij

p

 is the (per-individual) detection probability at site i during survey j.

The N-mixture model is a hierarchical extension of the Poisson GLM. We use the Poisson GLM as the base model for N but we regard N as latent variables (i.e., as unobserved or only partly observed). We augment the Poisson GLM with a model that describes how the observations Cij are related to the latent variable Ni. The model is also called a Poisson/binomial mixture model.

Note that this hierarchical model can be described as consisting of two linked generalized linear models (GLMs); a Poisson regression for the spatial variation in abundance and a binomial regression (a.k.a. logistic regression) for the variation of the observed counts at specific sites. Recognizing these two GLMs, we can immediately start doing all the things that we customarily do with GLMs, especially modeling structure in the two parameters (
[image: image6.wmf]i

l

,
[image: image7.wmf]ij

p

; note that
[image: image8.wmf]l

 needs a site-specific index then) as linear or other functions of covariates via a log and a logit link function. Other possibilities include the introduction of random effects to account for latent structure or correlations; see also later.
In order to have estimable parameters under the N-mixture model, we need data that are replicated both in space (i.e., M > 1) and in time (i.e., T > 1); see Fig. 5–1. It is hard to give advice on how much replication is required to obtain estimates of reasonable quality, but typically the number of sites (M) should be greater than 20. Importantly, the number of temporal replicates (T) must only be greater than 2 for some, but not necessarily for all of the sites. Typical ecological data sets are unbalanced in many ways and most data sets to which we have applied the N-mixture model did not have the same number of replicate surveys at all sites. The information about detection probability in the N-mixture model comes from the variability of repeated counts at a site (with more variability meaning smaller p). Thus, when our data set contains sites with replicated counts and sites without, then the information about p will come exclusively from the sites with replication, but will be propagated adequately to the sites without replication. This means that the sites without replicated counts should ideally be a random sample among the total number of sites (M). If this is not the case, the estimate of p may be based on a biased sample of sites (with respect to all sites, about which we would like to make inferences) and this may then also lead to bias in the parameter estimates.
[image: image9.emf]
Fig. 5–1: Simulation results that illustrate the effects of temporal replication in the Nmix model on some estimators and Bayesian convergence diagnostics. The blue line indicates the truth or the value of the convergence diagnostics at convergence. We see that unreplicated data result in large biases, but that even a small degree of replication (e.g., 1.2, meaning that 20% of sites have two replicate observations) improves the quality of estimators considerably. 100 replicate data sets were analysed with 150 sites.
As with any model, or indeed any kind of (formal or informal) inference about a noisy observations in nature, we make a number of assumptions when adopting the N-mixture model.

1. Closure assumption: The N-mixture model assumes that all variation in the counts C is attributable to detection probability p; it is the variation in C at each site which provides the information about p. When all counts at a site are constant and not 0, detection probability will be estimated at 1. So if N is variable as well during a period when closure is assumed, this will overstate the variability attributed to the binomial part of the model and therefore likely lead to an underestimate of p and consequently to an overestimate of N.
Under certain conditions this may not be disastrous, but simply force one to change the interpretation of the abundance parameter (
[image: image10.wmf]l

) to have a superpopulation meaning: rather than the number of individuals that permanently reside within a site,
[image: image11.wmf]l

 will have to be interpreted as the total number of individuals ever associated with the site during the entire study period. This is analogous to site-occupancy models where random temporary emigration leads to a redefinition of the occupancy parameter from the probability of permanent occupation to the probability of use (see MacKenzie et al. somewhere). (but see also Rota et al. 2009 and other)
2. No false positive errors: Implicit in the adoption of the binomial distribution as a description of the measurement error in the assessment of N is the assumption that there are no false positives. That is, we must not count another species as our target species and we must not count the same individual multiple times. This assumption is required for the binomial to be an adequate description of the observation process. If the biology of a study species species and/or the sampling protocol suggests that there may be a substantial number of false positives, the N-mixture model is probably not an appropriate framework for inference about abundance. One example of this would be flocking species, where it would be hard to avoid double counts when assessing the size of flocks.
3. Independence of detection: Similarly, implicit in the binomial distribution as a description of the observation process is that each individual is detected independently from all other individuals. If individuals travel in pairs, groups or flocks, the detection of one individual will make it more likely that other group members are also detected, and the standard N-mixture model will no longer be an adequate representation of the observation process underlying the counts. A possible way around the violation of this assumption might be the choice of a beta-binomial distribution for the observation process; see Martin et al. (MEE, 2011).

4. Homogeneity of detection among Ni individuals: The N-mixture model does not use as input individual detection data, but simply counts of unidentified individuals. That is, the data distinguish sites i and sampling occasions j, but do not keep track of the individuals in the counts Cij. Hence, with two replicates such as 5 and 3 at a site, we have no way to know whether the total number of individuals detected was 5, 6, 7 or 8. Since the individual ID is lost in the replicated counts data, all Ni individuals present at i are assumed to have an identical detection probability pij at survey j. Clearly, this can never be exactly true. For instance, it flies right into the face of all distance samplers, whose fundamental assumption is that individuals closer to an observer or some other kind of detector are more easily detectable than individuals further away. See perhaps also Efford (Auk 200X). The N-mixture model necessarily averages over any such distance-related or other heterogeneity among the Ni individuals. The likely effect of this can again be deduced from the conventional wisdom about the effects of unmodelled detection heterogeneity on the abundance estimator in capture-recapture models: it will lead to a negative bias in N. If distance-related heterogeneity in p is a big concern we may have to use distance sampling or spatial capture-recapture protocols (see chapter XX) to estimate abundance.
5. Parametric modeling assumptions: The model makes very specific distributional assumptions. Clearly, if they deviate substantially from “truth”, then biased estimators will result. For example, see Dorazio et al. (2008) for a multimodal distribution of abundance and its effects on the inference under the model. These assumptions can be tested using a parametric bootstrap or Bayesian p-values (see later).
5.3. Simulation of data and first analysis using unmarked
One of the most intuitive ways of explaining ‘how a model works’ is to simulate data under that model. Here we do this in a data set where a site-specific covariate (you may think of it vegetation height) affects the expected abundance in a log-linear way.
First, nature distributes a number of individuals among a number of M sites. There is variability in Ni, the number of individuals assigned to site i. Part of that variability may be explained by site-specific covariates, while some other part of the variability is just random noise. The Poisson distribution is a customary statistical distribution chosen for describing this sort of randomness. So we use this building block as a first part of our hierarchical model for counts.

Create a covariate called vegHt

nSites <- 100 # Also called M
set.seed(443) # so that we all get the same values of vegHt

vegHt <- sort(runif(nSites, 1, 3)) # uniform from 1 to 3, sort for graph convenience
Suppose that expected population size increases with vegHt

The relationship is described by an intercept of -3 and

a slope parameter of 2 on the log scale

lambda <- exp(-3 + 2*vegHt)

Now we go to 100 sites and observe the # of individuals (perfectly)

N <- rpois(nSites, lambda)

We can now fit models to the simulated abundance, under the assumption that we could observe N perfectly (i.e., that p=1).

We can fit a model that relates abundance to vegHt using the glm() function

with "family=Poisson":

summary(fm.glm1 <- glm(N ~ vegHt, family=poisson))
> summary(fm.glm1 <- glm(N ~ vegHt, family=poisson))

Call:

glm(formula = N ~ vegHt, family = poisson)

Deviance Residuals:

 Min 1Q Median 3Q Max

-2.8905 -0.9424 -0.1532 0.5542 2.4660

Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.8200 0.2635 -10.70 <2e-16 ***

vegHt 1.9395 0.1052 18.44 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 516.50 on 99 degrees of freedom

Residual deviance: 110.13 on 98 degrees of freedom

AIC: 375.92

Number of Fisher Scoring iterations: 5
Do some analysis of the results

plot(vegHt, N, xlab="Vegetation height", ylab="Abundance (N)")

glm1.est <- coef(fm.glm1)

plot(function(x) exp(-3 + 2*x), 1, 3, add=TRUE, lwd=3)

plot(function(x) exp(glm1.est[1] + glm1.est[2]*x), 1, 3, add=TRUE,

 lwd=3, col="blue")

legend(1, 20, c("Truth", "Estimate"), col=c("black", "blue"), lty=1,

 lwd=3)

[image: image12.emf]1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

Vegetation height

Abundance (N)

Truth

Estimate

Fig. 5–2: The relationship between abundance and vegetation height in the simulated example. The black line represents the true
[image: image13.wmf]l

, i.e., the expected abundance. The circles represent the realized abundance states at each of 100 sites. The difference between the expected and the realized abundance is the ‘implicit residual’ that comes with the Poisson assumption and is due to the discrete nature of abundance. The blue line indicates the maximum likelihood estimate of
[image: image14.wmf]l

. The difference between the blue and the black line is due to sampling variability and estimation error. For unbiased estimators, it will average out to zero if this exercise where repeated many times.
When we use a Poisson GLM for observed counts (Cij), we think of them as abundance or perhaps as some “index” of abundance. That is, we necessarily make either of two assumptions: either p=1 or p=p0 and p0 is constant over dimensions of comparison (e.g., over a habitat gradient). Either of these assumptions may be suspect for count data obtained in the field. So let us then accommodate the fact that in Nature we rarely ever detect all individuals present. Instead, we will only see a fraction of Ni. This fraction is equal to the detection probability, p. Let us extend the Poisson model in a way that accommodates both the desired model for the actual abundance, Ni, and also for the observation error.

Let’s say we conduct three surveys at each site and our measurement error is characterized by p=0.6. Since the observation process is defined conditional on the state process, when N=0 we can only ever observe counts equal to 0. So the second building block for the N-mixture model is simply the same old binomial distribution to describe the imperfect detection process. By this choice we make the customary assumption that we can only make false negative, but no false positive errors. As soon as p<1, N will no longer be perfectly observable anymore and will become a latent variable.

nVisits <- 3
p <- 0.6

C <- matrix(NA, nSites, nVisits)

for(i in 1:nSites) {

 C[i,] <- rbinom(nVisits, N[i], p)

}
Look at the data
cbind(N=N, C1=C[,1], C2=C[,2], C3=C[,3])

 N C1 C2 C3

 [1,] 1 0 1 0

 [2,] 1 1 1 1

 [3,] 0 0 0 0

 [...]

 [97,] 18 12 8 9

 [98,] 15 11 8 12

 [99,] 13 10 7 10

[100,] 22 16 12 13

This concludes our simulation algorithm-based description of the two processes that we think are involved in producing counts of animals that are replicated over space and over a reasonably short time period, i.e., our description of the N-mixture model.

Let’s now use unmarked to fit a simple N-mixture model to this data set.
Load library, format data and summarize

library(unmarked)

umf <- unmarkedFramePCount(y=C, siteCovs=as.data.frame(vegHt))

summary(umf)

unmarkedFrame Object

100 sites

Maximum number of observations per site: 3

Mean number of observations per site: 3

Sites with at least one detection: 81

Tabulation of y observations:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 <NA>

 86 58 39 26 23 16 12 10 6 5 4 7 4 1 2 1 0

Site-level covariates:

 vegHt

 Min. :1.010

 1st Qu.:1.562

 Median :1.947

 Mean :1.976

 3rd Qu.:2.386

 Max. :2.987
Fit a model and extract estimates

Detection covariates follow first tilde, then come abundance covariates
Also time model fit and monitor convergence
system.time(summary(fm.nmix1 <- pcount(~1 ~vegHt, data=umf, control=list(trace=TRUE, REPORT=1))))
Call:

pcount(formula = ~1 ~ vegHt, data = umf, control = list(trace = TRUE,

 REPORT = 1))

Abundance (log-scale):

 Estimate SE z P(>|z|)

(Intercept) -2.78 0.281 -9.89 4.76e-23

vegHt 1.93 0.113 17.07 2.70e-65

Detection (logit-scale):

 Estimate SE z P(>|z|)

 0.455 0.167 2.73 0.00635

AIC: 870.3834

Number of sites: 100

optim convergence code: 0

optim iterations: 39

Bootstrap iterations: 0

 User System verstrichen

 3.68 0.10 3.77

Warning:

In pcount(~1 ~ vegHt, data = umf, control = list(trace = TRUE, REPORT = 1)) :

 K was not specified and was set to 116.
Note the warning message:

May consider other abundance models: NB = negative binomial, ZIP = zero-inflated Poisson (currently no others available)
Compare with AIC
fm.nmix2<- pcount(~1 ~vegHt, data=umf,mixture="NB", control=list(trace=TRUE, REPORT=1))

fm.nmix3<- pcount(~1 ~vegHt, data=umf,mixture="ZIP", control=list(trace=TRUE, REPORT=1))

cbind(AIC.P=fm.nmix1@AIC, AIC.NB=fm.nmix2@AIC, AIC.ZIP=fm.nmix3@AIC)
 AIC.P AIC.NB AIC.ZIP

[1,] 870.3834 872.3845 872.3414
Note, estimates of detection coefficients are on the logit-scale

When there are no covariates, we can back-transform using:

beta1 <- coef(fm.nmix1)

exp(beta1[3]) / (1+exp(beta1[3])) # or

plogis(beta1[3]) # or

backTransform(fm.nmix1, type="det") # estimate with SE

When covariates are present we can do something like

plot(function(x) exp(beta1[1] + beta1[2]*x), 1, 3,

 xlab="vegetation height", ylab="Expected Abundance")

Or suppose you want predictions for new values of vegHt, say 1.2 and 3.1

newdat <- data.frame(vegHt=c(1.2, 3.1))

predict(fm.nmix1, type="state", newdata=newdat)
> predict(fm.nmix1, type="state", newdata=newdat)

 Predicted SE lower upper

1 0.6281663 0.09739854 0.4635472 0.8512464

2 24.5194200 2.70937154 19.7448241 30.4485852
In the frequentist analysis, site-specific abundance, the random effect Ni, is lost by the summation over all possible states of Ni in forming the integrated likelihood. We can obtain estimates of these random effects by application of ranef().

ranef(fm.nmix1)
> ranef(fm.nmix1)

 Mean Mode 2.5% 97.5%

 [1,] 1.02544643 1 1 2

 [2,] 1.10074000 1 1 2

 [3,] 0.02673185 0 0 1
 [...]

 [98,] 17.23397839 17 14 21

 [99,] 15.40658960 15 12 19

[100,] 21.89094808 22 19 26
These estimates are approximations, because their uncertainty does not incorporate the uncertainty stemming from the fact that the parameters of the prior distribution (here, the Poisson) are unknown, but must be estimated.
In summary, unmarked gives us considerable flexibility in fitting a wide range of N-mixture models quickly and reliably.

We make one important comments at this place: in spite of the name of the unmarked function for fitting the N-mixture model, and some published analyses calling this model ‘the point count model’, applications of this model are not restricted to point count data. Instead, any kind of replicated counts for any kind of reasonably well-defined spatial sample units may be adequate for use of this model, e.g., counts along more or less linear transects (Kéry et al. 2009 Dutch lizards) or areal counts with or without defined transects (Kéry et al. 2005, Ecological Applications, MHB); see also Fig. 5–7.

As for many hierarchical models, there is substantial scope for investigations about optimal sampling design. Some work has been done in this respect for the static occupancy models (e.g., MacKenzie and Royle, 2005; Bailey et al. 2007; Guillera-Arroita et al. 201X), but is totally lacking so far for N-mixture models.

5.4. Analysis of Alder flycatcher point count data using unmarked
We will now analyse a real data set (from Chandler et al. 2009), where three repeated measurements (with imperfect detection) of abundance of alder flycatchers (Fig. 5–3) were taken at 50 point count stations. In addition, the data set includes site-level covariates for habitat structure, woodyness and survey-level covariates for the time of day and for date. We adopt an Nmix model where we include the effects of covariates. The Poisson/binomial (aka Nmix) model naturally accommodates three key features of this data set:
1. There is variability in abundance among sites.

2. We have repeated measurements of abundance at each site

3. There is variation in the observed counts at a site owing to non-detection of individuals (i.e., imperfect detectability)

In this section we illustrate the typical work flow of an analysis for a real data set, where part 1 contains setting up the data for analysis: reading in the data set, manipulating the data (e.g., transforming covariates) and formatting them for use in unmarked, i.e., packaging them into an unmarked data frame. Part 2 contains the fitting of a series of models and their comparison using AIC and part 3 contains the analysis of the results of the model. Here, we will illustrate prediction and goodness of fit assessment.
[image: image15.jpg]

Fig. 5–3: The colorful Alder flycatcher (Empidonax alnorum; borrowed from the web).

PART 1: Set-up the data for analysis

-------------------------- Format data ---------------------------------

This a subset of point-count data from Chandler et al. (Auk 2009)

alfl is Alder Flycatcher (Empidonax alnorum)

Import data and check structure

#alfl.data <- read.csv("alfl05.csv", row.names=1)

alfl.data <- read.csv("http://sites.google.com/site/unmarkedinfo/home/webinars/2012-january/data/alfl05.csv?attredirects=0&d=1", row.names=1)

str(alfl.data)

Pull out count matrix

alfl.y <- alfl.data[,c("alfl1", "alfl2", "alfl3")]

Standardize site-covariates

woody.mean <- mean(alfl.data$woody)

woody.sd <- sd(alfl.data$woody)

woody.z <- (alfl.data$woody-woody.mean)/woody.sd

struct.mean <- mean(alfl.data$struct)

struct.sd <- sd(alfl.data$struct)

struct.z <- (alfl.data$struct-struct.mean)/struct.sd

Load and create unmarkedFrame
Note formatting of unmarked data frame

library(unmarked)

alfl.umf <- unmarkedFramePCount(y=alfl.y,

 siteCovs=data.frame(woody=woody.z, struct=struct.z),

 obsCovs=list(time=alfl.data[,c("time.1", "time.2", "time.3")],

 date=alfl.data[,c("date.1", "date.2", "date.3")]))

summary(alfl.umf)

> summary(alfl.umf)

unmarkedFrame Object

50 sites

Maximum number of observations per site: 3

Mean number of observations per site: 3

Sites with at least one detection: 34

Tabulation of y observations:

 0 1 2 3 <NA>

 85 42 17 6 0

Site-level covariates:

 woody struct

 Min. :-1.597e+00 Min. :-1.810e+00

 1st Qu.:-6.019e-01 1st Qu.:-7.710e-01

 Median :-1.045e-01 Median : 2.358e-02

 Mean :-2.224e-17 Mean : 1.066e-16

 3rd Qu.: 6.417e-01 3rd Qu.: 6.024e-01

 Max. : 2.383e+00 Max. : 3.209e+00

Observation-level covariates:

 time date

 Min. :4.900 Min. : 1.00

 1st Qu.:6.550 1st Qu.:11.00

 Median :7.560 Median :27.00

 Mean :7.553 Mean :24.83

 3rd Qu.:8.620 3rd Qu.:34.00

 Max. :9.920 Max. :54.00
Here's an easy way to standardize covariates after making the UMF

obsCovs(alfl.umf) <- scale(obsCovs(alfl.umf))

summary(alfl.umf)

PART 2: Fit some models

-------------------------- Model fitting -----------------------------

(fm1 <- pcount(~1 ~1, alfl.umf))

 backTransform(fm1, type="state")

 backTransform(fm1, type="det")

(fm2 <- pcount(~date+time ~1, alfl.umf))

(fm3 <- pcount(~date+time ~woody, alfl.umf))

(fm4 <- pcount(~date+time ~woody+struct, alfl.umf))

(fm5 <- pcount(~date+time ~1, alfl.umf,mixture="NB"))

(fm6 <- pcount(~date+time ~1, alfl.umf,mixture="ZIP"))

(fm7 <- pcount(~date+time ~woody,alfl.umf,mixture="ZIP"))

(fm8 <- pcount(~date+time ~struct,alfl.umf,mixture="ZIP"))

(fm9 <- pcount(~date+time ~woody+struct, alfl.umf,mixture="ZIP"))

(fm10<- pcount(~date+time ~woody+struct, alfl.umf,mixture="NB"))

-------------------------- Model selection -----------------------------

Put the fitted models in a "fitList"

fms <- fitList("lam(.)p(.)" = fm1,

 "lam(.)p(date+time)" = fm2,

 "lam(woody)p(date+time)" = fm3,

 "lam(woody+struct)p(date+time)" = fm4,

 "lam(.)p(date+time)NB" = fm5,

 "lam(.)p(date+time)ZIP" = fm6,

 "lam(woody)p(date+time)ZIP" = fm7,

 "lam(struct)p(date+time)ZIP" = fm8,

 "lam(woody+struct)p(date+time)ZIP"=fm9,

 "lam(woody+struct)p(date+time)NB" =fm10)

Rank them by AIC

(ms <- modSel(fms))

 nPars AIC delta AICwt cumltvWt

lam(woody+struct)p(date+time) 6 274.21 0.00 3.7e-01 0.37

lam(woody)p(date+time) 5 274.87 0.66 2.6e-01 0.63

lam(woody+struct)p(date+time)ZIP 7 276.21 2.00 1.3e-01 0.76

lam(woody+struct)p(date+time)NB 7 276.21 2.00 1.3e-01 0.90

lam(woody)p(date+time)ZIP 6 276.87 2.66 9.7e-02 1.00

lam(struct)p(date+time)ZIP 6 284.25 10.04 2.4e-03 1.00

lam(.)p(date+time) 4 286.67 12.45 7.2e-04 1.00

lam(.)p(date+time)ZIP 5 287.53 13.32 4.7e-04 1.00

lam(.)p(date+time)NB 5 288.28 14.07 3.2e-04 1.00

lam(.)p(.) 2 313.90 39.69 8.8e-10 1.00
Table with everything you could possibly need

coef(ms)

toExport <- as(ms, "data.frame")

str(toExport) # See what’s in there
PART 3: Do some analysis of the results

---------------------------- Prediction --------------------------------

Expected detection probability as function of time of day

We standardized "time", so we predict over range of values on that scale

We must fix "date" at some arbitrary value (let's use the mean)

newData1 <- data.frame(time=seq(-2.08, 1.86, by=0.1), date=0)

E.p <- predict(fm4, type="det", newdata=newData1, appendData=TRUE)

head(E.p)

Plot it

Expected detection over time of day
par(mfrow=c(1,2))

plot(Predicted ~ time, E.p, type="l", ylim=c(0,1), xlab="time of day (standardized)", ylab="Expected detection probability", col = "blue", lwd = 3)

lines(lower ~ time, E.p, type="l", col=gray(0.5))

lines(upper ~ time, E.p, type="l", col=gray(0.5))

Expected abundance over range of "woody"

newData2 <- data.frame(woody=seq(-1.6, 2.38,,50),struct=seq(-1.8,3.2,,50))

E.N <- predict(fm4, type="state", newdata=newData2, appendData=TRUE)

head(E.N)

Plot predictions with 95% CI

plot(Predicted ~ woody, E.N, type="l", ylim=c(-.1,max(E.N$Predicted)), xlab="woody vegetation (standardized)", ylab="Expected abundance, E[N]", col = "blue", lwd = 3)

lines(lower ~ woody, E.N, type="l", col=gray(0.5))

lines(upper ~ woody, E.N, type="l", col=gray(0.5))

[image: image16.emf]-2 -1 0 1

0.0

0.2

0.4

0.6

0.8

1.0

time of day (standardized)

Expected detection probability

-1 0 1 2

0

2

4

6

8

woody vegetation (standardized)

Expected abundance, E[N]

Fig. 5–4: Relationship between expected detection probability and time of day (left) and expected abundance and an index of woody vegetation (right) in the alder flycatcher. Uncertainty intervals are 95% confidence intervals.
Plot it again, but this time convert the x-axis back to original scale

par(mfrow=c(1,1))

plot(Predicted ~ woody, E.N, type="l", ylim=c(-.1,max(E.N$Predicted)),

 xlab="Percent cover - woody vegetation",

 ylab="Expected abundance, E[N]",

 xaxt="n")

xticks <- -1:2

xlabs <- xticks*woody.sd + woody.mean

axis(1, at=xticks, labels=round(xlabs, 1))

lines(lower ~ woody, E.N, type="l", col=gray(0.5))

lines(upper ~ woody, E.N, type="l", col=gray(0.5))

Get predictions for covariates in the observation model on natural scale
More step-by-step approach

Look at range, mean and sd of covariate
(range.time <- range(alfl.data[,7:9]))
(mean.time <- mean(as.matrix(alfl.data[,7:9])))
(sd.time <- sd(c(as.matrix(alfl.data[,7:9]))))
(range.date <- range(alfl.data[,10:12]))
(mean.date <- mean(as.matrix(alfl.data[,10:12])))
(sd.date <- sd(c(as.matrix(alfl.data[,10:12]))))

Create new covariate for prediction and scale identically
original.time.pred <- seq(5,10,,100)

original.date.pred <- seq(1,54,,100)

time.pred <- (original.time.pred - mean.time) / sd.time

date.pred <- (original.date.pred - mean.date) / sd.date

Compute predictions for both covariates, keeping other constant
newData1 <- data.frame(time=time.pred, date=0)

Ep1 <- predict(fm4, type="det", newdata=newData1, appendData=TRUE)

head(Ep1)

newData2 <- data.frame(time=0, date=date.pred)

Ep2 <- predict(fm4, type="det", newdata=newData2, appendData=TRUE)

head(Ep2)

Plot against covariate on natural scale
par(mfrow=c(1,2))

plot(Ep1$Predicted ~ original.time.pred, type="l", ylim=c(0,1), xlab="Time of day", ylab="Expected detection probability", main = "Effect of time of day", col = "blue", lwd = 3)

lines(Ep1$lower ~ original.time.pred, type="l", col=gray(0.5))

lines(Ep1$upper ~ original.time.pred, type="l", col=gray(0.5))

plot(Ep2$Predicted ~ original.date.pred, type="l", ylim=c(0,1), xlab="Date", ylab="Expected detection probability", main = "Effect of date", col = "blue", lwd = 3)

lines(Ep2$lower ~ original.date.pred, type="l", col=gray(0.5))

lines(Ep2$upper ~ original.date.pred, type="l", col=gray(0.5))

[image: image17.emf]5 6 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

Effect of time of day

Time of day

Expected detection probability

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Effect of date

Date

Expected detection probability

Fig. 5–5: Relationship between expected detection probability and time of day (left) and date (right) in the alder flycatcher. Uncertainty intervals are 95% confidence intervals.
---------------------------- Goddess of fit -------------------------------

Here's an example of a bootstrap GoF analysis.

Best model is in "fm4" object

Function returning three fit-statistics.

fitstats <- function(fm) {

 observed <- getY(fm@data)

 expected <- fitted(fm)

 resids <- residuals(fm)

 sse <- sum(resids^2) # Sums of squares
 chisq <- sum((observed - expected)^2 / expected) # Chisquared
 freeTuke <- sum((sqrt(observed) - sqrt(expected))^2) # Freeman-Tukey
 out <- c(SSE=sse, Chisq=chisq, freemanTukey=freeTuke)

 return(out)

 }

(pb <- parboot(fm4, fitstats, nsim=100, report=1))

print(pb)

plot(pb)

Now let’s bootstrap a summary statistic

This is not too meaningful right now but we will do a similar thing
later in a more relevant context

Total population size (derived parameter) over 50 surveyed sites
Nhat <- function(fm) {

 N <- sum(predict(fm, type="state")$Predicted, na.rm=TRUE)

 }

(pb.N <- parboot(fm4, Nhat, nsim=25, report=5))

plot(pb.N)

Here's an example of model-averaging predictions

See pg 150, section 4.2.1, of Burnham and Anderson (2002)

This might be worthwhile since fm3 and fm4 had similar support

newData3 <- data.frame(woody=seq(-1.6, 2.38,,50), struct=seq(-1.8,3.2,,50))

averages over _all_ models in the fit list "fms":

E.N.bar <- predict(fms, type="state", newdata=newData3, appendData=TRUE)

head(E.N.bar)

Plot it

plot(Predicted ~ woody, E.N.bar, type="l", ylim=c(-0.1, max(E.N$Predicted)),

 xlab="Percent cover - woody vegetation",

 ylab="Expected abundance, E[N]",

 xaxt="n")

xticks <- -1:2

xlabs <- xticks*woody.sd + woody.mean

axis(1, at=xticks, labels=round(xlabs, 1))

lines(lower ~ woody, E.N.bar, type="l", col=gray(0.5))

lines(upper ~ woody, E.N.bar, type="l", col=gray(0.5))
5.5. Analysis of Swiss willow tits with unmarked
This example illustrates, among other things, the essential fact that the parameters in any N-mixture or related model with spatially indexed covariates can be extrapolated to a larger area to produce a map of abundance or of occupancy (Royle et al. Oikos 2005). The example also illustrates goodness of fit assessments using the parametric bootstrap. The data set contains counts of willow tits (Parus montanus; Fig. 5–6) in the Swiss breeding bird survey MHB along with a couple of site and survey covariates.
[image: image18.jpg]

Fig. 5–6: The also very colorful Willow tit (Parus montanus; borrowed from the web)

The Swiss breeding bird survey MHB (Monitoring Häufige Brutvögel; Schmid et al. 2004) is based on a sample of 267 1 km2 sample units (quadrats) that are laid out as a grid over Switzerland, which has an area of about 41,000 km2. Within each quadrat, experienced volunteers survey a quadrat-specific, but irregular transect route, whose length varies from 1–9 km (mean 5); see Fig. 5–7 for an example. Each transect is surveyed three times during the breeding season (mid April until end of June) using the territory mapping method. High-lying quadrats (above the tree line) are surveyed only twice. During the surveys, which are conducted starting in the first daylight hours and last several hours, the location of each individual of each identified species is recorded on a map. Afterwards, putative territories are determined based on the clustering of observations and for isolated records, based on the knowledge of typical territory sizes of each species. Here, we analyze quadrat counts of the number of territories (
[image: image19.wmf]ij

y

) of the willow tit in quadrat
[image: image20.wmf]i

 during survey
[image: image21.wmf]j

. For various reasons, the data set only contains data from 237 quadrats.

[image: image22.jpg]

Fig. 5–7: Example of a survey quadrat with transect route (red). Forest is shown in green. Elevation is in metres and elevation lines are shown every 10 m. Only the transect (and birds) inside the 1km2 quadrat is surveyed.
The goals of the analysis are threefold:
1. Identify environmental factors that affect the abundance distribution of willow tits in Switzerland

2. Produce a map of abundance of the species

3. Estimate the national population size of the willow tit

As a start, we will adopt the following hierarchical model:
1. Model for quadrat population size (state process model):

[image: image23.wmf]~()

ii

NPoisson

l

[image: image24.wmf]0

log()covariates

i

lb

=+

2. Measurement error model (observation model):

[image: image25.wmf]~(,)

ijiij

yBinomialNp

[image: image26.wmf]0

logit()covariates

ij

p

a

=+

Route length (L) varies by quadrat and it is likely that quadrats with longer routes are covered more than quadrats with shorter routes. To account for such variable coverage bias, we use the inverse of route length as a covariate on abundance. The idea is that the “exposed population”, say, Ni, for a quadrat is less than the actual population in the quadrat, say Mi, but as L goes to infinity, the quadrat becomes saturated with sampling effort and Ni goes to Mi.
Hence, the new quadrat population size model is

[image: image27.wmf]~()

ii

MPoisson

l

[image: image28.wmf]23

0121314

log()

iii

elevelevelevforest

lbbbbb

=+´+´+´+´

[image: image29.wmf]|~(,())

iiii

NMBinomialML

f

where we model

[image: image30.wmf]5

()exp(/)

ii

LL

fb

=-

.

Under this model the marginal distribution of
[image: image31.wmf]i

N

 is

[image: image32.wmf]~(())

iii

NPoissonL

fl

.

Therefore

[image: image33.wmf]05

log()covariates -(1/)

ii

L

lbb

=+

This means that we use inverse route length to account for
[image: image34.wmf]ii

NM

®

 as
[image: image35.wmf]i

L

 increases. For making predictions we set
[image: image36.wmf]1/0

i

L

=

 so that the prediction applies to saturation sampling effort, i.e., to a quadrat that is 100% covered.
We will follow the same work flow as before (1. Set up of analysis; 2. Model fitting and selection; 3. Goodness of fit and analysis of results).

PART 1: Set-up of analysis
Read in some data from the Swiss MHB survey (Swiss equivalent of BBS)

mhbdata <- read.csv("http://sites.google.com/site/unmarkedinfo/home/webinars/2012-january/data/wtmatrix.csv?attredirects=0&d=1")

#mhbdata<-read.csv("wtmatrix.csv")

mhbdata[1:10,]

library("unmarked")

mhb.y<-mhbdata[,c("c.1","c.2","c.3")]

mhbdata[,"length"]<-1/mhbdata[,"length"]

mhb.umf<-unmarkedFramePCount(y=mhb.y,

siteCovs=data.frame(elev=mhbdata[,"elev"],forest=mhbdata[,"forest"],length=mhbdata[,"length"]),

obsCovs=list(duration=mhbdata[,c("dur.1","dur.2","dur.3")],

 day = mhbdata[,c("day.1","day.2","day.3")]))

this is extremely handy:

obsCovs(mhb.umf)<- scale(obsCovs(mhb.umf))

#

NOTE: Do not standardize 1/length because we are using 1/length

for a specific reason

siteCovs(mhb.umf)$forest<-scale(siteCovs(mhb.umf)$forest)

siteCovs(mhb.umf)$elev<-scale(siteCovs(mhb.umf)$elev)

str(mhb.umf)

PART 2: Fit some models

------ Fit Poisson N-mixture model to MHB data and do model selection -----#
Do simplistic two-step model selection with p first
fm01 <- pcount(~day ~1, mhb.umf)

fm02 <- pcount(~day+I(day^2) ~1, mhb.umf)
fm1<- pcount(~1 ~1, mhb.umf)
Put three fitted models in a "fitList" and rank them by AIC
fms <- fitList("lam(.)p(.)" = fm1,

 "lam(.)p(day)" = fm01,

 "lam(.)p(day+day2)" = fm02)

(ms <- modSel(fms))

So no evidence for seasonal effect on detection within simplest model for lambda
Go on modeling abundance part of model with p=constant
fm2 <- pcount(~1 ~elev,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm3<- pcount(~1 ~forest,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm4<- pcount(~1 ~length,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm5<- pcount(~1 ~forest+elev,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm6<- pcount(~1 ~forest+length,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm7<- pcount(~1 ~elev+length,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm8<- pcount(~1 ~forest+elev+length,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm9<- pcount(~1 ~elev + I(elev^2),mhb.umf, control=list(trace=TRUE, REPORT=1))

fm10<- pcount(~1 ~forest+elev+I(elev^2) + length,mhb.umf, control=list(trace=TRUE, REPORT=1))

fm11<- pcount(~1 ~forest+elev+I(elev^2)+I(elev^3) + length,mhb.umf, control=list(trace=TRUE, REPORT=1))

Put fitted models in a "fitList" and rank them by AIC
mspart1<- fitList(

"lam(.)p(.)" = fm1,

"lam(elev)p(.)" = fm2,

"lam(forest)p(.)" = fm3,

"lam(length)p(.)" = fm4,

"lam(forest+elev)p(.)" = fm5,

"lam(forest+length)p(.)" = fm6,

"lam(elev+length)p(.)" = fm7,

"lam(forest+elev+length)p(.)" = fm8,

"lam(elev + elev^2)p(.)" = fm9,

"lam(forest+elev+elev^2+length)p(.)" = fm10,
"lam(forest+elev+elev^2+elev^3+length)p(.)" = fm11)

(ms1 <- modSel(mspart1))
> (ms1 <- modSel(mspart1))

 nPars AIC delta AICwt cumltvWt

lam(forest+elev+elev^2+elev^3+length)p(.) 7 1197.52 0.00 1.0e+00 1.00

lam(forest+elev+elev^2+length)p(.) 6 1209.80 12.28 2.2e-03 1.00

lam(forest+elev+length)p(.) 5 1261.66 64.13 1.2e-14 1.00

lam(forest+elev)p(.) 4 1287.93 90.41 2.3e-20 1.00

lam(elev + elev^2)p(.) 4 1371.72 174.20 1.5e-38 1.00

lam(elev+length)p(.) 4 1518.77 321.25 1.7e-70 1.00

lam(elev)p(.) 3 1579.22 381.70 1.3e-83 1.00

lam(forest+length)p(.) 4 1640.09 442.57 7.9e-97 1.00

lam(forest)p(.) 3 1645.05 447.52 6.6e-98 1.00

lam(length)p(.) 3 1774.16 576.64 6.1e-126 1.00

lam(.)p(.) 2 1784.64 587.12 3.2e-128 1.00

print(coef(ms1), dig = 2)
> print(coef(ms1), dig = 2)

 lam(elev) lam(forest) lam(I(elev^2)) lam(I(elev^3))

lam(forest+elev+elev^2+elev^3+length)p(.) 2.4168899 0.5948694 -0.1804728 -0.4729315

lam(forest+elev+elev^2+length)p(.) 2.2689475 0.6251227 -0.8601055 NA

lam(forest+elev+length)p(.) 1.4157479 0.8888173 NA NA

lam(forest+elev)p(.) 1.4096703 0.9651432 NA NA

lam(elev + elev^2)p(.) 2.4254100 NA -1.3801756 NA

lam(elev+length)p(.) 0.9065451 NA NA NA

lam(elev)p(.) 0.7955943 NA NA NA

lam(forest+length)p(.) NA 0.6542243 NA NA

lam(forest)p(.) NA 0.6615084 NA NA

lam(length)p(.) NA NA NA NA

lam(.)p(.) NA NA NA NA

 lam(Int) lam(length) p(Int)

lam(forest+elev+elev^2+elev^3+length)p(.) 0.9257619 -5.622158 0.1240631

lam(forest+elev+elev^2+length)p(.) 1.2241176 -6.033094 0.1394551

lam(forest+elev+length)p(.) 0.6013882 -5.003830 0.1988031

lam(forest+elev)p(.) -0.4972175 NA 0.2379903

lam(elev + elev^2)p(.) 0.4959968 NA 0.3426085

lam(elev+length)p(.) 1.5234385 -6.943975 0.4347298

lam(elev)p(.) 0.1156306 NA 0.4886166

lam(forest+length)p(.) 0.7214975 -2.730246 0.5873931

lam(forest)p(.) 0.1612025 NA 0.5907796

lam(length)p(.) 1.0580996 -3.329645 0.6422350

lam(.)p(.) 0.3744773 NA 0.6439773

Revisit date effects within current best model and compare with AIC
system.time(fm12 <- pcount(~day ~forest+elev+I(elev^2) +I(elev^3) + length,
 mhb.umf,control=list(trace=TRUE, REPORT=1)))
system.time(fm13 <- pcount(~day + I(day^2)~forest+elev+I(elev^2)+ I(elev^3) +
 length, mhb.umf, control=list(trace=TRUE, REPORT=1)))

mspart2<- fitList(

"lam(forest+elev+elev^2+elev^3+length)p(.)" = fm10,

"lam(forest+elev+elev^2+elev^3+length)p(day)" = fm12,

"lam(forest+elev+elev^2+elev^3+length)p(day+day2)" = fm13)

(ms2 <- modSel(mspart2))
> (ms2 <- modSel(mspart2))

 nPars AIC delta AICwt cumltvWt

lam(forest+elev+elev^2+elev^3+length)p(day+day2) 9 1188.33 0.00 9.6e-01 0.96

lam(forest+elev+elev^2+elev^3+length)p(day) 8 1194.75 6.43 3.9e-02 1.00

lam(forest+elev+elev^2+elev^3+length)p(.) 6 1209.80 21.48 2.1e-05 1.00

Now good evidence for seasonal effects on p
Table with everything you could possibly need

coef(ms2)

(toExport <- as(ms2, "data.frame"))
PART 3: Do some analysis of the results

--------- Goodness of fit of Poisson models -----------#
Does this model fit worth a darn?

Function returning three fit-statistics.

NOTE: na.rm=TRUE !!!!!!

fitstats <- function(fm) {

 observed <- getY(fm@data)

 expected <- fitted(fm)

 resids <- residuals(fm)

 sse <- sum(resids^2,na.rm=TRUE)

 chisq <- sum((observed - expected)^2 / expected,na.rm=TRUE)

 freeTuke <- sum((sqrt(observed) - sqrt(expected))^2,na.rm=TRUE)

 out <- c(SSE=sse, Chisq=chisq, freemanTukey=freeTuke)

 return(out)

 }

(pb.mhb <- parboot(fm13, fitstats, nsim=100, report=1)) # this takes a while
(pb.mhb <- parboot(fm13, fitstats, nsim=10, report=1)) # cheaper version
plot(pb.mhb)
Ouch ! Model does not fit!

What should we do ?
Three choices:

1. We can expand this model or tinker with components of it (NB, ZIP)

[takes a long time to run these models]

2. We can seek out an implausible data-generating model that fits.

[might satisfy referee to have good p-value]

3. We can proceed anyway.
Try choice 1:

--- Fit NegBin N-mixture models to MHB data and do model selection ----#
Try same models with NegBin N: accounts for extra-Poisson dispersion
system.time(fm20 <- pcount(~1 ~elev, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))

system.time(fm21<- pcount(~1 ~forest, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm22<- pcount(~1 ~length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm23<- pcount(~1 ~forest+elev, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm24<- pcount(~1 ~forest+length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm25<- pcount(~1 ~elev+length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm26<- pcount(~1 ~forest+elev+length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm27<- pcount(~1 ~elev + I(elev^2), mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm28<- pcount(~1 ~forest+elev+I(elev^2) + length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm29<- pcount(~1 ~forest+elev+I(elev^2)+I(elev^3) + length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm30<- pcount(~day ~forest+elev+I(elev^2)+I(elev^3) + length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
system.time(fm31<- pcount(~day + I(day^2) ~forest+elev+I(elev^2)+I(elev^3) + length, mixture = "NB", mhb.umf, control=list(trace=TRUE, REPORT=1)))
Put fitted models in a "fitList" and rank them by AIC

Add best Poisson model for comparison
mspart3<- fitList(

"lam(P, forest+elev+elev^2+elev^3+length)p(day+day^2)" = fm13,
"lam(NB, elev)p(.)" = fm20,

"lam(NB, forest)p(.)" = fm21,

"lam(NB, length)p(.)" = fm22,

"lam(NB, forest+elev)p(.)" = fm23,

"lam(NB, forest+length)p(.)" = fm24,

"lam(NB, elev+length)p(.)" = fm25,

"lam(NB, forest+elev+length)p(.)" = fm26,

"lam(NB, elev + elev^2)p(.)" = fm27,

"lam(NB, forest+elev+elev^2+length)p(.)" = fm28,
"lam(NB, forest+elev+elev^2+elev^3+length)p(.)" = fm29,

"lam(NB, forest+elev+elev^2+elev^3+length)p(day)" = fm30,

"lam(NB, forest+elev+elev^2+elev^3+length)p(day+day^2)" = fm31)

(ms3 <- modSel(mspart3))

> (ms3 <- modSel(mspart3))

 nPars AIC delta AICwt cumltvWt

lam(NB, forest+elev+elev^2+elev^3+length)p(day+day^2) 10 1042.73 0.00 5.6e-01 0.56

lam(NB, forest+elev+elev^2+elev^3+length)p(day) 9 1043.80 1.07 3.2e-01 0.88

lam(NB, forest+elev+elev^2+elev^3+length)p(.) 8 1046.17 3.44 9.9e-02 0.98

lam(NB, forest+elev+elev^2+length)p(.) 7 1049.43 6.70 1.9e-02 1.00

lam(NB, forest+elev+length)p(.) 6 1065.89 23.17 5.2e-06 1.00

lam(NB, forest+elev)p(.) 5 1069.36 26.64 9.1e-07 1.00

lam(NB, elev + elev^2)p(.) 5 1078.83 36.10 8.0e-09 1.00

lam(NB, elev+length)p(.) 5 1102.83 60.11 4.9e-14 1.00

lam(NB, elev)p(.) 4 1107.44 64.71 4.9e-15 1.00

lam(NB, forest)p(.) 4 1135.20 92.47 4.6e-21 1.00

lam(NB, forest+length)p(.) 5 1136.34 93.61 2.6e-21 1.00

lam(NB, length)p(.) 4 1160.47 117.75 1.5e-26 1.00

lam(P, forest+elev+elev^2+elev^3+length)p(day+day^2) 9 1188.33 145.60 1.3e-32 1.00
--- Do parboot GOF test for current AIC best NegBin model -----------#
 (pb.mhb <- parboot(fm31, fitstats, nsim=10, report=1)) # cheap version
plot(pb.mhb)
Looks much better now. Use this model for inference about willow tit distribution and abundance in Switzerland
---------------------- Do 1D predictions ----------------------------#
Now we want to use these parameter estimates to do a couple things

Predict response of E[N] vs. elevation -- find optimal elevation

make an abundance map over Switzerland

range(mhbdata[,"elev"])
> range(mhbdata[,"elev"])

[1] 250 2750
(elev.mean<- attr(siteCovs(mhb.umf)$elev,"scaled:center"))
(elev.sd <- attr(siteCovs(mhb.umf)$elev,"scaled:scale"))
remember length = 0 is saturation sampling because length = 1/L

Create covariate values for prediction and then scale them identically

original.pred.elev <- seq(250,2750,,1000)
pred.elev <- (original.pred.elev - elev.mean) / elev.sd
newData<- data.frame(elev=pred.elev, forest=0, length=0)

pred<-predict(fm31, type="state", newdata=newData, appendData=TRUE)

head(pred)

plot(Predicted ~ original.pred.elev, pred,type="l",xlab="Elevation (not standardized)", ylab="Expected # territories",ylim=c(0,100), lwd = 2)

lines(lower ~ original.pred.elev, pred,type="l",col="red", lwd = 2)

lines(upper ~ original.pred.elev, pred,type="l",col="red", lwd = 2)

Note considerable uncertainty with NB state model
[image: image37.emf]500 1000 1500 2000 2500

0

20

40

60

80

100

Elevation (not standardized)

Expected # territories

Fig. 5–8: Estimated elevation profile of abundance per 1 km2 of Swiss willow tits. Predictions were made at the average value per quadrat of forest cover and for saturation sampling effort (in terms of route length).

what is primo elevation for the willow tit?

For quadratic response could use calculus
quadratic response:

y = a + b*x + c*x2

differentiate and set to 0:

dy/dx = b + 2*c*x = 0

solve

xopt = -b/(2*c)

Empirical answer for any model of covariate

(original.pred.elev[pred$Predicted == max(pred$Predicted)])

[1] 1891.642
PART 3c:

SPATIAL ANALYSIS/PREDICTION

Now lets make some really cool spatial predictions (aka MAPS)
landscape <- read.csv("http://sites.google.com/site/unmarkedinfo/home/webinars/2012-january/data/Swiss_landscape.csv?attredirects=0&d=1")

landscape<-read.csv("Swiss_landscape.csv")

head(landscape)

Note integer coordinates - row/column ids

gelev<- landscape[,"medel"] # median elevation of quadrat

gforest<-landscape[,"forest"]

grid<-landscape[,c("x","y")]

lets plot these variables to see how they look

#

two options: (1) use my simpleton spatial.plot function

(2) stuff the data into a matrix and use image()

#

grab utility functions including spatial.plot

source("http://sites.google.com/site/unmarkedinfo/home/webinars/2012-january/data/utils.R?attredirects=0&d=1")

par(mar=c(3,3,3,5),mfrow=c(2,1))

par(mar=c(3,3,3,6))

spatial.plot(grid,gelev)

text(500, 290, labels = "Elevation")

spatial.plot(grid,gforest)

text(500, 290, labels = "Forest cover")

this is cool

------------------ Do 2D predictions (maps) ----------------------------#
library(sp)
Get coordinates and rescale from km to m

coordCH <- matrix(cbind(landscape$x + 0.5, landscape$y + 0.5), ncol = 2)

xcor <- coordCH[,1] * 1000

ycor <- coordCH[,2] * 1000

Get predictions for each pixel of Switzerland

First scale values of elevation analogously to analysis

pelev <- (landscape$medel-elev.mean)/elev.sd

forest.mean <- mean(mhbdata[,"forest"])
forest.sd <- sd(mhbdata[,"forest"])
pforest <- (landscape$forest-forest.mean)/forest.sd

new<- data.frame(elev=pelev,forest=pforest,length=0)

pred<-predict(fm31,type="state",newdata=new,appendData=TRUE)

###

this would destroy your computer -> bug in unmarked

###

instead we have to do this the old-fashioned way:

look at col names to figure order of parameters

par(mfrow=c(1,1))

betavec<-coef(fm31)[1:5]

Xg<-cbind(rep(1,length(pelev)),pforest,pelev,pelev^2, pelev^3)

pred<-exp(Xg%*%(betavec))

Define a new dataframe with coordinates and outcome to be plotted

PARAM <- data.frame(x = xcor, y = ycor, z = pred)
Convert the dataframe first into a SpatialPointsDataFrame and then into a SpatialPixelsDataFrame

coordinates(PARAM)<- ~x+y

gridded(PARAM) <- TRUE

Plot the map using custom color palette

mapPalette <- colorRampPalette(c("grey", "lightgreen", "darkgreen"))

mapPalette <- colorRampPalette(c("grey", "yellow", "orange", "red"))

spplot(PARAM, col.regions = mapPalette(100), main = "Expected willow tit density")

[image: image38.emf]Expected willow tit density

0

20

40

60

80

100

120

140

Fig. 5–9: Willow tit density patterns in Switzerland under the best-fitting Nmix model.

Perhaps too high ? check with literature
Next get total population size of breeding territories (derived parameter).

N<- sum(pred)

print(N)

Bootstrap the SE

note: not using predict() here but doing calculation by hand
Nhat <- function(fm) {

 betavec<-coef(fm)[1:5]

 Xg<-cbind(rep(1,length(pelev)),pforest,pelev,pelev^2, pelev^3)

 pred<-exp(Xg%*%(betavec))

 N<-sum(pred)

 N

 }
estimate.of.territories<-Nhat(fm31)

(pb.N <- parboot(fm31, Nhat, nsim=100, report=1)) # Would have to do many more times
plot(pb.N)
bs.sample <- pb.N@t.star

summary(bs.sample)

quantile(bs.sample, prob = c(0.025, 0.975))
> quantile(bs.sample, prob = c(0.025, 0.975))

 2.5% 97.5%

 132110.9 1193516.1 # 95% confidence interval
Much uncertainty in estimate !

This is only a sketch of a thorough spatial analysis of the abundance of a species. However, we see a few important things:

· unmarked can flexibly fit a large range of N-mixture models for spatially and temporally replicated count data

· we can use AIC to tell us which model has most support from the data

· we can use parametric bootstrapping to compute measures of goodness of fit

· we have looked into the calculation of predicted values of abundance and detection under the model. This is an important topic, because the resulting plots are a neat way of presenting the results from such an analysis.

· Also, when our model contains polynomials or interactions of covariates, we don’t usually understand what the model is telling us from staring at the parameter estimates. Rather, the only way to understand what the model is telling us is usually by producing a picture of the response in relation to the covariate values.

· as always, whenever we have spatially indexed covariates in an analysis, we can of course compute the expected value of a response (here, abundance) for each pixel in some region and then project these predictions, producing a map.

· Thus, the N-mixture model is naturally also a species distribution model, primarily for abundance

· Note that we could also compute the probability of occurrence (as 1 minus the probability that N>0) and plot that; see Royle et al. (Oikos, 2005). Thus, from the logical equivalence of abundance and occurrence, we can also use the N-mixture model for abundance to produce a traditional map of species occurrence probability.

· Regional or national population sizes can naturally be obtained by predicting on each pixel of an area and then simply summing up. Parametric bootstrapping is one frequentist method of obtaining uncertainty intervals for such a derived quantity.

· We have seen that the Poisson mixture models did not fit the data based on the bootstrap GOF. This means that the observed responses were more variable than expected under the Poisson model. Allowing for extra-Poisson dispersion in the abundance part of the model bought us a fitting model, but at the expense of much uncertainty in the resulting predictions of abundance. Also, the NB distribution is known to sometimes lead to unrealistically high estimates of abundance (see Kéry et al. 2005; Johnson et al, ca. 2009), so it has to be applied with caution.

· In our case, it may well be that we obtained a little high predictions. Have to check that with what is known about the density of this species.

5.6. Analysis of the N-mixture model with BUGS/JAGS and introduction to Bayesian p-values
So if the analysis of the N-mixture model using unmarked is so straightforward, why should we bother to try BUGS/JAGS to analyse the model ? There are quite a few good answers to that.
1. Some people prefer Bayesian statistical analyses in principle.

2. You may have external information about (some of) the parameters which you want to incorporate in the analysis in a formal way. This is possible via the priors of a Bayesian analysis.

3. The BUGS language is fantastic to understand the basic probability structure of a statistical model.

4. It is usually quite trivial to fit very non-standard models, especially those with random effects.

We illustrate the fitting of a very basic N-mixture model using WinBUGS and JAGS for the simulated data from section 5.3. (You may have to recreate the data set in case you have overwritten some of the data since then.) In addition to fitting the model, we will also illustrate a general method of assessing goodness of fit of a model fit by MCMC, called a Bayesian p-value.

Bundle data

win.data <- list(C = C, R = nrow(C), T = ncol(C), vegHt = vegHt)
Specify model in BUGS language

sink("Nmix.txt")

cat("

model {

Priors

alpha0 ~ dunif(-10, 10)

alpha1 ~ dunif(-10, 10)

p ~ dunif(0, 1)

Likelihood

Ecological model for true abundance

for (i in 1:R){

 N[i] ~ dpois(lambda[i])

 log(lambda[i]) <- alpha0 + alpha1 * vegHt[i]
 # Observation model for replicated counts

 for (j in 1:T){

 C[i,j] ~ dbin(p, N[i])
 # Assess model fit using Chi-squared discrepancy

 # Compute fit statistic E for observed data

 eval[i,j] <- p * N[i]
Expected values

 E[i,j] <- pow((C[i,j] - eval[i,j]),2) / (eval[i,j] + 0.5)

 # Generate replicate data and compute fit stats for them

 C.new[i,j] ~ dbin(p, N[i])

 E.new[i,j] <- pow((C.new[i,j] - eval[i,j]),2) / (eval[i,j] + 0.5)

 }
}
Derived quantities

lp <- logit(p) # logit-scale detection
totalN <- sum(N[]) # Total abundance over all R sites
fit <- sum(E[,]) # Fit stats actual data set
fit.new <- sum(E.new[,]) # Fit stats ‘ideal’ data set
}

",fill = TRUE)
sink()

Define function to generate random initial values

Nst <- apply(C, 1, max) + 1
Can be important to give good inits for N
inits <- function() list(N = Nst, alpha0 = runif(1, -1, 1), alpha1 = runif(1, -1, 1), p = runif(1))

Parameters monitored

params <- c("alpha0", "alpha1", "p", "lp", "totalN", "fit", "fit.new")

MCMC settings

ni <- 10000
nt <- 2
nb <- 1000
nc <- 3

Call WinBUGS from R (ART 0.7 min)

out1 <- bugs(win.data, inits, params, "Nmix.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors

print(out1, 3)

Inference for Bugs model at "Nmix.txt", fit using WinBUGS,

 3 chains, each with 10000 iterations (first 1000 discarded), n.thin = 2

 n.sims = 13500 iterations saved

 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha0 -2.783 0.279 -3.340 -2.965 -2.783 -2.596 -2.239 1.013 210

alpha1 1.933 0.113 1.714 1.857 1.933 2.008 2.157 1.012 210

p 0.606 0.037 0.530 0.582 0.608 0.632 0.677 1.007 420

lp 0.434 0.157 0.121 0.330 0.439 0.539 0.740 1.006 460

totalN 465.993 27.532 419.000 447.000 463.000 483.000 528.000 1.007 430

fit 79.705 5.104 70.920 76.060 79.300 82.910 90.745 1.004 760

fit.new 75.797 9.281 58.720 69.350 75.390 81.770 95.375 1.003 1000

deviance 669.143 17.441 637.200 657.000 668.300 680.600 705.652 1.004 1300

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 151.9 and DIC = 821.0

DIC is an estimate of expected predictive error (lower deviance is better).
Compare with MLEs from unmarked
summary(fm.nmix1 <- pcount(~1 ~vegHt, data=umf))

> summary(fm.nmix1 <- pcount(~1 ~vegHt, data=umf))

Call:

pcount(formula = ~1 ~ vegHt, data = umf)

Abundance (log-scale):

 Estimate SE z P(>|z|)

(Intercept) -2.78 0.281 -9.89 4.76e-23

vegHt 1.93 0.113 17.07 2.70e-65

Detection (logit-scale):

 Estimate SE z P(>|z|)

 0.455 0.167 2.73 0.00635

AIC: 870.3834

Number of sites: 100

optim convergence code: 0

optim iterations: 39

Bootstrap iterations: 0
Warnmeldung:

In pcount(~1 ~ vegHt, data = umf) : K was not specified and was set to 116.
Call JAGS from R (ART 1.26 min)
library("R2jags")

requires rjags
system.time(out2 <- jags(win.data, inits, params, "Nmix.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))

traceplot(out2)

Summarize posteriors

print(out2, dig = 3)

Inference for Bugs model at "Nmix.txt", fit using jags,

 3 chains, each with 10000 iterations (first 1000 discarded), n.thin = 2

 n.sims = 13500 iterations saved

 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha0 -2.776 0.260 -3.311 -2.943 -2.774 -2.605 -2.263 1.007 480

alpha1 1.930 0.106 1.720 1.860 1.930 2.000 2.141 1.007 480

fit 79.584 5.395 70.472 75.726 79.044 82.924 91.352 1.001 4300

fit.new 75.460 9.703 58.134 68.665 74.955 81.710 95.921 1.002 1300

lp 0.441 0.166 0.100 0.334 0.448 0.555 0.753 1.003 960

p 0.608 0.039 0.525 0.583 0.610 0.635 0.680 1.003 920

totalN 465.129 29.521 418.000 444.000 462.000 482.000 533.000 1.003 890

deviance 668.646 18.322 635.511 655.999 667.492 680.185 707.702 1.002 3200

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 167.8 and DIC = 836.4

DIC is an estimate of expected predictive error (lower deviance is better).
So there are only minor differences between the Bayesian and the frequentist parameter estimates. This is fairly typical when vague priors are used in the former. Let’s plot the estimated habitat relationship of the expected abundance.

par(mar = c(5,5,4,5), cex.lab = 1.5)

plot(vegHt, N, xlab="Vegetation height", ylab="Abundance (N)", las = 1)

glm1.est <- coef(fm.glm1)

plot(function(x) exp(-3 + 2*x), 1, 3, add=TRUE, lwd=3)

lines(vegHt, predict(fm.nmix1, "state")[,1], lwd=3, col="blue")

lines(vegHt, exp(out1$mean$alpha0 + out1$mean$alpha1 * vegHt), lwd=3, col="green", lty = "dashed")

lines(vegHt, exp(out2$BUGSoutput$mean$alpha0 + out2$BUGSoutput$mean$alpha1 * vegHt), lwd=3, col="red", lty = "dotted")

legend(1, max(N), c("Truth", "unmarked", "WinBUGS", "JAGS"), col=c("black", "blue", "green", "red"), lty=c(1, 1, 2, 3), lwd=3)
[image: image39.emf]1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

Vegetation height

Abundance (N)

Truth

unmarked

WinBUGS

JAGS

Fig. 5–10: Comparison of truth and three of its estimates for the relationship between abundance and vegetation height in the simulated example from section 5.3.

Now let’s look at the goodness of fit of the model. For our simulated data, this check is of course trivial, but we still see the principle of this very general manner of checking the fit of a model to a data set. The principle of the Bayesian p-value is that we compare the fit of the model to the actual data set with the fit of the model to ‘ideal’ or ‘prefect’ data sets. Perfect means that these data were generated under the identical model that we use for learning about the processes underlying our actual data. To quantify the fit or lack thereof, we define a discrepancy measure that may express one particular feature of the model we are particularly interested in, for instance, how well the model predicts extreme values (Gelman et al. 1996). However, more typically we will choose some omnibus measure of lack of fit, such as chisquare, sums of squares or the Freeman-Tukey statistic. These statistics measure the discrepancy between the observed data and what the model says the observed data should be, i.e., the expected values of the data. Now the expected values depend on the parameters of the model and in a Bayesian analysis using MCMC, the parameter values change at every iteration of the MCMC algorithm. Therefore, the value of the discrepancy measure also changes at each step of the algorithm.
To obtain a comparison for the value of the discrepancy measure for our actual data, we repeat this calculation for a ‘perfect’ data set at each step of the MCMC algorithm. We do this by generating, at each iteration, one replicate data set, which we obtain under the exact same model that we fit to the actual data set, and using the values of all parameters in the current iteration of the algorithm. Then, we compute the discrepancy measure also for these ‘perfect’ data sets. In the end we have one posterior distribution for the discrepancy measure computed for the actual data set and another for that computed for the ‘perfect’ data sets. We can compare them by plotting the discrepancy measure for the perfect data set against that for the actual data set. A fitting model has values of the discrepancy measure that are not unusual in comparison with the discrepancy measure for the ‘perfect’ data. We can express this in a single number by computing the proportion of MCMC iterations at which the value of the discrepancy measure for the ‘perfect’ data sets exceed that of the measure for the actual data set. This proportion is called the Bayesian p-value (Gelman et al. 1996).

plot(out1$sims.list$fit, out1$sims.list$fit.new, xlab="Actual data set", ylab="’Perfect’ data sets", las = 1)

abline(0,1, col = "red", lwd = 3)

[image: image40.emf]70 80 90 100 110

60

80

100

120

Actual data set

’Perfect’ data sets

Fig. 5–11: Graphical goodness of fit assessment of a model fit using MCMC simulations. The posterior predictive distribution of a discrepancy measure for replicate (‘perfect’) data sets is compared with those for the discrepancy measure for the actual data set. A fitting model has a cloud of points that straddled the 1:1 line.

(bpv <- mean(out1$sims.list$fit.new > out1$sims.list$fit))
> (bpv <- mean(out1$sims.list$fit.new > out1$sims.list$fit))

[1] 0.2846667

A fitting model has a Bayesian p-value around 0.5 and a model that does not fit one close to or equal to 0 or 1. There are no rules to decide which value represents a non-fitting model.

One big advantage of a Bayesian analysis of the model is the ease with which we can obtain derived variables. In the analysis, we compute totalN, which is the total number of individuals living in all 100 quadrats. We obtain this quantity trivially easily in an MCMC-based analysis by simply defining it in the model as the sum of all N and then by monitoring this quantity (i.e., saving its posterior draws). Thus, we obtain the full posterior distribution of the total population size, with a full accounting for all the uncertainties contained in all the ingredients of this quantity. The frequentist way of obtaining an uncertainty interval for such a quantity is the parametric bootstrap, which arguably gives more approximate answers than the Bayesian analysis (?). There is a myriad of possible such derived quantities, and this is a great benefit of a Bayesian analysis.

Just as one crazy example, suppose that a famous theoretical ecologist had just come up with a sophisticated theory about the extinction risk of metapopulations. His theory predicts that our metapopulation was going extinct if 88 % or more of all patches had 10 or fewer individuals. Is it possible to estimate the extinction probability of our metapopulation ?
It turns out that in a Bayesian analysis, this is really simple: in the BUGS model, we simply define a statistic that codes for the desired condition and then obtain posterior samples for this quantity. So as one solution to this difficult problem, we could add the following lines in the model:

tmp[i] <- step(10-N[i])

sum.critical <- sum(tmp[])
Number of pops with critical size

We use the step function in WinBUGS, about which its manual tells us this:
step(e)
1 if e >= 0; 0 otherwise
Thus, whenever Ni is 10 or fewer, tmpi evaluates to 1 and sum.critical adds up the number of populations for which this is the case. Since the number of populations which are at or below the critical threshold is such a crucial quantity in this hypothetical example, we will plot the whole posterior distribution for it.
plot(table(out1$sims.list$sum.critical), xlab="Number of threshold populations", ylab="Frequency")

abline(v = 87.9, col = "red", lwd = 5)

[image: image41.emf]0

1000

2000

3000

Number of threshold populations

Frequency

78 79 80 81 82 83 84 85 86 87 88 89 90 91

Fig. 5–12: Some crazy derived variable in a Bayesian analysis.

Our estimate of the metapopulation extinction risk is then simply the proportion of MCMC samples of sum.critical which are
[image: image42.wmf]³

88.
(metapop.extinction.risk <- mean(out1$sims.list$sum.critical>87))

> (metapop.extinction.risk <- mean(out1$sims.list$sum.critical>87))

[1] 0.46
Hence, the future is not bright for our metapopulation.
Another big advantage of the Bayesian analysis of the model is the ease with which we can do things with latent variables in the model. Remember that the site-specific abundance, Ni, is lost by summation in the frequentist analysis of the model. In contrast, in the Bayesian analysis, the latent abundances are still part of the model and they are updated (estimated) at each step of the MCMC algorithm. We can obtain estimates of Ni by simply adding "N" to the list of parameters to save. These estimates will be exact, i.e., their uncertainty will properly reflect all the uncertainty in these estimates, including that from having to estimate the parameters of the prior distribution (i.e., the Poisson).
This example concludes our illustration of the Bayesian treatment of the N-mixture model. The Bayesian analysis of these models becomes essential when we consider any of a number of extensions of the model; see the next section. First and foremost, whenever we want to add random effects into the model, for instance, to include unstructured additional variability among sites in abundance or detection, or latent structure among surveys in detection, a Bayesian analysis becomes almost the only sensible choice. Random effects are very easily added into a Bayesian analysis of the models, but they are much harder to incorporate in the frequentist analysis of the model. You can find examples of N-mixture models with random effects in the BPA book (Kéry and Schaub 2012). There, we fit random effects in as a way of correcting for overdispersion, i.e., variability in N and C, that is not properly accounted for by the Poisson and binomial distributions, respectively.
One important field of application is spatial models. Typically, in these models we adopt random site effects and then impose some correlation structure on them, for instance, by making the correlation dependent on the distance between the sites or by choosing a conditional autoregressive prior. Such models can almost only be fitted within a Bayesian framework. See Chelgren et al. (Ecology, 2011) for a geostatistical version of an N-mixture model and Graves et al. (2013) for an example of an Nmix model with a CAR prior.

5.7. Extensions of the basic N-mixture model
- other descriptions of the state process: e.g., NegBin, PLN, ZIP, DPP (Dorazio et al. 2008)

- other descriptions of the observation process: e.g., betabinomial for dependent detections (Martin et al. 2010)

- random effects

- spatial models (CAR, spatial exponential correlations)

- wiggly relationships (splines)

- others …
5.8. Caveats when adopting the N-mixture model
- harder to fit than site-occupancy model, takes longer to run and (with MCMC) has longer autocorrelations, may have more problems at getting convergence
- may have estimability problems: intercepts of the two component models highly correlated, one may then have to fit a limiting case of the model called random-effects Poisson model (Poisson regression with random site effects; W. Link, pers. comm.)
- formal fit of simple models (without random effects in lambda and/or p) often not so good according to traditional fit statistics. What to do about that ? See above (willow tit examples). May easily throw in random effects when fitting model Bayesianly. This is is something line an overdispersion correction which is widely applied in traditional capture-recapture models for survival (cite some reference, e.g., Lebreton et al. 1992, or other, e.g., Cooch and White 2012). This may lead to a fitting model, but comes at the expense of inflated imprecision (posterior standard deviation and credible intervals).

- sampling area exactly defined. Of course, this is never exactly true, but this is shared with all traditional, non-spatial capture recapture models (cf. Borchers and Efford 2008; Royle and Young 2008). So to the degree that the effective sampling area is unknown, the interpretation of N will become more that of an index for abundance that is corrected for variation in detection probability.
- if doubts about closure assumption, then use open-population N-mixture model of Dail and Madsen (2010); see chapter 9.
5.9. Summary and outlook

- the canonical hierarchical model for inference about abundance from replicatec counts

- We emphasize again that the Nmix model does not assume that all sites have the same number of temporal replicates, nor indeed that all sites have replicate counts. The reality of ecological data sets will typically lead to imbalanced data sets by accidents, or perhaps by design, and the N-mixture model can happily be fitted to such more irregular data sets. When some sites have no replication and others do, then the information about detection probability is obtained from those latter sites, and is propagated also to those sites that don’t have replication, and there is nothing wrong with this. One important additional assumption in this case, however, is that the sites without replication are a random selection of all sites. If this is violated, and the sites without replication are some nonrandom subset of all sites, then bias will be incurred.
5.10. Exercises
1. Simulate your own data set of replicated counts and fit the Nmix model using the software of your choice. Consider extending the R simulation code in section 5.3. to include the effects of an observation-level covariate. You may think of it as wind speed, time of day or season; that is, a covariate that likely affects detection probability.
2. In the alder flycatcher analysis (section 5.4.), add quadratic terms in the detection model to check for non-monotonous relationships.
3. In the willow tit example (section 5.5.), think about the biology of the species and suggest a few additional models for abundance, e.g., by adding interactions or other polynomial terms. You may see if the AIC best model changes. You may also repeat the later prediction exercises.
4. In the willow tit example (section 5.5.), our model accommodates the coverage bias resulting from route lengths that result in less than saturation sampling. This is based on the implicit assumption that routes are placed randomly within quadrats and that route length is independent from habitat and other things that could affect tit density. These assumptions are certainly wrong to some degree. For instance, it could be that the un- or undersampled areas are mostly non-habitat for willow tits. If this were the case then our model would overestimate willow tit abundance. Repeat the analysis without the route length effect. Compare the results for model selection and the national population estimate.
5. In the willow tit example (Fig. 5–8), density is estimated as a function of elevation and for the average forest cover and at saturation sampling effort. Is this a meaningful plot ? Can we really read off it the densities that we would expect to encounter at a given elevation ? Under what circumstances not ?
6. What would be the consequence, in the willow tit analysis, of a non-fitting model on the interpretation of the optimum elevation ? On the patterns in abundance ? You may want to compute the optimum elevation and the abundance map for a non-fitting model and compare with the fitting model.

7. Do a prediction of the seasonal pattern in detection probability and determine the best day to go out and survey for Swiss willow tits. Can you think of a way in which elevation might play into this ? Test this idea.

Solution A:

range(mhbdata[,12:14], na.rm = TRUE)
[1] 13 107
day.mean <- mean(as.matrix(mhbdata[,12:14]), na.rm = TRUE)

day.sd <- sd(c(as.matrix(mhbdata[,12:14])), na.rm = TRUE)

original.pred.day <- 15:110

pred.day <- (original.pred.day - day.mean) / day.sd

new<- data.frame(day=pred.day)

pred<-predict(fm31,type="det",newdata=new,appendData=TRUE)

head(pred)

plot(Predicted ~ original.pred.day, pred,type="l",xlab="Date (1 = 1 April)", ylab="Expected detection prob",ylim=c(0,1), lwd = 2)

lines(lower ~ original.pred.day, pred,type="l",col="red", lwd = 2)

lines(upper ~ original.pred.day, pred,type="l",col="red", lwd = 2)
PAGE
34

_1394526775.unknown

_1394617400.unknown

_1394618153.unknown

_1394618570.unknown

_1394618613.unknown

_1394618776.unknown

_1394618777.unknown

_1394618683.unknown

_1394618595.unknown

_1394618357.unknown

_1394618381.unknown

_1394618186.unknown

_1394617562.unknown

_1394617864.unknown

_1394617457.unknown

_1394606075.unknown

_1394616437.unknown

_1394616448.unknown

_1394616412.unknown

_1394604944.unknown

_1394604970.unknown

_1394526776.unknown

_1394551997.unknown

_1394526624.unknown

_1394526625.unknown

_1394526626.unknown

_1394526475.unknown

_1394526450.unknown

