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Diagram of Integrated Population Model from Schaub and Abadi (2011; J Ornithol.)
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Introduction

Motivations

* Have both individual-based and count data
¢ Want to estimate vital rates and yearly abundance
¢ Want to make more efficient use of precious data

* Especially with rare and declining species, often
* Have several streams of data
* But each stream of data doesn’t get us far on its own

* May want to estimate something we have no direct data on
* Also want to project population into future, incorporating uncertainty
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State-space Modeling

¢ Time-series models

« True state of system (e.g. annual population size) measured
imperfectly

¢ Connected models for population dynamics and observation

¢ Observation error can be modeled as normal (classical state-space),
Poisson, or binomial/detection probability (Dail and Madsen)

Introduction

Bayesian Inference

* Specify priors, make inference from posteriors e
¢ Markov chain Monte Carlo (MCMC) sampling m A
¢ Convergence diagnostics i

¢ Gelman-Rubin diagnostic (R-hat) based on multiple chains Ty
* Visual examination of chains M

* Others

Introduction

Integrated Population Models (IPM)

* Tool used for both estimating parameters and projecting populations
« Single, unified analysis of population count data and demographic
data
¢ Use state-space models
* Process models
* Detection models
* Bayesian or classical

« Useful for including multiple sources of data

Introduction
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Basic Steps

Links Between Vital Rates and Abundance

* How? Matrix model!
* Example: bird population with pre-breeding census

f. f
NEESEIM
Nl | g, gy LN

f, f
Nio = NM¢JHV‘| %* Naﬂ‘r¢|uv‘t %

Nag i1 = Nyt + Nag fa,

Basic Steps

Likelihoods of Individual Datasets

* State-space model — population dynamics part already shown

* Count data options
* Normal error:
¥, ~ Normal(N,, + Ny, o7 )

* Poisson error:
¥, ~ Poisson (N, + N, )

* Binomial error:
¥, ~ Binomial (N, + Ny, p,..)

* Likelihood

L (YIN®.£,07) = L (¥ [N,o} ) L (N @,f)

Basic Steps




Likelihoods of Individual Datasets

¢ Capture-mark-recapture data
« Capture history as matrix of Os and 1s (C)
¢ CMR analysis using state-space formulation
* Each alive individual can be alive or dead next time step (latent state, z;,)
* If alive, can be observed or not (C;,)
* In example, two age classes (x)
* Survival probability depends on age (¢, and ¢,q)
« Capture probability does not (p)
* Likelihood
Les (Cx|®,p)

Basic Steps
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Likelihoods of Individual Datasets

¢ Reproductive success data
* Number of females monitored by age class and year
* Number of offspring by mother age class and year
* Model
J,, ~ Poisson (R“ fn)

Jag ~ Poisson (R T )
¢ Likelihood

L, (J,RIf)

Basic Steps

Joint Likelihood

* Assume datasets are independent

* What if they’re not?
« Falsely high precision of estimates
* Abadi et al. (2010) found little effect in many cases
* Can be dependent on specific model and data

« Joint likelihood is product of individual likelihoods
Low (3. Cx LR N, ®,£,p,07) = L (¥ N, 07 ) x L (N[ ®,£) x Ly (Cx | ®,p) x L, (LR F)

Basic Steps




Initial Priors

* Uninformative priors on p, &, ®u f1s fosr Uyz, etc.
e Example:

p ~ Uniform(0,1)

or

/B ~ Normal (0,1000)

logit(p) =47

Basic Steps
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Loading or Simulating Data

¢ Can be useful to simulate data (e.g. in R)
* See how well IPM works when it matches the simulation model exactly
* See how well it works when it doesn’t
* Because you know the “truth” can assess accuracy
* Can diagnose problems you have with real data
* May be good to wait until you know amount and type of data before
simulating

* Both formatting real data and simulating data can take time

Basic Steps

Coding and Running Model

* Options for MCMC engine
* WinBUGS, OpenBUGS, JAGS
* STAN
* PyMCin Python
« Code your own
« If having trouble with one engine, can try another
* Will give examples in JAGS at end of lecture and in lab

¢ Other examples out there

Basic Steps




Interpreting Results

¢ Check for convergence
* Check means for
* Compatibility with simulated values or
* Plausibility
* Check SD and credible intervals
* Coverage
* Precision of estimates
* Graphing results several ways can be very helpful

Basic Steps
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Some Variants

Demographic Stochasticity

* More the default for IPMs

* From our example
* Instead of:
f f
Ny = Ny % + Ny B %
Nagior = Ny + Nog e
* We have:
Ny~ Poisson[Nﬂq;‘m %+ N s %J

Nag = Binomial Ny, +Nyg . )
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Non-constant Environmental

« Vital rates change between years — environmental stochasticity
* Random
* External covariates
* Logit link for survival, log link for fecundity, e.g.:
10( ) = Bl + BiooHDD, &,

&, ~ Normal(0,6% )

« If multiple vital rates affected by stochasticity, either:
 Specify correlation (0, 1, etc.)
* Try to estimate correlation

Missing Vital Rate Data

¢ Because have information on dynamics from multiple sources
« Individual-based data on vital rates
* Count data on abundance
« Can estimate a vital rate with no direct data on it (e.g. fecundity)

* “Filled-in” from other data

Immigration

* For open populations, N.,=N,+B+I1-D-E
* Apparent survival incorporates death and emigration
¢ Seldom have direct data on immigration
¢ Can use IPMs to “fill-in” immigration
« Can be specified as rate or number
Nyt = Poisson((N“ +Nyy, + N ) o)
Or
N

~ Poisson (1)

im,t+1
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Density Dependence

¢ Have abundance as one of the parameters estimating in model

¢ Can have it affect vital rate(s)

* Example:
IOQn(¢iuv‘| ) = ﬂﬁw‘o + ﬂﬁlv‘N (Nu + Nad,()

Predictive Models

¢ Can project populations into future with these models
* Account for parametric uncertainty, stochasticity, etc.
« Just designate number of years from past and number from future
« Data all come from past years
* Vital rates assigned for all years
* Population projected in all years
* Population viability analysis (PVA)
* Can estimate probabilities of extinction and quasi-extinction
* Not straightforward to estimate uncertainty in those, however

Even More Variants

¢ Multiple populations

« Additional data types
* Recoveries
¢ Telemetry

« Spatial capture-recapture
* Full annual-cycle population modeling (in progress)




Running JAGS
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Coding in BUGS/JAGS

* Somewhere in between coding in R and writing statistical equations

¢ Program doesn’t have to run in order (can define variable after using
it)
« Some distributions specified in “strange” ways
¢ For example: Normal (dnorm)
* Most commonly specified with mean and variance
* In R, parameterized with mean and standard deviation
* In BUGS, parameterized with mean and precision (1/variance)
* For binomial (dbin) probability before total

* JAGS is a powerful engine but can be finicky

Running JAGS

* Can be run stand-alone, but more frequently run through R
« Several R packages can be used as interfaces (using jagsUl here)
* Can write JAGS code to disk from R using sink function:
sink(“filename.jags")

cat("

model {

[code]

}

" fill = TRUE)

sink()

¢ Careful using Tinn-R
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Sample JAGS Code (1 of 7)

model {

# 1. Define the priors for the parameters

# Observation error
tauy <- pow(sigma.y, -2)
sigma.y ~ dunif(0, 50)
signa2.y <- pow(signa.y, 2)

# Initial population sizes
n1 ~ dnorm(s0, tauy)T(0.) # 1-year
nad ~ dnorm(50, tauy)T(0,)  # Adults
NI[1] <- nl

Nad[1] <- nad

Sample JAGS Code (2 of 7)

# survival and recapture probabi

for (t in 1:(nvears - 1)){
phi.juv[t] <- mean.phi[1]
phi.ad[t] <- mean.phi[2]
f.juv[t] <- mean.fec[1]
f.ad[t] <- mean.fec[2]

IHT

ies, as well as product

for (i in l:inMarked){

for (t in first[i]:(nvears - 1)){

phi[i,t] <- mean.phi[x[i. t1]
p[i,t] <- mean.p

Sample JAGS Code (3 of 7)

for (u in 1:2){
mean.phi[u] ~ dunif(0, 1) # Priors for age-specific survival
mean.fec[u] ~ dunif(0, 20) # Priors for age-specific fecundity

3

mean.p ~ dunif(0, 1)

# 2. Derived parameters

# Population growth rate
for (t in 1:(nYears - 1)){
lanbda[t] <- Ntot[t + 1] / Ntot[t]

3

10



Sample JAGS Code (4 of 7)

#
# 3. The likelihoods of the single data sets
#
# 3.1. Likelihood for population population count data (state-space model)
# 3.1.1 System process
for (t in 2:nYears) {
Ni[t] <- f.juv[t - 1] / 2 * phi.juv[t - 1] * N[t - 1] +
f.ad[t - 1] /7 2 * phi.juv[t - 1] * Nad[t - 1]
Nad[t] <- phi.ad[t - 1] * Ntot[t - 1]

b

for (t in l:nYears) {
Ntot[t] <- Nad[t] + Ni[t]

b
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Sample JAGS Code (5 of 7)

# 3. The likelihoods of the single data sets

#3.1. Likelihood for population population count data (state-space model)
#3.1.1 Systen process
for (t in 2:nvears) {
NI[E] < Fjuvit - 11 72 % vt - 11 * NI[E - 1] +
foadft - 11 /2~ vt - 11 * Nad[t - 1]
Nad[t] <- phi.ad[t - 1] * Neot[t - 1]
b
for (t in 1:nvears) {
Ntot[t] <- Nad[t] + NL[t]
3
#3.1.2 Observation process
for (t in Linvears) {
YIt] ~ dnorn(Ntot[t], tauy)
b

Sample JAGS Code (6 of 7)

# 3.2 Likelihood for capture-recapture data: CJS model (2 age classes)
for (i in 1:nMarked){
# Define latent state at first capture
z[i, First[i]] <- 1
for (t in (First[i] + 1):nYears) {
# State process
z[i, t] ~ dbern(mull[i, t])
muif[i, €] <- phi[i, t - 1] * z[i, t - 1]
# Observation process
CH[i, t] ~ dbern(mu2[i, t])
mu2[i, €] <- p[i, t - 1] * z[i, €]

11



Sample JAGS Code (7 of 7)

# 3.3. Likelihood for productivity data: Poisson regression (2 age classes)
for (t in 1:(nYears - 1)) {
J[1, t] - dpois(rhol[t])
rhol[t] <- R[1, t] * f.juv[t]
J[2, t] ~ dpois(rho2[t])
rho2[t] <- R[2, t] * f.ad[t]
3 #t
3} #model
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Sample R Code

library(jagsul)
# Load data
Toad(" IPM. inputs1.RData")
# Bundle data
jags.data <- list(CH = CH, y =y, J = J, R = R, nYears = nvears, first = first,
x = x, nMarked = nMarked, z = known.state.cjs(CH))

1 values
< functionQ{list(nean.phi = runif(2, 0, 1), mean.p = runif(l, 0, 1),

mean.fec = runif(2, 0, 10), z = cjs.init.z(CH, first),

signa.y = runif(1, 0, 1), nl = rpois(1, 50), nad = rpois(l, 50))}

#

# Parameters monitored
paraneters <- c("mean.phi®, “mean.fec", “mean.p", "N1", "Nad", "Ntot", “sigma.y",
*lambda™)

Sample R Code cont.

# MCMC settings
ni <- 2000
nt<-1

nb <- 500
nc<-3

# Call JAGS from R (BRT 2 min)
ipm <- jags(jags.data, inits, parameters, "ipm.simple.jags", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, DIC = F)

print(ipm)
plot(ipm)
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Sample Output

JAGS output for model “ipm.simple.jags™, generated by jagsuUl.
Estimates based on 3 chains of 2000 iterations,

burn-in 500 iterations and thin rate = 1,

yielding 4500 total samples from the joint posterior.

MCMC ran for 1.048 minutes at time 2016-03-01 12:21:27.

mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff
mean.phi[1] 0.252 0.016 0.223 0.254 0.280 FALSE 1 1.163 20
mean.phi[2] 0.559 0.025 0.519 0.554 0.611 FALSE 1 1.189 18
mean.fec[1] 3.095 0.143 2.819 3.089 3.390 FALSE 1 1.003 1470
mean.fec[2] 4.191 0.172 3.878 4.179 4.554 FALSE 1 1.012 193
mean.p 0.393 0.034 0.329 0.392 0.462 FALSE 1 1.002 1720
N1[1] 46.691 7.807 30.904 46.797 61.832 FALSE 1 1.009 243
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Sample Output, cont.

lambda[11] 1.024 0.005 1.013 1.024 1.033 FALSE 1 1.002 2010
lambda[12] 1.024 0.005 1.013 1.024 1.033 FALSE 1 1.002 2010
lambda[13] 1.024 0.005 1.013 1.024 1.033 FALSE 1 1.002 2010
lambda[14] 1.024 0.005 1.013 1.024 1.033 FALSE 1 1.002 2010

**WARNING** Rhat values indicate convergence failure.
Rhat is the potenti scale reduction factor (at convergence, Rhat=1).
For each parameter, n.eff is a crude measure of effective sample size.

overlap0 checks if 0 falls in the parameter®s 95% credible interval.
f is the proportion of the posterior with the same sign as the mean;
i.e., our confidence that the parameter is positive or negative.
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