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Outline: 

• Why use model selection 

• AIC 

• AIC weights and model averaging 

• Other methods 

 

 



Data-Based Model Selection 

 Problem 

– Multiple plausible models and a single data set 

– How does one select the most reasonable and 

useful model 

 Guiding Principle: “Principle of Parsimony” 

– General trade-off between model fit and 

estimator precision 
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Y= β0 + β1 x + β2 x2  
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Approaches to Model Selection: 

Sequential Hypothesis Testing 
 For “nested” models  

 Begin with most general model and test against 
the next most general model, etc., down to the 
simplest model 

 Test less general models (H0) against more general 
models (Ha) using, e.g., LRT 

 If test is “significant”, then the extra parameters of 
Ha are deemed necessary to explain the data 

 If test is not “significant”, then select the less 
general model, as it will yield smaller variances 
(fewer parameters); Principle of Parsimony  



Akaike’s Information Criterion, 

AIC 
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K = number of model parameters 

Akaike (1973), Burnham and Anderson  

 (1998, 2002) 



Quasilikelihood Adjustment for 

Lack of Fit 

 When most general model in model set does 

not fit data, quasilikelihood procedures are 

used to adjust tests and model selection 

metrics for lack of fit caused by 

overdispersion 

 Quasilikelihood variance inflation factor: 
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Quasilikelihood Adjusted AIC, 

QAIC 

 

 

 

 

 

  Favor simpler models 
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AIC Adjusted for Overdispersion 

and Small Sample Size 
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K = number of parameters 

n = sample size (e.g., number of releases in  

CR modeling) 



AIC Weights 

 wi = AIC weights ~ weight of evidence in 

favor of model i being most appropriate, 

given the data and the model set (R models) 

     = AICi – AICmin = difference between 

AIC for model i and lowest AIC 
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Model Averaging: 

Incorporating Model Uncertainty  

            

 

 

 

 

  = parameter estimate from model i 

   = model-specific sampling var 
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Cooch and White (2015) 



Other model selection criterion 

 Other model selection criterion: BIC 

 See Cooch and White (2015) ; Link and 

Barker (2010) 

 Active area of research 



Take home points 

 trade-off between model fit and estimator 

precision 

   

 Adjustment for sample size & overdispersion 

 AIC weight 

 Model Averaging 
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