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Multistate Models: History 

 First developed by Arnason (1972, 1973) 
and almost completely ignored 

 

 Developed independently by Hestbeck et 
al. (1991) 

  

 Modern development:  
• Brownie et al. (1993), Schwarz et al. (1993) 

• Reviews by Lebreton et al. (2002, 2009)  

Multistate Models: 

 Data Structure 

 Open capture-recapture study 

 At each capture, animals are categorized 
by “state” 
• Location (Hestbeck et al. 1991) 

• Size class (Nichols et al. 1992) 

• Breeding state (Nichols et al. 1994) 

• Disease state (Jennelle et al. 2007) 

 State of an animal may change from 1 
period to the next 

Multistate Models: 

Capture History Data  

 Capture history: no longer adequate to 
use just 1’s and 0’s 

 0 still denotes no capture 

 Assign a positive number or letter to each 
state 
• e.g., with 3 states: 1, 2, 3 

 Example: 3-site system 
• Possible histories:   10310,    00201     

   

Multistate Models: 

Notation 

 fi
rs  = probability that animal in state r 

at sample period i is alive in state s 

at sample period i+1 

 

 pi
r = probability that animal in state r 

at sample period i is captured 
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Multistate Models: Capture History 

Expectations 

 P(011020 | released in state 1 at period 

2) = 
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Multistate Models:  

Decomposition of fi
rs 

 Sometimes reasonable and desirable to 
decompose fi

rs  into survival and 
transition/movement components: 

 

 

 Si
r = probability that animal in state r at 

period i survives until period i+1 

 yi
rs = probability that animal in state r at 

period i and alive at period i+1, is in state 
s at i+1  
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Parameter Estimation 

 Multinomial likelihood, conditional on new 
releases in each sample period 

 Data: numbers of new releases at each 
state in each period and number of 
animals with each capture history 

 Model: probability structure for each 
capture history 

 Maximum likelihood (e.g., programs 
MARK, MSURGE, ESURGE) 

Migration Stopover (e.g., Bechet et al. 

2003, Greater Snow Geese) 
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Disease States 
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Unobservable? 

Albatross Breeding Studies – partial 

determinism  



3 

A 

Pre-Breed 

A 
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Pre-breed 

B 

 Breed 

Multi-site age at first reproduction 

pre-breeders unobserv. (Lebreton et al. 2003) 
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Recapture 
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States defined by location and 

breeding status 

Multi-site model software 

 MARK (G. White) 

• Can define which movement probability by subtraction 

• Multinomial logit transformation 

• Can include individual and group covariates (e.g., weight, age, 
climatological) 

 

 MSURGE (Choquet et al.) 

• GOF test (UCARE) 

• Powerful model specification feature 

 

 ESURGE (Choquet et al) 
• Uncertain state assignment 

 

 

Multinomial logit transformation 

for 3 states 
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Multistate model assumptions 

 Within state, age, sex, etc., all animals equally 
likely to survive, move to given location, be 
detected 

 Marks do not affect survival or movement, are 
not lost, are recorded correctly 

 Each bird acts independently with respect to 
survival, movement, detection  

 Each state observable 

 State is correctly assigned each time 

Multistate models: why bother? 

 Transitions and state-specific 

survival might be interesting 

biologically 

 

 Reduces heterogeneity in survival or 

capture probability by partitioning 

animals 
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Unobservable States 

What can we do about unobservable 

states? 

 Unobservable state: at least 1 area or 
group is inaccessible to sampling effort 

 Combine capture/sighting with other 
sources of information 
• Telemetry 

• Universal band recoveries or sightings 

• Robust design 

 Partial determinism with time constancy 

 Shared parameters across groups with 
time constancy 
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Kendall and Nichols (1995), Kendall et al. (1997) 

Pollock’s Robust Design: TE 
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Design Issues: Unobservable 

States 

 Exploit opportunity for robust design 

 

 Include telemetry (preferably with p =1 

and survival monitored) 

 

 Create buffer zone around study 

area (search for marked animals) 

Conclusions 

 Existence of unobservable states should be 

minimized through design. 

• Robust design, telemetry, and other sources of 

information provide means to adjust for unobservable 

states. 

 

 When design fixes not possible, certain model 

structures (constrained) permit inference 
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Mis-classified or Unknown 

States 

How do we adjust for fact that calves are not seen each 

 time with mother? 

Photo credit: USGS - Sirenia Project 

Assumption: breeding status is known 

for each sighted female 

 Problem: Sometimes a calf is present but 

not sighted. 

 Implication: Calf might be missed each 

time female is sighted and hence 

misclassified as non-breeder. 

 Solution: adjust for misclassification (i.e., 

estimate calf detection probability). 

 

Multi-state Model for 

Misclassification (Kendall et al. 2003) 
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                      = probability female with first-year calf 
is seen in year i and her calf is seen or not seen, 
respectively. 

 

       = probability a non-breeder female is seen in year i. 
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How do we estimate detectability for 

the calf? 

 Two sighting occasions per year (robust 
design). 

• Entire range of population is covered twice 
in a short period of time  
 so that if female is breeder calf will be there both 

times. 

• Each time individual is seen the date and 
presence/absence of first-year calf is noted. 

• Calf detection probability is estimated from 
sighting history of female and calf 
combined. 
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Assume population is

closed during sampling

Pollock’s Robust Design 

(multiple samples per year) 
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Within-season modeling (conditional on 

capture in a given year, Kendall et al. 2004) 

CC 

NN 

 

    = P(adult female is a breeder). 

    = P(breeding female is seen in sample j). 

    = P(calf is seen with female, if there). 
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Comparison of Estimates 

Crystal River (program MSMisclass) 

Unadjusted MS Adjusted MS 

Parameter Estimate s.e. Estimate s.e. 

0.96 0.01 Same 

0.96 0.01 Same 

0.31 0.04 0.43 0.06 

CS

NS

NB

iy

Goodness of Fit: variance inflation factor= 1.9 

Other estimates 

Parameter Estimate s.e. 

0.30 0.032 

(avg.) 0.41 0.043 (avg.) 

      * 0.73 0.06 

.



p
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* avg. P(adult female is seen but calf is not in given year) = 0.22 

Other examples of mis-classified 

states 

 Kittiwakes – some pre-breeders are 

squatters (Cam et al., 2002)  

 Disease dynamics 

• Diseased animals show no clinical sign 

• Recovered animals show clinical signs 

 Sex is mis-assigned 

Unknown Sex 

 Sex unknown when marked but 
perhaps determined later 

 Approaches to adjusting estimation 
• Back-date all sexed individuals to initial 

capture occasion (BIG MISTAKE!) 

• Use multi-state with unknown sex 

• Model unknowns as mixture of males 
and females 
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Unknown Sex – sex assessed each time, 

but sometimes not determined 

UMU 

 

U0U 

 

     = P(animal first seen in sample j is male). 

     = P(animal of sex s is seen in sample j). 

      = P(sex is determined in sample j). 
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Comparison of Estimators  
(Nichols et al. 2004) 

Estimators 

Param Naive s.e. MS s.e. Mixt. s.e. 

0.86 0.009 0.79 0.012 0.80 0.010 

0.78 0.012 0.69 0.014 0.70 0.015 

0.67 0.012 0.76 0.009 

M

iS

F

iS

U

iS

  = 0.3, p = 0.5, ui = 200 males, 300 females 

State Uncertainty: General 

Solution 

 Pradel (2005) Multievent modeling 

 

 Program ESURGE (Choquet et al. 

2009) to implement these models 


