
 1 

 
 
 
 
 
 

Introduction to R 
Jennifer Moore 

 
 
 
 
 
R Development Core Team (2008). R: A language and environment for   statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
07-0, URL http://www.R-project.org. 

 
RStudio (2012). RStudio: Integrated development environment for R (Version 
0.96.122) [Computer software]. Boston, MA. Retrieved September 27, 2014. 
Available from http://www.rstudio.org/ 
 
 
  

http://www.r-project.org./
http://www.rstudio.org/


 2 

Table of Contents 

Installing R .................................................................................................................. 3 

Getting Started ........................................................................................................... 4 

Help in R ..................................................................................................................... 5 

Links to R Manuals/Basic Lessons ................................................................................ 5 

Setting the Working Directory ..................................................................................... 6 

Saving your Work ........................................................................................................ 6 

R Packages & Libraries ................................................................................................ 7 

Entering Data into R .................................................................................................... 8 

Comments in R ......................................................................................................... 10 

Data Types and Structure .......................................................................................... 11 

Descriptive Statistics ................................................................................................. 16 

Missing Values .......................................................................................................... 18 

Plotting ..................................................................................................................... 18 

Writing Functions...................................................................................................... 26 

Data Analysis – Simple Tests ..................................................................................... 27 
 
 

  



 3 

Installing R 
 
Download R using one of the following links – depending on whether you have a PC 
or a Mac. After you have downloaded R, you can download R Studio. R Studio is an 
open source integrated development environment (IDE) for R. Both R and R studio 
are free. 

 
Windows Users: 
http://cran.at.r-project.org/bin/windows/base/ 
 
Mac Users: 
http://cran.r-project.org/bin/macosx/ 
 
R-Studio: 
http://www.rstudio.com/products/rstudio/download/ 
 
 

  

http://cran.at.r-project.org/bin/windows/base/
http://cran.r-project.org/bin/macosx/
http://www.rstudio.com/products/rstudio/download/


 4 

Getting Started 
 
In R Studio, there are 4 main windows.  

(1) Console Window 
(2) Environment/History Window 
(3) Files/Plots/Packages/Help Window 
(4) Script Window (does not open automatically) 

 
 
The Console Window is where the code is run. You can type R commands directly 
into this window, or you can run R code or script (which is just a collection of valid R 
commands) from a script file. All of your commands and outputs are also displayed 
in the console.  
 
The Environment/History Window is in the top right of the screen. The 
Environment tab lists all of the data and values that have been created and saved. 
This allows you to see what each variable you have created represents. You can also 
import data into R directly using this window. The History tab keeps track of all of 
the code that you have run. You can save this into a file.  
 
The Files/Plots/Packages/Help Window is in the bottom right of the screen. The 
Files tab shows all of the files on your computer; you can also set working directory 
(see below for details), create new folders, and copy or move files from the Files tab. 
You can open data files directly from this window to look at, but they must be 
imported into R Studio for you to be able to use or analyze the data. The Plot tab is 
where all of the plots you create are displayed, and where they can be saved into 
files. The Packages tab is a list of all currently installed packages, the place to update 
packages, and the place to install new packages. The Help tab displays the help files 
for all of the commands and packages.  
 
The Script Window is created by clicking File > New File > New Script. An R script 
can be saved, so you can reopen it to continue working on a project, and it can be 
sent to another person for them to open and edit.  
 
It is best to organize all code within an R Script.  
Press <CTRL Enter> to run code from script in the Console Window or use the 
‘Run’ button at the top of the Script Window. 
 
 
 

 
  



 5 

Help in R 
 
Introduction to R manual 
http://cran.r-project.org/doc/manuals/R-intro.pdf 
 
R help mailing list 
http://r.789695.n4.nabble.com/R-help-f789696.html 
 
R built in help 
The help files can be searched in the Help tab in the bottom right corner. In addition, 
the following commands can be entered into the Console Window to open the 
specified files (in this case help on the plot function)  
 
> help(plot) 
> ?plot  
> ??plot 
 
The single question mark ? is used to search for a particular function, the double 
question mark ?? is used if you do not know the function you want to use, but want 
to search for potential options. 
 
R built in examples 
The example files can be accessed by entering the following command into the 
Console Window. This will bring up examples of how the function can be used. 
 
> example(plot) 
 
You can also find R help by searching Google!  
 
 

Links to R Manuals/Basic Lessons 
 
Here are a few websites with tutorial on learning the basics in R. There are a lot of 
tutorials, manuals and presentations about various aspects of R available online, so 
if you aren’t interested in these, there are plenty more out there! 
 
http://tryr.codeschool.com/levels/1/challenges/1 
https://www.datacamp.com/courses/introduction-to-r 
http://swirlstats.com/students.html 
 

  

http://cran.r-project.org/doc/manuals/R-intro.pdf
http://r.789695.n4.nabble.com/R-help-f789696.html
http://tryr.codeschool.com/levels/1/challenges/1
https://www.datacamp.com/courses/introduction-to-r
http://swirlstats.com/students.html


 6 

Setting the Working Directory 
 
Before beginning work in R/R studio it is important to set the working directory. 
This is the folder where all files that you are going to access are located, as well as 
where all files that you create will be saved. 
 
You can set working directory in three ways: using Files tab and using R commands. 
In the Files tab in the bottom left corner, locate the folder that you want as your 
working directory. Once you have clicked on the folder and it is open, under ‘More’ 
(menu at the top of the Files tab) click ‘Set as Working Directory’. An alternative way 
of achieving the same goal is to use R Studio main menu -> Session -> Set working 
directory. 
 
You can also set working directory using the setwd (stands for set working 
directory) command as follows (you need know the full name of the directory or 
folder): 
 
> setwd(“C:/Statistics/R/”) 
>setwd(“C:\\Statistics\\R\\”) 
 
Note: All slashes needs to be forwards slashes (/) or double backward slashes (\\). 
Also, R is case sensitive, so make sure capital letters are used only when needed. 
 
You can also find out what your current working directory is by using the getwd 
function: 
 
> getwd() 
 

Saving your Work 
 
You can save everything in all of the windows in R Studio (data, R objects etc.) 
using save.image command. 
> save.image(“File.R”) 
This will create a file called File.R in your working directory.  
>load(“File.R”) 
This will load your data back so you can keep working where you left off. 
 
This is helpful where you are working with code that takes a long time to run 
because you do not have to rerun it every time you want to view your results. 
 
You can also save just the R script or single plots that you have created. 

  



 7 

R Packages & Libraries 
 
The functions in R are organized in packages or libraries. The commonly used 
packages are preinstalled within R. However, if you need to use more specialized 
packages, you will need to install and then load the package before you can use 
functions available in that package.  
 
Packages are installed and loaded in the Packages tab in the bottom right corner or 
through the dropdown menu at the top of the screen (Tools -> Install Packages). 
 
If a package is already installed on your computer, it will be listed in this tab. To load 
this package so you can use it, hit the checkmark next to the name of the package.  
 
If a package is not installed, click the ‘Install’ button at the top of the tab, type in the 
name of the package, and click ‘Install’. Once it has been installed click the 
checkmark next to the name to load it.  
 
Installed packages can also be loaded from the command line or within a script 
using the library function. 
>library(ggplot2) 
 
This would load the previously installed package ‘ggplot2’.  
 
A list of all available packages can be found here: 
http://cran.r-project.org/web/packages/available_packages_by_name.html 
 
 
 

  

http://cran.r-project.org/web/packages/available_packages_by_name.html


 8 

Entering Data into R 
 
Data can be entered into R using a variety of methods. 
 

(1) Manually – entered into the command line 
(2) Imported – entered in Excel (or other software – see format below), saved as 

.csv or .txt files, and imported into R 
a. Using the Environment tab 
b. Using ‘read’ commands 

 
 

Manual Entry 
 
Data can be typed directly into an R script. 
 
As a calculator 
> 10 + 5 
[1] 15 
 
Compute a sum 
> sum(1,5,10) 
[1] 16 
 
Create two vectors of numbers called Numbers and Numbers2 
> Numbers <- c(5,4,7) 
> Numbers2 = c(5,4,7) 
> Numbers 
 [1] 5 4 7 
> Numbers2 
[1] 5 4 7 
> print(Numbers) 
[1] 5 4 7 
 
 
Notes 

 The <- and = symbols are interchangeable in R. The two vectors Numbers and 
Numbers2 are identical. 

 
 Numbers is the name of the vector containing the numbers 5, 4, 7. To display 

the contents of the vector type ‘Numbers’ into the console, or type 
print(Numbers) 

 
 The c used in the vector above stands for ‘concatenate’ or ‘combine’. It is used 

whenever a list of data points is entered into R. 
 



 9 

Importing CSV and TXT Files 
 

Data files can only be imported into R if they are saved as a CSV or TXT file. You can 
enter data in Excel or other spreadsheet programs, and then save the file into one of 
these two formats before it can be imported for use in R.  

 
A CSV file is recommended for use in R. 

 
 

Using the Environment tab 
 

 In the Environment tab, in the top right corner click on ‘Import Dataset’, and 
then ‘From Text File…’.  

 Choose the file that you want to import. 
 Choose a name for the data – enter into the ‘Name’ blank (This name cannot 

contain any spaces). 
 Choose yes or no depending on whether or not the file has a Heading 

(column names). 
 Choose the separator, decimal, quote, and na.strings depending on your data. 
 Click import. 

 
Read Commands 
 
The following command can be typed into the console to import the data. 
 
For a CSV file: 
> data <- read.csv(“data.csv”, header = TRUE) 
For a text file: 
> data <- read.table(“data.txt”, header = TRUE, sep=” ”) 
 
The first argument is the file name (found within the working directory set earlier).  
 
The second argument, header, refers to whether or not the column names are listed 
in the first line of the file, TRUE is used for yes, FALSE for no.  
 
The third argument, sep, refers to what is separating the values. A CSV uses commas, 
but a text document could use semicolons, colons, etc.  
 
Import the beaver dataset into R using either of the two methods explained 
above. Make sure to save it as a csv file in Excel before importing it into R. 
When you import it into R, name the variable containing the data ‘beaver’. We 
will use it later! You can view the data after it is imported in R by using the 
command View, or by double clicking the file in the Environment tab. 

 



 10 

Comments in R 
 
Comments are notes that you include in your code, but that are not run. R does not 
run any commands included in your comments. 
 
It is good practice to always put comments into your code, so you or anyone else 
who access your code later knows what you were doing. This might seem 
unnecessary for simple code, but will be very useful with more complicated code.  
 
 
In R, you can comment a line by putting the # sign in front of the text. If you want to 
comment a large chunk of code all at once, highlight the code and then use the 
dropdown menu (Code -> Comment/Uncomment Lines). 
 
>#this is a comment 
 
>a = c(1,2,3) 
>#creates a vector, a, containing the numbers 1, 2, and 3 
>sum(a) 
>#calculates the sum of the numbers in vector a 

  



 11 

Data Types and Structure 
 
R can use many data types, such as numeric, categorical, and ordinal. They are 
organized in various structures, which dictates how they are manipulated, accessed 
and used by R.  
 
Each data point or a variable can be numeric, a character, or a factor. 

 Numeric – a number (e.g. 1, 5.3, -2, 4) 
 Character – string of text (e.g. red, one, monkey) 
 Factor – level (e.g. male/female, high/low) 

 
Data in R can be organized as 

(1) vectors 
(2) matrices 
(3) data frames 

 
 

Vectors 
 

Vectors are one-dimensional arrays containing numbers, or characters.  
 
>a <- c(1,2,5.3,6,-2,4) # numeric vector 
>b <- c("one","two","three") # character vector 
>c <-c(1, “one”) #mixed vector 
 
Vectors can also be created using sequences of numbers, or repetitions of the same 
number. 
 
>5:9 
[1] 5 6 7 8 9 
>seq(5,9) 
[1] 5 6 7 8 9 
>seq(5,9,0.5) 
[1] 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 
>rep(5,3) 
[1] 5 5 5 
 
Note:  Characters must be entered inside double quotes. 
 
Access the elements of the vectors using their position in the vector in brackets [] 
> a[3] #3rd element of vector a 
[1] 5.3 
>a[c(2,4)] # 2nd and 4th elements of vector a 
[1] 2 6 
>a[3:5] #return the 3rd, 4th, and 5th element of vector a 



 12 

[1]  5.3  6.0 -2.0 
 
Add elements to the vector 
> a[7] <- 0 #add a 7th element to the vector 
> a 
[1]  1.0  2.0  5.3  6.0 -2.0  4.0  0.0 
 
Change elements in the vector 
> a[1] <- 0 #change the first element to 0 instead of 1 
> a 
[1]  0.0  2.0  5.3  6.0 -2.0  4.0  0.0 
 
Add a value to every element of the vector 
> a + 1 
[1]  1.0  3.0  6.3  7.0 -1.0  5.0  1.0 
 
Multiply a value to every element of the vector (you can also subtract or divide, etc.) 
> a * 2 
[1]  0.0  4.0 10.6 12.0 -4.0  8.0  0.0 
 
Add two vectors together (or subtract, multiple, divide) 
> b <- seq(1,7) 
> a+b 
[1]  1.0  4.0  8.3 10.0  3.0 10.0  7.0 
 
The above commands simply output the desired results – if you want to use the 
new vector it most be saved as a new variable. 
 
> c <- a+b 
[1]  1.0  4.0  8.3 10.0  3.0 10.0  7.0 
#the sum of vectors a and b is now saved as variable c 
 
 

Matrices 
 

Matrices are two-dimensional, for example a 4 x 5 matrix has 4 rows and 5 columns. 
All values within the matrix must be of the same type; i.e. all numeric or all 
characters 
 
> mymatrix <- matrix(1:4, nrow=2, ncol=2) 
> mymatrix 
     [,1] [,2] 
[1,]    1    3 
[2,]    2    4 
 



 13 

The values of a matrix are accessed using their position, like for vectors, but for 
matrices it is necessary to designate the row and column.  
 
> mymatrix[1,2] #the value in row 1 column 2 
[1] 3 
> mymatrix[2,1] #the value in row 2 column 1 
[1] 2 
> mymatrix[,2] #the values for all rows, column 2 
[1] 3 4 
> mymatrix[1,] # the values for row 1, and all columns 
[1] 1 3 
> mymatrix[1:2,] #the values from row 1 to 2, and all columns 
     [,1] [,2] 
[1,]    1    3 
[2,]    2    4 
 
Change the value in row 1 column 2 to 0 
>mymatrix[1,2] <- 0 
>mymatrix[1,2] 
[1] 0 
 

 
 

Data Frames 
 

Data frames are a more general form of a matrix. The values do not have to be of the 
same type, but instead one data frame can contain numbers, characters, and factors. 
 
> d <- c(1,2,3,4) 
> e <- c("red", "white", "red", "blue") 
> f <- factor(c("high", "low", "high", "high")) 
> mydata <- data.frame(d,e,f) 
> names(mydata) <- c("ID", "Color", "Level") 
> mydata 
  ID Color Level 
1  1   red  high 
2  2 white   low 
3  3   red  high 
4  4  blue  high 
 
The values of a data frame can be accessed in a variety of ways. 
 
> mydata[1] #calls column 1 
  ID 
1  1 
2  2 



 14 

3  3 
4  4 
 
> mydata["ID"] #another way to access column 1 – using the column name 
  ID 
1  1 
2  2 
3  3 
4  4 
 
> mydata$ID #last way to access column 1 – also using the column name 
[1] 1 2 3 4 
 
> mydata[1,] #access the first row  
   ID Color Level 
1  1   red   high 
 

Useful Functions for Data Types 
 
Note: R has many datasets built into the program that you can use for practicing. 
Type data() into the console to see a list of all of the available datasets. We will use 
the iris dataset. If you type help(iris) you can read all about the data included in this 
dataset. 
 
> str(iris)  # structure of the dataframe 
'data.frame': 150 obs. of  5 variables: 
 $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... 
 $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... 
 $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... 
 $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... 
 $ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ... 
 
> head(iris) #displays first 10 rows of data 
> tail(iris) #displays last 10 rows of data 
 
> nrow(iris) #number of rows 
[1] 150 
> ncol(iris) #number of columns 
[1] 5 
> length(iris$Sepal.Length) #number of data points in the column 
[1] 150 
 
> class(iris) #class or type of object 
[1] "data.frame" 
 
> names(mydata) # variable names 



 15 

[1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width"  "Species"   
 
The format of data can also be changed after it is entered. For example, a vector of 
characters or numbers could be changed to factors, or a matrix could be changed 
into a dataframe. 
 
> str(d) 
 num [1:4] 1 2 3 4 
> d <- factor(d) 
> str(d) 
 Factor w/ 4 levels "1","2","3","4": 1 2 3 4 
Vector ‘d’ was changed from a vector of numbers of a vector of factors. 
 
> str(mymatrix) 
 int [1:2, 1:2] 1 2 3 4 
> mymatrix <- as.data.frame(mymatrix) 
> str(mymatrix) 
'data.frame': 2 obs. of  2 variables: 
 $ V1: int  1 2 
 $ V2: int  3 4 
The matrix ‘mymatrix’ was changed to a dataframe.  
 
 

Subsetting Data 
 

Sometimes if we have a large dataset for multiple categories, we might want to 
subset it into smaller datasets for analysis.  
 
For example, lets look at the iris dataset, which gives us information on three 
different species of iris. 
 
We can create separate datasets for each of the species. 
 
> setosa <- subset(iris, iris$Species == “setosa”) 
#this creates a new dataframe called ‘setosa’ which contains all columns of data for 
just the species setosa 
> versicolor <- subset(iris, iris$Species == “versicolor”) 
#this creates a new dataframe called ‘versicolor’ which contains all columns of data 
for just the species versicolor 
 
We can also subset based on criteria – in this case such as petal length or width. 
 
> iris2 <- subset(iris, iris$Petal.Length < 2) 
#this dataframe only contains the flowers that have a petal lenth less than 2 
 
 



 16 

Descriptive Statistics 
 
We will use the beaver dataset that we imported earlier to explore basic descriptive 
statistics. But first, we need to look at the structure of the dataset. 
 
> str(beaver) 
'data.frame': 51 obs. of  2 variables: 
 $ Year      : int  1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 ... 
 $ Population: int  65276 71699 59199 123045 70269 102607 87759 117276 132897 
161276 ... 
 
This dataset has two variables, Year and Population. Let’s explore the ‘Population’ 
variable. 
 
> beaver$Population #displays the data in the Population column 
 
Minimum – smallest value 
> min(beaver$Population) 
[1] 59199 
 
Maximum – largest value 
> max(beaver$Population) 
[1] 1071145 
 
Range (Minimum and Maximum) 
> range(beaver$Population) 
[1]     59199  1071145 
 
Median – middle number when all of the values are organized from smallest to 
largest 
> median(beaver$Population) 
[1] 455595 
 
Quantile 
> quantile(beaver$Population) 
     0%     25%     50%     75%    100%  
  59199  199130  455595  588137 1071145 
 
Mean is a measure of central tendency of the data, and is calculated as: 
  

𝑋̅ =  
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

𝑛
=  

∑ 𝑥𝑖

𝑛
 

 
> mean(beaver$Population) 
[1] 410710.2 



 17 

 
 
Variance is a measure of spread of the data, and is calculated as 

𝑠2 =
1

𝑛
∑(𝑥𝑖 − 𝑋̅)2

𝑛

𝑖=1

 

 
> var(beaver$Population) 
[1] 54920644842 
 
Standard deviation is just the square root of variance (how much the values 
typically vary from the average value): 

𝑠 = √
1

𝑛
∑(𝑥𝑖 − 𝑋̅)2

𝑛

𝑖=1

 

 
> sd(beaver$Population) 
[1] 234351.5 
 
Standard Error – the variability in which a sample estimates a population (how 
much the values typically vary around the sample mean of a population) 

𝑠𝑒 =
𝑠

√𝑛
 

 
There is no built-in function for standard error, so we will use a combination of 
other functions. 
 
 > sd(beaver$Population)/sqrt(length(beaver$Population)) 
[1] 32815.78 
 
Standard deviation and standard error are different measures. Standard 
deviation quantifies scatter – how much the values vary. Standard error 
quantifies precision – how close your values match the true values. Standard 
error takes into account standard deviation and sample size.  
 
The summary command calculates a group of the descriptive statistics all at once. 
 
> summary(beaver$Population) 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  59200  199100  455600  410700  588100 1071000 
 
All of the values are rounded to the nearest integer before these values are 
calculated, which is why they are slightly different than the values calculated above. 
 



 18 

Missing Values 
 
Datasets are rarely perfect, and there is often data missing. There are a couple of 
ways in R to deal with missing data.  
 
> a <- c(1,2,3,NA,5) 
> sum(a) 
[1] NA 
> sum(a, na.rm = TRUE) 
[1] 11 
 

Plotting 
 

Basic Plot 
 

We will plot the beaver population numbers. 
 
>plot(beaver$Population) 
Creates a plot with an index on the x-axis and beaver populations on y-axis 

 
 
 
 
 
 



 19 

>plot(beaver$Year, beaver$Population) 
Creates a plot with years on the x-axis and beaver populations on the y-axis 

 
 
There are many more arguments that can be added to the plot command to 
customize the graph. 
 

 type – the type of plot to be drawn  
o Points (default) 
o Lines  

 main – the title of the plot 
 xlab, ylab – the axis labels 
 xlim, ylim – the range of values on each axis 
 col – color of symbols 

 
 
 
 
 
 
 
 
 
 
 
 



 20 

> plot(beaver$Year, beaver$Population, type = "l", main = "Beaver Populations", xlab = 
"Year", ylab = "Population", col = "blue") 
 

 
 

 
  



 21 

Other Common Plots 
 

Lets use the iris data we looked at earlier to look at some other common plots. 
 
Create a barplot for the following vector and add labels for each bar. 
> data <- c(4,6,3) 
> barplot(data) 
> names(data) <- c(“Rwanda”, “USA”, “England”) 
> barplot(data)  

 
>abline(h=mean(data)) #adds a horizontal line to the graph 
 

 
 
 



 22 

Create a side-by-side boxplot for two variables in the iris dataset. 
> boxplot(iris$Petal.Length, iris$Petal.Width, main = "Iris Petals", names = c("Length", 
"Width")) 
 

 
 
 
Create a histogram of the petal length from the iris dataset. 
> hist(iris$Petal.Length, xlab = "Petal Length", main = "Histogram of Iris Petal 
Length") 

 
 
 
 
 
 



 23 

>abline(v=mean(iris$Petal.Length)) 
 

 
 

Multiple Plots 
 
It is possible to put multiple plots on the same page. 
 
>par(mfrow=c(2,1)) 
>plot(iris$Petal.Length) 



 24 

>plot(iris$Petal.Width) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Multiple Sets of Data on the Same Plot & Legends 
 

>par(mfrow=c(1,1)) 
>plot(iris$Petal.Length[iris$Species=='setosa'],iris$Petal.Width[iris$Species=='setosa']
, col='blue', xlim = c(1,5), ylim = c(0,3), xlab = "Petal Length", ylab = "Petal Width") 
>points(iris$Petal.Length[iris$Species=='versicolor'],iris$Petal.Width[iris$Species=='ve
rsicolor'], col='red') 
> legend("topright", col = c('blue','red'), pch = 1, legend = c("Setosa", "Versicolor")) 



 25 

 
 
There are additional packages that you can download and install such as 
‘ggplot2’ to make more advanced graphs, if necessary! 

  



 26 

Writing Functions 
 
 
In addition, we can write our own function to calculate all of the descriptive 
statistics at once. 
 
> summary.stat = function(x) { 
+   n = length(x) 
+   my.mean = mean(x) 
+   my.var = var(x) 
+   my.sd = sd(x) 
+   my.se = my.sd/sqrt(n) 
+   my.min = min(x) 
+   my.max = max(x) 
+   results = list(mean = my.mean, sd = my.sd, se = my.se, max = my.max, min = my.min, 
n = n) 
+ return(results) 
+ } 
 
> summary.stat(beaver$Population) 
$mean 
[1] 410710.2 
 
$sd 
[1] 234351.5 
 
$se 
[1] 32815.78 
 
$max 
[1] 1071145 
 
$min 
[1] 59199 
 
$n 
[1] 51  



 27 

Data Analysis – Simple Tests 
 

2 Sample t-test 
 
Goal: Compare the means of two independent samples, X1 and X2 
 

𝐻0: 𝜇1 = 𝜇2 
𝐻1: 𝜇1 ≠ 𝜇2 
𝐻2: 𝜇1 < 𝜇2 
𝐻3: 𝜇1 > 𝜇2 

 
Let’s look at two species of iris from the iris dataset, and compare the means of the  
petal lengths.  
 
First, subset the data for each of the two species. 
 
> setosa <- subset(iris, iris$Species == "setosa") 
> versicolor <- subset(iris, iris$Species == "versicolor") 
 
Next, use the t-test to compare the means. 
 
First, use a 2-sided t-test to look at whether to accept the null hypothesis (means are 
equal) or the reject the null for the first alternate hypothesis (means are not equal).  
 
2-sided t-test (alternative hypothesis 1) 
> t.test(setosa$Petal.Length, versicolor$Petal.Length) 
 
 Welch Two Sample t-test 
 
data:  setosa$Petal.Length and versicolor$Petal.Length 
t = -39.4927, df = 62.14, p-value < 2.2e-16 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -2.939618 -2.656382 
sample estimates: 
mean of x mean of y  
    1.462     4.260 
 
With a p-value of <2.2e-16 we can reject the null hypothesis, and conclude that 
mean petal length significantly differs between the two species (alternate 
hypothesis 1). 
 
From here, we can then run one-sided t-tests to see if alternate hypotheses 2 or 3 is 
accepted. 
 



 28 

 
 
1-sided t-test (alternative hypothesis 2 – less than) 
 
> t.test(setosa$Petal.Length, versicolor$Petal.Length, alternative = "less") 
 
 Welch Two Sample t-test 
 
data:  setosa$Petal.Length and versicolor$Petal.Length 
t = -39.4927, df = 62.14, p-value < 2.2e-16 
alternative hypothesis: true difference in means is less than 0 
95 percent confidence interval: 
      -Inf -2.679701 
sample estimates: 
mean of x mean of y  
    1.462     4.260 
 
1 sided t-test (alternative hypothesis 3 – greater than) 
 
> t.test(setosa$Petal.Length, versicolor$Petal.Length, alternative = "greater") 
 
 Welch Two Sample t-test 
 
data:  setosa$Petal.Length and versicolor$Petal.Length 
t = -39.4927, df = 62.14, p-value = 1 
alternative hypothesis: true difference in means is greater than 0 
95 percent confidence interval: 
 -2.916299       Inf 
sample estimates: 
mean of x mean of y  
    1.462     4.260 
 
The results show that the means petal lengths of the two species of iris are 
significantly different (P <2.2e-16). The petal length of Setosa is significantly shorter 
than that of Versicolor. We accept hypothesis 2.  
 
Note: The above analyses assume that the variances are unequal, to specify equal 
variance add var.equal = TRUE to the end of the argument. 
  



 29 

Correlation 
 

We will use the iris data to look at the relationship between petal length and width.  
 
First, we can look at the relationship on a graph. 
>plot(iris$Petal.Width, iris$Petal.Length, main = "Petal Width vs. Length", xlab = 
"Petal Width", ylab = "Petal Length") 
 
 

 
The plot shows that there is a positive, linear relationship between petal length and 
width. 
 
If we want to know if the relationship is significant, we can calculate the correlation 
between the two variables. 
> cor.test(iris$Petal.Width, iris$Petal.Length) 
 
 Pearson's product-moment correlation 
 
data:  iris$Petal.Width and iris$Petal.Length 
t = 43.3872, df = 148, p-value < 2.2e-16 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 0.9490525 0.9729853 
sample estimates: 



 30 

      cor  
0.9628654 
 
Since the p-value is less than 0.05 there is a significant correlation between these 
two variables. The variables are 96% correlated. 
 

 
Linear Regression (LR) 

 
Goal of LR: Model linear relationship between an independent (X) and a 
dependent (Y) variable. 
If we know the petal width can we estimate the petal length? 
 
The simple linear regression model is:  
 

𝑦𝑖 = 𝛽0 + 𝛽1𝑋 + 𝜖𝑖 
𝜖~ 𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎2), 𝑖𝑖𝑑 

 
First, fit a linear model. 
 
> model <- lm(iris$Petal.Length ~ iris$Petal.Width) 
 
Summarize the model. 
 
> summary(model) 
 
Call: 
lm(formula = iris$Petal.Length ~ iris$Petal.Width) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-1.33542 -0.30347 -0.02955  0.25776  1.39453  
 
Coefficients: 
                 Estimate Std. Error t value Pr(>|t|)     
(Intercept)       1.08356    0.07297   14.85   <2e-16 *** 
iris$Petal.Width  2.22994    0.05140   43.39   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4782 on 148 degrees of freedom 
Multiple R-squared:  0.9271, Adjusted R-squared:  0.9266  
F-statistic:  1882 on 1 and 148 DF,  p-value: < 2.2e-16 
 
The results show us: 
 The intercept (𝛽0) = 1.08356 



 31 

 The slope (𝛽1) = 2.22994 
 The F statistic = 1882 
 P-value = <2.2e-16 
 R-squared = 0.9271 
 
So, our predictive equation is: 
Petal Length = 1.08356 + 2.22994(Petal Width) 
 
These results tell us that: 

 the intercept 𝛽0 is significantly different than 0 (P < 0.05); 
 the slope 𝛽1 is significantly different than 0 (P < 0.05) 
 the model is a good fit for the data (R2 = 0.9271). This means that 93% of the 

variation in petal length is explained by the petal width. 
 
We can also add a linear regression line directly in the plot of the two variables: 
 
> plot(iris$Petal.Width, iris$Petal.Length, main = "Petal Width vs. Length", xlab = 
"Petal Width", ylab = "Petal Length") 
> abline(model) 
 
 

 
 


