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4.1. Introduction

WinBUGS, OpenBUGS and JAGS are different MCMC engines that all use the BUGS programming language. The latter is perhaps better called a model definition language. It’s an ingeniously simple and yet very flexible language, remarkably similar to R and S, that lets ecologists and statisticians specify remarkably complex models in a concise and easy to understand way.

All three programs essentially do 3 things for you:

1. translate your description of a statistical model into an algorithm that does a variety of MCMC to obtain samples from the joint posterior distribution of all unknown quantities in your analysis

2. run the algorithm for as long as you wish and thus accumulate the samples of the desired joint posterior distribution

3. do some processing of results, such as graphical or tabular posterior summaries, convergence assessment, ...

WinBUGS and OpenBUGS exist as standalone applications with a Windows user interface, while this does not seem to be the case for JAGS. However, most of the time this doesn’t matter because most people harness these programs to R and run it from there.

WinBUGS is not open source, while OpenBUGS is open-source, but apparently written in some strange language that nobody understands. In contrast, JAGS is open-source AND written in C. WinBUGS is an evolutionary dead-end, since its development has ceased about 10 years ago. In principle, the developmental branch of the BUGS project has moved over to OpenBUGS, which is maintained by a couple of people in Cambridge or somewhere in England. However, at the time of writing, OpenBUGS does not seem to have evolved much beyond the capabilities of the original WinBUGS. JAGS is developed by Martyn Plummer in Lyon.

As a matter of convenience, when we talk of BUGS, we typically mean WinBUGS and OpenBUGS, but sometimes all three Bayesian software programs, because they use essentially the same model definition language. Whichever we mean will hopefully become clear from the context.

4.2. Running BUGS as a standalone application
See odc file called ‘linreg.odc’. 
[image: image1.png]#Model description
model {

# Priors

alpha ~ dnorm(0,0.0001)
beta ~ dnorm(0,0.0001)
tau <- 1/ (sigma * sigma)
sigma ~ dunif(0, 100)

# Likelihood

for (iin 1:n) {
ylil ~ dnorm(muf], tau)
muf] <- alpha + beta™(i]

#Data

list(x=c( 1,2, 3,4,5,6,7,8,9,10,11,12,13,14,15,16),
y=c(41.54,46.85,42.67,33.21,28.04,20.38,34.74,34.77,20.71,29.86,
27.88,23.84,15.26,22.75,27.96,15.48), n=16)

#Initial values
list(alpha=-2.95247E-01, beta=-3 26399E-02, sigma=8 42696E-01)
list(alpha=-2.64075E-01, beta=-2 94204E-01, sigma=6.03639E-01)





Do an analysis using click and point. Also look at coda files. 
Easy to start with, but cumbersome and pain when many analyses should be run.
4.3. Running BUGS and JAGS from R

This is much, much more convenient. Here, we will illustrate this using simulated replicated count data, which we may then analyse as logistic regression, as a Poisson regression, as a site-occupancy model or as a binomial mixture model. We will first define a function that generates count data, where both abundance and detection are affected by a covariate.
# Define function for generating binomial-mix model data

data.fn <- function(R = 200, T = 3, alpha0 = 1, alpha1 = 2, beta0 = 1, beta1 = -3){

# R: number of sites at which counts were made (= number of spatial reps)

# T: number of times that counts were made at each site 
# (= number of temporal reps)

# alpha0 and alpha1: intercept and slope of log-linear regression 
# relating abundance to the site covariate A

# beta0 and beta1: intercept and slope of logistic-linear regression 
# of detection probability on survey covariate B
y <- array(dim = c(R, T))
# Array for counts
A <- runif(n = R, -1, 1)
# Site covariate
B <- array(rnorm(n = R*T), dim = c(R, T)) # Sampling covariate
lam <- exp(alpha0 + alpha1 * A)
# Expected abundance
N <- rpois(n = R, lambda = lam)
# Realised abundance
p <- plogis(beta0 + beta1 * B)
# Detection probability
for (i in 1:T){



# Generate counts
   y[,i] <- rbinom(n = R, size = N, prob = p[,i])

}

return(list(R = R, T = T, A = A, B = B, alpha0 = alpha0, alpha1 = alpha1, beta0 = beta0, beta1 = beta1, lam = lam, N = N, p = p, y = y))

}

We execute this function once to generate one data set and produce an overview of the simulation.

data <- data.fn()

str(data)
> str(data)

List of 12

 $ R     : num 200

 $ T     : num 3

 $ A     : num [1:200] 0.4818 -0.9538 0.0839 0.8081 0.0664 ...

 $ B     : num [1:200, 1:3] -1.625 -0.239 -0.911 -0.141 -0.17 ...

 $ alpha0: num 1

 $ alpha1: num 2

 $ beta0 : num 1

 $ beta1 : num -3

 $ lam   : num [1:200] 7.124 0.403 3.215 13.684 3.104 ...

 $ N     : num [1:200] 5 0 5 14 3 11 0 2 1 13 ...

 $ p     : num [1:200, 1:3] 0.997 0.848 0.977 0.806 0.819 ...

 $ y     : num [1:200, 1:3] 5 0 5 10 2 11 0 1 1 13 ...
The building blocks of much of what we do in hierarchical modeling of abundance, occurrence and species richness are Poisson and binomial generalized linear models (the latter also typically called logistic regression). We will therefore look at how we can use WinBUGS and JAGS to fit these models to our data.
4.3.1. Fitting a Poisson GLM

To fit a simple Poisson generalized linear model, we face the challenge that we have not one observed count per site, but three. One approach that people, who don’t worry too much about detection probabilty, often take, is to simply analyse the maximum count at each site, knowing that this must be the best (in the sense of being closest) approximation of the true abundance at each site. So lets do this then.

# Summarize the data by taking the max at each site
C <- apply(data$y, 1, max)

table(C)

# this is what we get

C

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 20 21 22 

46 32 23 16 14  6  8  8  9  4  8  4  3  3  6  1  4  1  1  2  1
To fit a model in WinBUGS or JAGS run from R, we must first prepare all the ingredients of the analyses, before we use a function that ships all of them over to BUGS or JAGS and instructs the latter how to execute the analyses. After the desired number of MCMC draws have been produced by the MCMC engine, the results (essentially simply the samples from the joint posterior distribution) are imported back into R and are summarized in various convenient ways.

What we need to prepare to run an analysis from R are the following objects: data file, model file, file with initial values, file with parameters that we want to save and instructionts about the MCMC settings (how many chains, for how long etc.). We will now prepare each of them. Instead of a list with initial values, we usually define a function that produces random initial values for at least some of the unknowns that we want to estimate.
# Bundle data

win.data <- list(C = C, R = length(C), A = data$A)
# Specify model in BUGS language

sink("Poisson_GLM.txt")

cat("

model {

# Priors

alpha0 ~ dunif(-10, 10)

alpha1 ~ dunif(-10, 10)

# Likelihood

for (i in 1:R){

   C[i] ~ dpois(lambda[i])

   log(lambda[i]) <- alpha0 + alpha1 * A[i]

}

}

",fill = TRUE)
sink()

# Initial values

inits <- function() list(alpha0 = runif(1, -1, 1), alpha1 = runif(1, -1, 1))

# Parameters monitored

params <- c("alpha0", "alpha1")

# MCMC settings

ni <- 600

nt <- 1
nb <- 100

nc <- 3

# Call WinBUGS from R (ART <1 min)

out1 <- bugs(win.data, inits, params, "Poisson_GLM.txt", n.chains = nc, 

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Overview of object created by bugs()
names(out1)

> names(out1)

 [1] "n.chains"        "n.iter"          "n.burnin"       

 [4] "n.thin"          "n.keep"          "n.sims"         

 [7] "sims.array"      "sims.list"       "sims.matrix"    

[10] "summary"         "mean"            "sd"             

[13] "median"          "root.short"      "long.short"     

[16] "dimension.short" "indexes.short"   "last.values"    

[19] "isDIC"           "DICbyR"          "pD"             

[22] "DIC"             "model.file"      "program"        
str(out1)

> str(out1)

List of 24

 $ n.chains       : num 3

 $ n.iter         : num 600

 $ n.burnin       : num 100

 $ n.thin         : num 1

 $ n.keep         : num 500

 $ n.sims         : num 1500

 $ sims.array     : num [1:500, 1:3, 1:3] 0.973 0.988 0.965 0.952 0.946 ...

  ..- attr(*, "dimnames")=List of 3

  .. ..$ : NULL

  .. ..$ : NULL

  .. ..$ : chr [1:3] "alpha0" "alpha1" "deviance"

 $ sims.list      :List of 3

  ..$ alpha0  : num [1:1500] 0.948 0.838 1.019 0.934 0.972 ...

  ..$ alpha1  : num [1:1500] 2 1.99 1.89 1.95 2.03 ...

  ..$ deviance: num [1:1500] 748 758 749 749 750 ...

 $ sims.matrix    : num [1:1500, 1:3] 0.948 0.838 1.019 0.934 0.972 ...

  ..- attr(*, "dimnames")=List of 2

  .. ..$ : NULL

  .. ..$ : chr [1:3] "alpha0" "alpha1" "deviance"

 $ summary        : num [1:3, 1:9] 0.9619 1.9626 749.7424 0.0517 0.0789 ...

  ..- attr(*, "dimnames")=List of 2

  .. ..$ : chr [1:3] "alpha0" "alpha1" "deviance"

  .. ..$ : chr [1:9] "mean" "sd" "2.5%" "25%" ...

 $ mean           :List of 3

  ..$ alpha0  : num 0.962

  ..$ alpha1  : num 1.96

  ..$ deviance: num 750
[ ... ]

# Call JAGS from R
library(R2jags)
# requires rjags
system.time(out1 <- jags(win.data, inits, params, "Poisson_GLM.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
# Overview of object created by jags()
names(out1)

> names(out1)

[1] "model"              "BUGSoutput"         "parameters.to.save"

[4] "model.file"         "n.iter"             "DIC"  
str(out1)

> str(out1)

List of 6

 $ model             :List of 8

  ..$ ptr      :function ()  

  ..$ data     :function ()  

  ..$ model    :function ()  

  ..$ state    :function (internal = FALSE)  

  ..$ nchain   :function ()  

  ..$ iter     :function ()  

  ..$ sync     :function ()  

  ..$ recompile:function ()  

  ..- attr(*, "class")= chr "jags"

 $ BUGSoutput        :List of 24

  ..$ n.chains       : int 3

  ..$ n.iter         : num 600

  ..$ n.burnin       : num 100

  ..$ n.thin         : num 1

  ..$ n.keep         : int 500

  ..$ n.sims         : int 1500

  ..$ sims.array     : num [1:500, 1:3, 1:3] 0.873 1.012 0.979 0.977 0.992 ...

  .. ..- attr(*, "dimnames")=List of 3

  .. .. ..$ : NULL

  .. .. ..$ : NULL

  .. .. ..$ : chr [1:3] "alpha0" "alpha1" "deviance"

  ..$ sims.list      :List of 3

  .. ..$ alpha0  : num [1:1500(1d)] 1.022 0.97 0.85 0.929 0.967 ...

  .. ..$ alpha1  : num [1:1500(1d)] 1.92 1.94 2.17 1.99 1.97 ...

  .. ..$ deviance: num [1:1500(1d)] 749 748 754 748 748 ...
 [ ... ]

So we see that we can easily switch between WinBUGS and JAGS when fitting a model. Most of the time, hardly or no changes are required in the model code and the other R objects that are required for the analysis.


We can also summarize the posterior distributions for the log-linear regression paarmeters. Since truth was 1 and 2, we see that imperfect detection did not bias the estimates much in this case.

# Summarize posteriors

print(out1, 2)

> print(out1, 2)

Inference for Bugs model at "Poisson_GLM.txt", fit using jags,

 3 chains, each with 600 iterations (first 100 discarded)

 n.sims = 1500 iterations saved

         mu.vect sd.vect   2.5%    25%    50%    75%  97.5% Rhat n.eff

alpha0      0.85    0.06   0.74   0.81   0.85   0.89   0.97    1   690

alpha1      2.05    0.09   1.88   1.99   2.05   2.10   2.22    1  1400

deviance  757.28    2.04 755.36 755.91 756.69 757.95 762.48    1  1500

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 2.1 and DIC = 759.4

DIC is an estimate of expected predictive error (lower deviance is better).

4.3.2. Fitting a binomial GLM or logistic regression
To obtain data that we can use to illustrate the fitting of a linear regression, we squash the counts to obtain 0-1 indicators, which tell us whether a count was zero or whether a count was greater than zero. We stress at several places in this book that this is conceptually how “presence/absence” or “detection/nondetection” data arise, namely as a simple summary of an abundance distribution.
# Summarize the data even more
y <- as.numeric(C > 0)

table(y)
y

  0   1 

 46 154
We conduct the same steps as before again but now specify a binomial (or Bernoulli) generalized linear model for the binary responses.
# Bundle data

win.data <- list(y = y, R = length(C), A = data$A)
# Specify model in BUGS language

sink("Binomial_GLM.txt")

cat("

model {

# Priors

alpha0 ~ dunif(-10, 10)

alpha1 ~ dunif(-10, 10)

# Likelihood

for (i in 1:R){

   y[i] ~ dbern(psi[i])

   logit(psi[i]) <- alpha0 + alpha1 * A[i]

}

}

",fill = TRUE)
sink()

# Initial values

inits <- function() list(alpha0 = runif(1, -1, 1), alpha1 = runif(1, -1, 1))

# Parameters monitored

params <- c("alpha0", "alpha1")

# MCMC settings

ni <- 600

nt <- 1
nb <- 100

nc <- 3

# Call WinBUGS from R (ART <1 min)

out2 <- bugs(win.data, inits, params, "Binomial_GLM.txt", n.chains = nc, 

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R
library(R2jags)
# requires rjags

system.time(out2 <- jags(win.data, inits, params, "Binomial_GLM.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
We can again summarize the posterior distributions for the logit-linear regression paarmeters. We can no longer compare the estimates with the truth (1 and 2), since the data were generated under a different model than the one now fitted.

# Summarize posteriors

print(out2, 2)

> print(out2, 2)

Inference for Bugs model at "Binomial_GLM.txt", fit using jags,

 3 chains, each with 600 iterations (first 100 discarded)

 n.sims = 1500 iterations saved

         mu.vect sd.vect   2.5%    25%    50%    75%  97.5% Rhat n.eff

alpha0      2.23    0.35   1.60   2.00   2.21   2.45   2.96 1.01   180

alpha1      3.77    0.60   2.70   3.35   3.75   4.15   5.00 1.01   280

deviance  133.06    2.16 131.02 131.50 132.35 133.92 138.90 1.01   380

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 2.3 and DIC = 135.4

DIC is an estimate of expected predictive error (lower deviance is better).
4.3.3. Fitting a random-effects Poisson model to all the counts

This is a kind of model that some colleagues who don’t believe in closed populations like to fit. We model directly all the counts now. We include a random site effect to avoid pseudoreplication.

# Bundle data

win.data <- list(C = data$y, R = nrow(data$y), T = ncol(data$y), A = data$A, B = data$B)
# Specify model in BUGS language

sink("RE.Poisson.txt")

cat("

model {

# Priors

mu.llam ~ dnorm(0, 0.001)

tau.llam <- pow(sd.llam, -2)

sd.llam ~ dunif(0, 10)

alpha1 ~ dunif(-10, 10)

alpha2 ~ dunif(-10, 10)

# Likelihood

for (i in 1:R){
   alpha0[i] ~ dnorm(mu.llam, tau.llam)

   for(j in 1:T){
      C[i,j] ~ dpois(lambda[i,j])

      log(lambda[i,j]) <- alpha0[i] + alpha1 * A[i] + alpha2 * B[i,j]
   }

}

}

",fill = TRUE)
sink()

# Initial values

inits <- function() list(alpha0 = runif(200, -1, 1), alpha1 = runif(1, -1, 1), alpha2 = runif(1, -1, 1))

# Parameters monitored

params <- c("mu.llam", "sd.llam", "alpha1", "alpha2")

# could add "alpha0",
# MCMC settings

ni <- 1200

nt <- 1
nb <- 200

nc <- 3

# Call WinBUGS from R (ART <1 min)

out3 <- bugs(win.data, inits, params, "RE.Poisson.txt", n.chains = nc, 

n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R
library(R2jags)
# requires rjags

system.time(out3 <- jags(win.data, inits, params, "RE.Poisson.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
# Summarize posteriors

print(out3, 2)

> print(out3, 2)

Inference for Bugs model at "RE.Poisson.txt", fit using jags,

 3 chains, each with 1200 iterations (first 200 discarded)

 n.sims = 3000 iterations saved

         mu.vect sd.vect    2.5%     25%     50%     75%   97.5% Rhat n.eff

alpha1      2.14    0.09    1.95    2.07    2.14    2.20    2.33 1.02   150

alpha2     -0.68    0.03   -0.74   -0.70   -0.68   -0.65   -0.61 1.01   310

mu.llam     0.11    0.06   -0.01    0.07    0.11    0.15    0.23 1.00   850

sd.llam     0.49    0.05    0.40    0.46    0.49    0.53    0.60 1.01   300

deviance 1703.80   21.30 1663.95 1689.17 1703.11 1717.55 1746.39 1.01   370

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)

pD = 225.9 and DIC = 1929.7

DIC is an estimate of expected predictive error (lower deviance is better).
Some comments on that
12.5. Summary and outlook

blabla
12.6. Exercises

1. Fit a normal model to the counts or perhaps the log counts
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