
Introduction to Statistical Inference

Theme of workshop (and book): Analyzing HMs using both classical and

Bayesian methods b/c if you want to be an effective user, you need to un-

derstand and be able to use both.

Topics covered here

A. Parametric inference (Bayesian and classical)

B. Implementation in R (both MLE and MCMC)

C. Logistic Regression (not a HM)

D. Occupancy Model (a HM)
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Inference for Statistical Models

• Parametric inference: Explicit probability assumptions about data.

Inference proceeds assuming model is truth.

Two popular flavors:

• Classical inference: Joint probability distribution of observa-

tions forms the likelihood. We maximize it to obtain MLEs and

do other fun things to it.

• Bayesian inference: Based on the posterior distribution – pro-

portional to the joint probability distribution of all random quantities

in the model: data, random effects, parameters.
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Sad Cariciture of the Difference: “Parameters are
random”

Sometimes you hear: “The difference between Bayesian and frequentist

inference is that, in Bayesian analysis, parameters are random but, in

frequentist analysis, they are fixed but unknown.”

• Don’t ever say that!
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Random parameters?

• For a given data set, parameter values are fixed but unknown

just like a frequentist. i.e., there is a single data-generating

value. But, they are regarded as a realization of a random

variable. (nature generated from some distribution).

• Even qualified, “random variables” is not a diagnostic charac-

teristic of Bayesianism: Random effects are common everywhere

– they are features of models, not of inference paradigms.

• Posterior inference is the key element of Bayesian analysis.

Regarding parameters as random allows Bayesian to compute

a posterior distribution.
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Parametric Statistical Inference

• Observations:

y1, y2, . . . , yn

• Probability model for observations

e.g., logistic regression (for binary data):

(1) Binomial probability mass function

yi ∼ Bin(yi; 1, pi)

with

logit(pi) = β0 + β1xi

(2) and y1, . . . , yn are mutually independent

• What do we do with this probability model to achieve formal inference

about β = (β0, β1)?
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Classical Inference

Joint distribution:

f (y1, y2, . . . , yn; β0, β1) =


n∏
i=1

Bin(yi;β)



Likelihood = joint distribution regarded as a function of β:

L(β0, β1; y1, y2, . . . , yn) ≡

n∏
i=1

Bin(yi|β)



• Maximize it to obtain the MLE β̂

• 2nd derivative of log(L) w.r.t. β̂ is the Fisher

Information – inverse is “asymptotic variance”

• Function of the parameters (not y)!

• It is not a probability distribution
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Example: Ordinary Logistic Regression

Binary state variable:

zi ∼ Bin(ψi)

logit(ψi) = β0 + β1xi

R script likeBayes.R

# -------------------------- Simulate data ------------------------------

# Create a covariate called vegHt

nSites <- 100

set.seed(443) # so that we all get the same values of vegHt

vegHt <- runif(nSites, 1, 3) # uniform from 1 to 3

# Suppose that occupancy probability increases with vegHt

# The relationship is described by an intercept of -3 and

# a slope parameter of 2 on the logit scale

# plogis is the inverse-logit (constrains us back to the [0-1] scale)

psi <- plogis(-3 + 2*vegHt)

# Now we go to 100 sites and observe presence or absence

# Actually, let’s just simulate the data

z <- rbinom(nSites, 1, psi)
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Strategy for classical estimation based on likelihood: Express the likelihood

as an R function and then use the standard function optim or nlm to maximize

it.

# This is the negative log-likelihood.

negLogLike <- function(beta, y, x) {

beta0 <- beta[1]

beta1 <- beta[2]

psi <- plogis(beta0 + beta1*x) # inverse-logit

likelihood <- psi^y * (1-psi)^(1-y) # same as:

# likelihood <- dbinom(y, 1, psi)

return(-sum(log(likelihood)))

}

# Look at (negative) log-likelihood for 2 parameter sets

negLogLike(c(0,0), y=z, x=vegHt)

negLogLike(c(-3,2), y=z, x=vegHt) # Lower is better!

# Let’s minimize it

starting.values <- c(beta0=0, beta1=0)

opt.out <- optim(starting.values, negLogLike, y=z, x=vegHt, hessian=TRUE)

mles <- opt.out$par # MLEs are pretty close to truth
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Bayesian Inference

• Parameters are realizations of random variables:

g(β0, β1) ≡ [β0, β1] (prior distribution)

• Joint distribution:

f (y1, y2, . . . , yn, β0, β1) =


n∏
i=1

Bin(yi;β)

 g(β0, β1)

• We can condition on the data – i.e., compute the conditional

distribution:

π(β0, β1|y1, y2, . . . , yn) =
f (y1, y2, . . . , yn, β0, β1)

f (y1, y2, . . . , yn)

(because everything is a r.v.)
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The Posterior Distribution

π(β0, β1|y1, y2, . . . , yn) =
f (y1, y2, . . . , yn, β0, β1)

f (y1, y2, . . . , yn)

• arises by use of basic rules of probability, because everything

is a random variable

• it is a probability distribution for the parameters!

• characterize uncertainty in the parameter values using explicit

probability statements

• e.g., Pr(L ≤ β0 ≤ U) = “Bayesian confidence interval”

• In general, report summaries of the posterior distribution:

mean, mode, variance, etc..
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How to do Bayesian Analysis: MCMC

The posterior:

π(β0, β1|y1, y2, . . . , yn) =
f (y1, y2, . . . , yn, β0, β1)

f (y1, y2, . . . , yn)

Computing the denominator is computationally expensive, and sometimes

not even possible.

MCMC: simulation methods for sampling from the posterior distribution

which do not require that we know the denominator, or ever have to evaluate

it. We estimate features of the posterior distribution from the posterior samples.

MCMC: The topic is too vast to cover here. We use a “Metropolis within

Gibbs sampling” algorithm for everything, or let BUGS deal with it.
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Metropolis-within-Gibbs Sampling

Iterative sampling of parameters from the full conditional distributions (one

for each parameter):

[β0|y, β1] = [y|β0, β1][β0]/[y]

[β1|y, β1] = [y|β0, β1][β1]/[y]

In many/most problems we cannot compute [y] and therefore cannot identify

the fc as a “named” distribution to simulate from. So rules are invented for

drawing random variables from distributions that cannot be identified precisely.

The Metropolis algorithm is one such rule.

12



The Metropolis Algorithm

(1) For a candidate value β∗0 simulted from some symmetric proposal distri-

bution: Symmetric if h(x|y) = h(y|x) (not part of the model)

(2) Accept that value with probability

r = [β∗0 |y, β1]/[β0|y, β1]

(3) Do also for β1

Handy stuff:

• The marginal distribution of y (i.e., denominator of the fc) cancels, so we

don’t need to know what it is.

• To use the Metropolis algorithm we only have to evaluate known distribu-

tions
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A Basic MCMC Algorithm: Logistic regression

(0) Pick starting values for β0 and β1. At iteration 1 of the algorithm, these

are the current values of the parameters

(1) Generate a candidate value of β0 from a symmetric proposal distribution.

e.g., centered on the current value:

β∗0 ∼ Normal(β0, δ
2)

(The proposal is not part of the model!)

(2) Accept the candidate value with probability:

r = [β∗0 |y, β1]/[β0|y, β1]

then β∗0 becomes the current value.

(3) Repeat for each parameter in the model.
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Remarks on Metropolis-within-Gibbs Algorithm

• Heuristic: This algorithm has us simulate candidate values somehow and

then accept values that have higher posterior probability (conditional on other

parameters).

• The long-run frequency of “accepted” values is that of the target posterior

density!

• Note: If the prior is constant, this MCMC calculation is based on repeated

evaluations of the likelihood only. So, if you write a function to do MLE you

can also do MCMC.

• We have a function to evaluate the likelihood for a given value of the

parameters. Using MCMC we have to do this over-and-over again....
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MCMC (MwiG) for Logistic Regression

1. What prior should we use?

β0 ∼ Norm(0, 10)

β1 ∼ Norm(0, 10)

2. The full conditionals look like:

[β0|y, β1] ∝
∏
i
Bin(yi|β0, β1)

 g(β0)

3. In R, this looks like:

beta0<- some value

beta1<- some value

fc.beta0<- exp(-1*negLogLike(c(beta0,beta1),y,x))*dnorm(beta0,0,10)

fc.beta1<- exp(-1*negLogLike(c(beta0,beta1),y,x))*dnorm(beta1,0,10)
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Implementation for simulated data:

niter <- 50000

out <- matrix(NA, niter, 2) # create a matrix to save the MCMC output

colnames(out) <- c("beta0", "beta1")

# Initialize the parameters, likelihood, and priors

beta0 <- starting.values[1]

beta1<- starting.values[2]

loglike <- -1*negLogLike(c(beta0,beta1), z, vegHt)

logprior <- dnorm(c(beta0,beta1), 0, 10, log=TRUE)

for(i in 1:niter) {

# propose candidate values of beta

beta0.cand <- rnorm(1, beta0, 0.3) # 0.3 is tuning parameter

# evaluate likelihood and priors for candidates

loglike.cand <- -1*negLogLike(c(beta0.cand,beta1), z, vegHt)

logprior.cand <- dnorm(beta0.cand, 0, 10, log=TRUE)

# Compute Metropolis acceptance probability

Metrop.acceptance.prob <- exp((loglike.cand+logprior.cand) -

(loglike + logprior[1]))

# Keep the candidates if they meet the criterion

if(runif(1) < Metrop.acceptance.prob) {

beta0 <- beta0.cand

loglike <- loglike.cand

logprior[1] <- logprior.cand

}

#### Repeat for beta1

.

.

.

} # closes main MCMC loop
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Inference for Hierarchical Models

How are things different compared to “non-hierarchical” model?
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Two Canonical Examples of HMs in Ecology

HMs have 1 or more “intermediate” models/levels/stages involv-

ing a latent variable (random effect).

• Modeling species occurrence – “occupancy models”

• Modeling species abundance – “N-mixture models” (and related)
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Example: Modeling occurrence of a species

• yi = {0, 1} observations of presence/absence at site i

• zi = {0, 1} state-variable true presence or absence

Observation model:

yi|zi ∼ Bernoulli(zip)

p = probability of detecting species given that it is present

Process model:

zi ∼ Bernoulli(ψi)

logit(ψi) = β0 + β1xi

20



Example: Modeling Abundance from Point Counts

• yi = count of birds at point i

• Ni = state-variable population size at point i

Observation model:

yi|Ni ∼ Binomial(Ni, p)

Ni = local population size

p = probability of encountering an individual

Process model:

Ni ∼ Poisson(λi)

log(λi) = β0 + β1xi
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Classical Analysis of Hierarchical Models

• What is “the likelihood”?

• Easier question: What is the joint distribution (of all the random stuff)?

• Bayesian version:

f (y1, y2, . . . , yn, z1, . . . , zn, p,β) =


n∏
i=1

J∏
j=1

[yij|zi, p][zi|β]

 [β]
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Bayesian Analysis

• Nothing is special about this model. Since everything is a random variable

we can compute the joint distribution:

f (y1, y2, . . . , yn, z1, . . . , zn, p,β) =


n∏
i=1

J∏
j=1

[yij|zi, p][zi|β]

 [β]

• Posterior characterized by MCMC – Metropolis/Gibbs:

parameters:

[β|y, z]

[p|y,β]

latent variables:

[zi|y, z−i, p,β] = [zi|y, p,β]

The posterior is fully characterized

by this set of conditional distribu-

tions
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Classical Analysis of Random Effects

INTEGRATED (marginal) LIKELIHOOD:

• Remove random effects from the conditional likelihood by

integration

• The distribution of yi unconditional on the random effect:

f (yi|β, p) =
∫ 

J∏
j=1

f (yij|zi, p)

 g(zi|β)dzi

• Not a function of zi anymore

• Maximize to obtain MLEs of p, β

• For discrete latent variable, replace
∫

by
∑
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Example: Occupancy Model

Observation model:

yij ∼ Bin(J, p) if zi = 1

yij = 0 if zi = 0

State model:

zi ∼ Bin(ψi)

logit(ψi) = β0 + β1xi

What is the marginal likelihood for y?
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Computing the Marginal Likelihood

• z is a discrete random variable

• Law of total probability

Pr(y) = Pr(y|z = 1)Pr(z = 1) + Pr(y|z = 0)Pr(z = 0)

• Marginal likelihood for total detections, yi:

[yi|p, ψ] = Bin(yi|p)ψ + 1(yi = 0)(1− ψ)

• Zero-inflated binomial. Can be maximized easily to obtain MLEs.

• PRESENCE or unmarked function occu

26



Doing it in R

nSites <- 100

vegHt <- runif(nSites, 1, 3) # uniform from 1 to 3

psi <- plogis(-3 + 2*vegHt)

# Now we simulated true presence/absence for 100 sites

z <- rbinom(nSites, 1, psi)

## Now generate observations

p<- 0.6

J<- 3 # sample each site 3 times

y<-rbinom(nSites,J,p*z)

# This is the negative log-likelihood.

negLogLikeocc <- function(beta, y, x,J) {

beta0 <- beta[1]

beta1 <- beta[2]

p<- plogis(beta[3])

psi <- plogis(beta0 + beta1*x)

marg.likelihood <- dbinom(y, J,p)*psi + ifelse(y==0,1,0)*(1-psi)

return(-sum(log(marg.likelihood)))

}

starting.values <- c(beta0=0, beta1=0,logitp=0)

opt.out <- optim(starting.values, negLogLikeocc, y=y, x=vegHt,J=J,

hessian=TRUE)
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Continuous Case: Numerical integration

•We use R function integrate() which takes the function to be integrated

as an argument.

• Example: Binomial/logit-normal mixture

yi ∼ Bin(J, pi)

logit(pi) ∼ Normal(µ, σ)

• Snowshoe hare data:
# FREQUENCIES captured 0, J=14 times:

nx<-c(14,34, 16, 10, 4, 2, 2,0,0,0,0,0,0,0,0)

nind<-sum(nx)

J<-14

Mhlik<-function(parms){

mu<-parms[1]

sigma<-exp(parms[2])

il<-rep(NA,J+1)

for(k in 0:J){

il[k+1]<-integrate(

function(x){ dbinom(k,J,plogis(x))*dnorm(x,mu,sigma)

},lower=-Inf,upper=Inf)$value

}

-1*( sum(nx*log(il)) )

}

tmp<-nlm(Mhlik,c(-1,-1 ),hessian=TRUE)

sqrt(diag(solve(tmp$hessian)))
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Prediction

• Estimation of fixed-effects or parameters

• Prediction is estimation of a random variable. (also estimation of a

response surface)

– “Best Unbiased Prediction” (BUP) use Bayes rule to computeE[z|data]

– Response surface: E[z]
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Prediction in Occupancy Models

Occupancy model

yi|zi ∼ Bin(p ∗ zi)
zi ∼ Bern(ψi)

Types of prediction problems:

• Predict zi where yi = 0 (observed)

use E[z|yi = 0] (use Bayes rule)

Or simulate new z in the MCMC algorithm

• Predict zi for unsampled sites. There is no y to condition on.

use ψ̂i
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Summary Thoughts on Bayesian vs. Classical Infer-
ence

Both inference paradigms useful for analysis of hierarchical models

• Bayesian:

– Completely general methods for implementation (MCMC) which always

work. Sometimes BUGS implementations don’t work, so its good to

know how to do it.

– Takes more math/programming know-how????

– Sometimes slower due to more calculations

– Inferences are not asymptotic, apply to arbitrary n

– Prediction is more coherent – comes “for free”

• Classical:

– Integrated likelihood sometimes not feasible. (community model)

– But very accurate (no MC error)

– Automatic model selection (AIC)
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“Bayesian” Hierarchical Model??

•Hierarchical modeling is a conceptual and technical framework

for formulating models

• The method of inference is independent of model formulation

• HMs can be analyzed by Bayesian and non-Bayesian methods.

• HM 6= Bayesian!!! A model is not Bayesian or frequentist –

what you do to that model is Bayesian or frequentist.

• Models don’t have political views (people do)
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Idealized Structure of Workshop/Book

• Introduction to a class of models

• likelihood analysis of models in unmarked

• stressing consistent workflow and ease of doing standard things like predic-

tion and model selection

• Bayesian analysis in BUGS

• Illustration of a type of model that can’t be done (easily, or in unmarked)

using likelihood methods.
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