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Major contributors to the theory of branching processes, 
a natural framework for modeling demographic stochasticity 

A simple example 

• Death / Survival as a coin tossing experiment 
• Reproduction as a discrete distribution 
               (e.g. Clutch size  Poisson distribution) 
• Independence of individuals 

• As usual,  “random”  stands for residual 
variation after adequate stratification 

• Independence may be more restrictive 

Year t                                                              Year t+1 
 N1  
 
 
 

 N2                                                                                                          N2 

s1 

s2 

Death/Survival 

N2(t+1)  Bin(N1(t),s1) + Bin(N2(t),s2) 

In what follows, everything is 
conditional on N1(t) and N2(t) 

Year t                                                              Year t+1 
 
 N1                                                                       N1 
 
 
 

 N2 

 

s0 f1 

f2 

Newborn 
 N0(t) 

Reproduction 

N0(t)  Poisson(N1(t)f1) + Poisson(N2(t)f2)  
N1(t+1)  / N0(t)  Bin(N0(t), s0) 

N1(t+1)  Poisson(N1(t)f1s0+ N2(t)f2s0)  


 

Year t                                                              Year t+1 
 
 N1                                                                       N1 
 
 
 

 N2                                                                                                          N2 

 

s1 

s2 

s0 f1 

f2 

newborn 

Overall model:  
a branching process 

N1(t+1)  Poisson(N1(t)f1s0+ N2(t)f2s0)  

N2(t+1)  Bin(N1(t),s1) + Bin(N2(t),s2) 
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N(t+1)  Poisson((s0f+ s1) N(t)) = Poisson(lN(t))  

An even simpler example 
of branching process 

s0 f 
newborn 

  
aged >=1                                                           aged >=1 s1 

 

Demographic vs Environmental stochasticity 

Demographic 
N(t+1)  Poisson((pf+ q) N(t)) = Poisson(lN(t)) 
E(N(t+1) / N(t) ) =  lN(t)   var(N(t+1) / N(t) ) =  lN(t)         
                 More generally  var(N(t+1) / N(t) ) =  aN(t)  

Demographic vs Environmental stochasticity 

Demographic 
N(t+1)  Poisson((pf+ q) N(t)) = Poisson(lN(t)) 
E(N(t+1) / N(t) ) =  lN(t)   var(N(t+1) / N(t) ) =  lN(t)         
                 More generally  var(N(t+1) / N(t) ) =  aN(t)  

Environmental 
N(t+1)  / N(t)     LN(t), L random variable, E(L)=l   
E(N(t+1) / N(t) ) =  lN(t)    var(N(t+1) / N(t) ) = s²N(t)²         
                 More generally   var(N(t+1) / N(t) ) = aN(t)² 

Demographic vs Environmental stochasticity 

Demographic 
N(t+1)  Poisson((pf+ q) N(t)) = Poisson(lN(t)) 
E(N(t+1) / N(t) ) =  lN(t)   var(N(t+1) / N(t) ) =  lN(t)         
                 More generally  var(N(t+1) / N(t) ) =  aN(t)  

              var(N(t+1) / N(t) ) 
Demographic                        aN(t) 
Environmental                      aN(t)² 

Environmental 
N(t+1)  / N(t)     LN(t), L random variable, E(L)=l   
E(N(t+1) / N(t) ) =  lN(t)    var(N(t+1) / N(t) ) = s²N(t)²         
                 More generally   var(N(t+1) / N(t) ) = aN(t)² 

Demographic vs Environmental stochasticity 

• Environmental Stochasticity prevails over 
   Demographic Stochasticity in large populations 

• Demographic Stochasticity prevails over 
   Environmental Stochasticity in small populations 

• Demographic Stochasticity may be non negligible 
    in large, multistate populations  
   (small number of individuals in some states) 

              var(N(t+1) / N(t) ) 
Demographic                         aN(t) 
Environmental                       aN(t) ² 

Demographic stochasticity and extinction 

• In Branching Processes, population size is an integer 

• Extinction is unambiguously defined as reaching 
    a population size equal to 0 

• … or a vector population size equal to (0, 0, …, 0)  
     in the case of a structured population 

• Many formal results in mathematical literature 

• e.g., extinction certain iff  l <=1 

• Simulation straightforward in ULM 



3/7/2016 

3 

Demographic stochasticity in ULM 
“rel” = recurrence relationships 

{ Swallow with demographic stochasticity 

defmod swallowDS(2) 

rel : rn1,rn2 

 

{ relation for n1 

defrel rn1 

n1 = poisson(n1*s0*(f1+f2)) 

 

{ relation for n2 

defrel rn2 

n2 = binomf(n1,s1) + binomf(n2,s2) 

Demographic stochasticity in ULM 
declaring variables and parameters 

{ initial numbers 
defvar n1 = 10 
 
defvar n2 = 10 
 
{ total number  
defvar n = n1 + n2 
 
{ 1st year survival prob. 
defvar s0 = 0.3 
 

{ 2nd year survival prob. 
defvar s1 = 0.50 
 
{ After2nd year survival prob. 
defvar s2= 0.65 
 
{ subadult female fecundity  
defvar f1 = 3.0/2 
 
{ adult female fecundity 
defvar f2 = 6.0/2 

Demographic stochasticity in ULM 
Typical Interactive Commands 

graph 
 
Montecarlo 30 1000 

Time steps   Replicates 

In the graph window, click on 
 select Min Max, 2 sigma 

Demographic stochasticity in ULM 
Typical Interactive Commands 

Mean ± 2 s 

max 

Demographic stochasticity and Density-dependence 

If l > 1, asymptotically  P( N(t)=0 ) + P( N(t)= )  =  1, i.e. 
the population either goes extinct or escapes to  
 
If DD is added to stabilize the population,  
then, asymptotically P( N(t)=) = 0 
 
Hence asymptotically  P( N(t)=0 )  = 1,  
 i.e. extinction is certain 

Demographic stochasticity and Density-dependence 
defmod sparrow(1) 
rel : rn1 
 
{ relation for n1 
defrel rn1 
n = poisson(n*s0*f)+binomf(n,s1) 
 
{ initial numbers 
defvar n = 10 
 
{ FY survival probability 
defvar s0 = 0.2*exp(-0.01*n) 
 
{ AFY survival probability 
defvar s1 = 0.5*exp(-0.01*n) 
 
{ female fecundity  
defvar f = 6.0/2 
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Demographic stochasticity and Density-dependence 
defmod sparrow(1) 
rel : rn1 
 
{ relation for n1 
defrel rn1 
n = poisson(n*s0*f)+binomf(n,s1) 
 
{ initial numbers 
defvar n = 10 
 
{ FY survival probability 
defvar s0 = 0.2*exp(-0.01*n) 
 
{ AFY survival probability 
defvar s1 = 0.5*exp(-0.01*n) 
 
{ female fecundity  
defvar f = 6.0/2 

Low baseline survival  
and moderate DD 
lmax = 1.1 

defmod sparrow(1) 
rel : rn1 
 
{ relation for n1 
defrel rn1 
n = poisson(n*s0*f)+binomf(n,s1) 
 
{ initial numbers 
defvar n = 10 
 
{ FY survival probability 
defvar s0 = 0.2*exp(-0.01*n) 
 
{ AFY survival probability 
defvar s1 = 0.5*exp(-0.01*n) 
 
{ female fecundity  
defvar f = 6.0/2 

Demographic stochasticity and Density-dependence 

Low baseline survival  
and moderate DD 
lmax = 1.1 

Demographic stochasticity and Density-dependence 
defmod sparrow(1) 
rel : rn1 
 
{ relation for n1 
defrel rn1 
n = poisson(n*s0*f)+binomf(n,s1) 
 
{ initial numbers 
defvar n = 10 
 
{ FY survival probability 
defvar s0 = 0.3*exp(-0.01*n) 
 
{ AFY survival probability 
defvar s1 = 0.6*exp(-0.01*n) 
 
{ female fecundity  
defvar f = 6.0/2 

High baseline survival  
and moderate DD 
lmax = 1.5 

defmod sparrow(1) 
rel : rn1 
 
{ relation for n1 
defrel rn1 
n = poisson(n*p*f)+binomf(n,s1) 
 
{ initial numbers 
defvar n = 10 
 
{ FY survival probability 
defvar p = 0.3*exp(-0.01*n) 
 
{ AFY survival probability 
defvar q = 0.6*exp(-0.01*n) 
 
{ female fecundity  
defvar f = 6.0/2 

Demographic stochasticity and Density-dependence 

High baseline survival  
and moderate DD 
lmax = 1.5 

Demographic stochasticity and Density-dependence 

If DD is added to stabilize the population, extinction is certain 

• Population size stabilizes conditional on non extinction 
   (Quasi-stationary distribution, QSD) 

• Pr(extinction in one time step) becomes constant 

• Time to extinction: geometric distribution 

• Pr(Extinction over finite time window) often negligible 

      The QSD concept leads to a continuum from  
      decreasing population doomed to close extinction to  

stable DD populations with negligible risk of extinction 


