
Modeling Landscape Connectivity
(ecological vs. Euclidean distance)

Spatial Capture-Recapture Workshop,

Cornell University, Ithaca, NY

April 2014

Euclidean distance in SCR models

• So far, we have considered only Euclidean distance in the encounter model

 Gaussian encounter model:

 yi,j ~ Binomial(K, pi,j)

 pi,j = α0 exp(-α1 d[si, xj]
2)

 α1 = 1/(2σ2)

 
0.0

0.2

0.4

0.6

0.8

Binomial model likelihood

Euclidean distance in SCR models (?)

• So far, we have considered only Euclidean distance and therefore implicitly assume that:

• home ranges are strictly stationary/symmetric/circular

• homogeneous/uniform landscape

• homogeneous/uniform use of the landscape

• Of course this is biologically unrealistic in many cases!

0.0

0.2

0.4

0.6

0.8

Euclidean distance in SCR models (?)

Valleys, Rivers

Euclidean distance in SCR models (?)

Gradients – elevation, temperature etc…

Euclidean distance in SCR models (?)

Heterogeneous landscapes – patches of varying quality

Euclidean distance in SCR models (?)

Donuts – territory edge patrolling

Euclidean distance in SCR models (?)

Donuts – territory edge patrolling

𝑝1 = 𝑒𝑥𝑝(−𝛼1 ∗ 𝑑
2)

l𝑜𝑔𝑖𝑡(𝑝2) = 𝛼0 + 𝛽 × 𝑑2

𝑝 = 𝑝1 × 𝑝2

Need an alternative distance metric!?

• Euclidean distance not how animals perceive and/or utilize the landscape

• Incorporate information about the landscape and measure effective distance,
reflecting animal movement in heterogeneous landscapes –> ‘ecological distance’

1) Ecologically realistic movement model

Requirements of an alternative distance metric?

• Euclidean distance not how animals perceive and/or utilize the landscape

• Incorporate information about the landscape and measure effective distance,
reflecting animal movement in heterogeneous landscapes –> ‘ecological distance’

1) Ecologically realistic movement model

2) Measure landscape connectivity

Landscape connectivity:
 ‘degree to which landscape structure impedes or facilitates movement’

Requirements of an alternative distance metric?

“The path between two locations that costs the least to traverse, where cost is a
function of time, distance, or some other criteria defined by the user.”

• Natural framework for modeling ecological distance

o Explicitly incorporate knowledge about landscape heterogeneity

• Widely used in landscape ecology (and an important tool for conservation!!!)

oConnectivity: reserve and corridor design
oAnimal movement: habitat preferences
oDispersal: gene flow

Least cost path as an alternative measure of distance

Calculating cost paths

• Main ingredient for calculating least cost paths is a raster describing the landscape
we think affects animal movement:

oDiscretized representation of the landscape which will be our cost surface

oCoordinates of the center of each raster cell to measure cell-to-cell distances

Landscape Discrete form XY coordinates

Calculating cost paths

• Any path between two points can be described as a sequence of line
segments:

 P = (𝐥1 , 𝐥2 ,… , 𝐥𝑚)

• Cost weighted distance between any two points, say s and s’ is
calculated by:

𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

Distance from pixel to its neighbor

Cost of moving form pixel to its neighbor

For each line segment of P

Calculating cost paths

• Any path between two points can be described as a sequence of line
segments:

 P = (𝐥1 , 𝐥2 , … , 𝐥𝑚)

• Least Cost Path (𝑑𝑙𝑐𝑝) is the sequence, P , that minimizes the objective

function:

 𝑑𝑙𝑐𝑝 𝒔 , 𝒔′ = min
P

 cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

Calculating cost paths

• Any path between two points can be described as a sequence of line
segments:

 P = (𝐥1 , 𝐥2 , … , 𝐥𝑚)

• Least Cost Path (𝑑𝑙𝑐𝑝) is the sequence, P , that minimizes the objective

function:

 𝑑𝑙𝑐𝑝 𝒔 , 𝒔′ = min
P

 cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

• Cost calculated as the average of the two pixel values :

cost 𝒔 , 𝒔′ =
𝐶 𝒔 + 𝐶(𝒔′)

2

 When the cost is assumed to be ‘known’!

A simple example of calculating cost
distance by hand

Calculating cost paths – when cost is known

Calculating cost paths – when cost is known

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟓 , 𝟏𝟒 =
1 + 100

2
× 1

𝑑 𝟏𝟓 , 𝟏𝟒 = 50.5

𝒎 = 𝟐

Calculating cost paths – when cost is known

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟓 , 𝟏𝟏 =
1 + 100

2
× 1

𝑑 𝟏𝟓 , 𝟏𝟏 = 50.5

𝒎 = 𝟐

Calculating cost paths – when cost is known

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟓 , 𝟏𝟏 =
1 + 1

2
× 1

𝑑 𝟏𝟓 , 𝟏𝟏 = 1

𝒎 = 𝟐

Calculating cost paths – when cost is known

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟓 , 𝟏𝟎 =
1 + 100

2
× 2

𝑑 𝟏𝟓 , 𝟏𝟎 = 71.42

𝒎 = 𝟐

Calculating cost paths – when cost is known

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟓 , 𝟏𝟐 =
1 + 1

2
× 2

𝑑 𝟏𝟓 , 𝟏𝟐 = 1.41

𝒎 = 𝟐

Calculating cost paths – when cost is known

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟎 , 𝟏𝟏 , 𝟏𝟔 =
100 + 100

2
× 1 +

100 + 1

2
× 2

𝑑 𝟏𝟎 , 𝟏𝟏 , 𝟏𝟔 = 100 + 71.42

𝑑 𝟏𝟎 , 𝟏𝟏 , 𝟏𝟔 = 171.42

𝒎 = 𝟑

Calculating cost paths – when cost is known

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟎 , 𝟏𝟏 , 𝟏𝟔 =
100 + 1

2
× 2 +

1 + 1

2
× 1

𝑑 𝟏𝟎 , 𝟏𝟓 , 𝟏𝟔 = 71.42 + 1

𝑑 𝟏𝟎 , 𝟏𝟓 , 𝟏𝟔 = 72.42

𝒎 = 𝟑

Calculating cost paths – when cost is known

Euclidean distance: 𝑑(𝟏𝟎 , 𝟏𝟔) = 2.41

Cost distance = 171.42 Cost distance = 72.42

Calculating cost paths – when cost is known

R package ‘raster’

• Doing it by hand can get out of hand quickly with big problems!!!
• Package for handling, manipulating and making rasters

A raster consists of a matrix of cells (or pixels) organized into rows and columns
(or a grid) where each cell contains a value representing information

Elevation Lat - Long Land cover

R package ‘raster’

• READ in raster layers produced in GIS software (e.g. ArcGIS)

Read a raster produced in xxxGIS into R

set work directory to where the gis folder is!

library(raster)

r <- raster("gis\\d2water")

Blu <- colorRampPalette(c("blue", "white"))(100)

plot(r,col=Blu)

coordinates(r)[1:10,]

z<-values(r)[1:10]

R functions: raster()

• READ in raster layers produced in GIS software (e.g. ArcGIS)

• MAKE a raster from X Y Z data

R package ‘raster’

Make a raster from XYZ

library(scrbook)

x<-seq(-10,10,0.5)

y<-seq(-10,10,0.5)

xy <- expand.grid(x,y)

z <- e2dist(matrix(c(0,0),1,2),xy)

r <- rasterFromXYZ(cbind(xy,c(z)))

plot(r)

r

R functions: rasterFromXYZ()

R package ‘raster’

• READ in raster layers produced in GIS software (e.g. ArcGIS)

• MAKE a raster from scratch

R functions: raster()
 projection()

 extent()

 values()

MAKE a raster from scratch in R

 r <- raster(nrows=4,ncols=4) # grid dimensions

 projection(r) <- "+proj=utm +zone=12 +datum=WGS84" # set projection

 extent(r) <- c(0.5,4.5,0.5,4.5) # extent (min max of xy)

 v <- matrix(c(100, 1, 1,1,

 100,100, 1,1,

 100,100,100,1,

 100, 1, 1,1), nrow=4,ncol=4,byrow=T) # cell specific values

 v

 values(r) <- v

 plot(r,col=c("green3","gray"),legend=F)

 text(coordinates(r),paste(values(r)),cex=2,font=2)

 r

 head(coordinates(r))

> r

class : RasterLayer

dimensions : 4, 4, 16 (nrow, ncol, ncell)

resolution : 1, 1 (x, y)

extent : 0.5, 4.5, 0.5, 4.5 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=utm +zone=12 +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0

data source : in memory

names : layer

values : 1, 100 (min, max)

> v

 [,1] [,2] [,3] [,4]

[1,] 100 1 1 1

[2,] 100 100 1 1

[3,] 100 100 100 1

[4,] 100 100 1 1

> head(coordinates(r))

 x y

[1,] 1 4

[2,] 2 4

[3,] 3 4

[4,] 4 4

[5,] 1 3

[6,] 2 3

R package ‘raster’

MAKE a raster from scratch in R

 r <- raster(nrows=4,ncols=4)

 projection(r) <- "+proj=utm +zone=12 +datum=WGS84"

 extent(r) <- c(0.5,4.5,0.5,4.5)

 v <- matrix(c(100, 1, 1,1,

 100,100, 1,1,

 100,100,100,1,

 100, 1, 1,1), nrow=4,ncol=4,byrow=T)

 values(r) <- v

 cost <- r # here I am making a cost raster!

Calculating cost paths – when cost is known

Calculating cost paths

• Any path between two points can be described as a sequence of line
segments:

 P = (𝐥1 , 𝐥2 , … , 𝐥𝑚)

• Least Cost Path (𝑑𝑙𝑐𝑝) is the sequence, P , that minimizes the objective

function:

 𝑑𝑙𝑐𝑝 𝒔 , 𝒔′ = min
P

 cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

• Cost calculated as the average of the two pixel values :

cost 𝒔 , 𝒔′ =
𝐶 𝒔 + 𝐶(𝒔′)

2

 When the cost is assumed to be ‘known’!

• Calculates the least cost path using Dijkstra’s algorithm

 costDistance(trC, fromCoords, toCoords)

R package ‘gdistance’
R functions: costDistance()

• Calculates the least cost path using Dijkstra’s algorithm

 costDistance(trC, fromCoords, toCoords)

• trC – geocorrected transition layer, cost of moving to neighboring pixels

 tr <- transition(cost,transitionFunction,directions)

 trC <- geoCorrection(tr)

R package ‘gdistance’
R functions: costDistance()
 transition()

 geoCorrection()

• Calculates the least cost path using Dijkstra’s algorithm

 costDistance(trC, fromCoords, toCoords)

• trC – geocorrected transition layer, cost of moving to neighboring pixels

 tr <- transition(cost,transitionFunction,directions)

 trC <- geoCorrection(tr)

• transitionFunction – ‘conductance’, 1/cost function:

1/
𝐶 𝒔 + 𝐶(𝒔′)

2

R package ‘gdistance’
R functions: costDistance()
 transition()

 geoCorrection()

• Calculates the least cost path using Dijkstra’s algorithm

 costDistance(trC, fromCoords, toCoords)

• trC – geocorrected transition layer, cost of moving to neighboring pixels

 tr <- transition(cost,transitionFunction,directions)

 trC <- geoCorrection(tr)

• transitionFunction – ‘conductance’, 1/cost function:

 trFn <- function(x) 1/mean(x)

R package ‘gdistance’
R functions: costDistance()
 transition()

 geoCorrection()

• Calculates the least cost path using Dijkstra’s algorithm:

 costDistance(trC, fromCoords, toCoords)

• trC – geocorrected transition layer, cost of moving to neighboring pixels:

 tr <- transition(cost,transitionFunction,directions)

 trC <- geoCorrection(tr)

• transitionFunction – ‘conductance’, 1/cost function:

 trFn <- function(x) 1/mean(x)

• directions – define the connection neighborhood (4, 8, 16)

R package ‘gdistance’

define cost surface and calculate lcp distance matrix

library(gdistance)

cost <- r

tr <- transition(cost, transitionFunction = function(x) 1/mean(x),8)

trC <- geoCorrection(tr)

dmat <- as.matrix(costDistance(trC,coordinates(r)))

R package ‘gdistance’

look at the ‘landscape’ and lcp distance matrix

par(mfrow=c(1,1))

plot(r,legend=F,col=c("green3","gray"))

text(coordinates(r),paste(1:16),cex=1.5,font=2)

round(dmat,2)

 > round(dmat,2)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.00 50.50 51.50 52.50 100.00 101.00 51.91 52.91 200.00 123.33 102.41 53.33 205.24 105.24 54.74 54.33

2 50.50 0.00 1.00 2.00 71.42 50.50 1.41 2.41 171.42 72.83 51.91 2.83 154.74 54.74 4.24 3.83

3 51.50 1.00 0.00 1.00 72.42 51.50 1.00 1.41 172.42 72.42 51.50 2.41 154.33 54.33 3.83 3.41

4 52.50 2.00 1.00 0.00 73.42 51.91 1.41 1.00 172.83 72.83 51.91 2.00 153.91 53.91 3.41 3.00

5 100.00 71.42 72.42 73.42 0.00 100.00 72.83 73.83 100.00 141.42 123.33 74.25 200.00 126.16 75.66 75.25

6 101.00 50.50 51.50 51.91 100.00 0.00 50.50 51.50 141.42 100.00 101.00 51.91 203.83 103.83 53.33 52.91

7 51.91 1.41 1.00 1.41 72.83 50.50 0.00 1.00 171.42 71.42 50.50 1.41 153.33 53.33 2.83 2.41

8 52.91 2.41 1.41 1.00 73.83 51.50 1.00 0.00 172.42 72.42 51.50 1.00 152.91 52.91 2.41 2.00

9 200.00 171.42 172.42 172.83 100.00 141.42 171.42 172.42 0.00 100.00 200.00 172.83 100.00 141.42 171.42 172.42

10 123.33 72.83 72.42 72.83 141.42 100.00 71.42 72.42 100.00 0.00 100.00 72.83 141.42 100.00 71.42 72.42

11 102.41 51.91 51.50 51.91 123.33 101.00 50.50 51.50 200.00 100.00 0.00 50.50 201.00 101.00 50.50 51.50

12 53.33 2.83 2.41 2.00 74.25 51.91 1.41 1.00 172.83 72.83 50.50 0.00 151.91 51.91 1.41 1.00

13 205.24 154.74 154.33 153.91 200.00 203.83 153.33 152.91 100.00 141.42 201.00 151.91 0.00 100.00 150.50 151.50

14 105.24 54.74 54.33 53.91 126.16 103.83 53.33 52.91 141.42 100.00 101.00 51.91 100.00 0.00 50.50 51.50

15 54.74 4.24 3.83 3.41 75.66 53.33 2.83 2.41 171.42 71.42 50.50 1.41 150.50 50.50 0.00 1.00

16 54.33 3.83 3.41 3.00 75.25 52.91 2.41 2.00 172.42 72.42 51.50 1.00 151.50 51.50 1.00 0.00

R package ‘gdistance’

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 𝑑 𝟏𝟎 , 𝟏𝟏 , 𝟏𝟔 =
100 + 1

2
× 2 +

1 + 1

2
× 1

𝑑 𝟏𝟎 , 𝟏𝟓 , 𝟏𝟔 = 71.42 + 1

𝑑 𝟏𝟎 , 𝟏𝟓 , 𝟏𝟔 = 72.42

𝒎 = 𝟑

Calculating cost paths – when cost is known

shortest paths | cost layer

par(mfrow=c(1,2))

plot(r,legend=F,col=c("green3","gray"))

text(coordinates(r),paste(1:16),cex=1.5,font=2)

from <- c(coordinates(r)[10,])

to <- c(coordinates(r)[16,])

sp10.16 <- shortestPath(trC,from,to,output="SpatialLines")

lines(sp10.16,lwd=4,col=2)

dmat[10,16]

plot(r,legend=F,col=c("green3","gray"))

text(coordinates(r),paste(1:16),cex=1.5,font=2)

from <- c(coordinates(r)[13,])

to <- c(coordinates(r)[1,])

sp13.1 <- shortestPath(trC,from,to,output="SpatialLines")

lines(sp13.1,lwd=4,col=4)

dmat[13,1]

R package ‘gdistance’

R package ‘gdistance’ - exercise

Make this raster and then calculate and plot the least cost path distance from pixel 1 to pixel 16

rEx <- raster(nrows=5,ncols=5)

projection(rEx) <- "+proj=utm +zone=12 +datum=WGS84"

extent(rEx) <- c(0.5,5.5,0.5,5.5)

v <- matrix(c(1,1,1,1,1,1,1,10,10,1,1,10,

 10,10,1,1,1,10,1,1,1,1,1,1,1),

 nrow=5,ncol=5,byrow=T)

values(rEx) <- v

costEx <- rEx

plot(rEx); text(coordinates(rEx),paste(values(rEx)),cex=2)

from <- c(coordinates(rEx)[1,])

to <- c(coordinates(rEx)[25,])

trEx <- transition(costEx, transitionFunction = function(x) 1/mean(x),8)

trCEx <- geoCorrection(trEx)

dmat <- as.matrix(costDistance(trCEx,coordinates(rEx)))

lines(shortestPath(trCEx,from,to,output="SpatialLines"),lwd=2,col=2)

points(rbind(from,to),cex=2,pch=16)

dmat[1,25]

• ‘cost’ is almost always unknown

• The designation of cost surface is somewhat arbitrary

• Best guess

• Expert opinion

• Range of values assessed using sensitivity analysis

• Telemetry/resource selection functions (Andy showed his, Angela and Cats paper

yesterday)

• … other methods of pre-defining cost surfaces

All of that was assuming that cost is known

• ‘cost’ is almost always unknown

• Use SCR (individual encounter histories) to estimate a cost parameter that defines

cost distances -> Ecological distance!

All of that was assuming that cost is known

Calculating least cost paths when cost is known

• Any path between two points can be described as a sequence of line segments:

 P = (l1 , l2 , … , lm)

• Least Cost Path (dlcp) is the sequence P that minimizes the objective function:

 𝑑𝑙𝑐𝑝 𝒔 , 𝒔′ = min
P

 cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

• Cost calculated as the average of the two pixel values :

 cost 𝒔 , 𝒔′ =
𝐶 𝒔 + 𝐶(𝒔′)

2

When the cost is known!

Calculating least cost paths when cost is known

• Any path between two points can be described as a sequence of line segments:

 P = (l1 , l2 , … , lm)

• Least Cost Path (dlcp) is the sequence P that minimizes the objective function:

 𝑑𝑙𝑐𝑝 𝒔 , 𝒔′ = min
P

 cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

• Model cost based on covariates and a landscape resistance parameter, 𝜶𝟐:

 log cost 𝒔 , 𝒔′ = 𝜶𝟐
𝐶 𝒔 +𝐶(𝒔′)

2

When the cost is unknown!

 log cost 𝒔 , 𝒔′ = 𝛼2
𝐶 𝒔 + 𝐶(𝒔′)

2

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

 log cost 𝒔 , 𝒔′ = 0
𝐶 𝒔 + 𝐶(𝒔′)

2

 𝑑 𝒔 , 𝒔′ = 1×

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏

So, when 𝜶𝟐 = 𝟎 cost 𝒔 , 𝒔′ = exp 0 = 1 𝒅𝒍𝒄𝒑 = 𝒅𝑬𝒖𝒄𝒍𝒊𝒅

Calculating least cost paths when cost is known

Ecological distance

 log cost 𝒔 , 𝒔′ = 𝛼2
𝐶 𝒔 + 𝐶(𝒔′)

2

 𝑑 𝒔 , 𝒔′ = cost

𝑚−1

𝑖=1

𝐥𝑖 , 𝐥𝐢+𝟏 𝐥𝑖 , 𝐥𝐢+𝟏

Likelihood estimation of 𝛼2

• Model comparison (AIC) – e.g. Euclidean vs. Ecological

• Computationally efficient implementation

• Not possible in BUGS unless 𝛼2 is fixed

• Not possible is secr

• Develop MCMC in R is possible!

Likelihood estimation of 𝛼2

• Straight forward adaptation of the ‘intlik’ functions we have seen already

 Euclidean distance encounter model:

 yi,j ~ Binomial(K, pi,j)

 pi,j = α0 exp(-α1 d[si, xj]
2)

 α1 = 1/(2σ2)

 Ecological distance encounter model:

 yi,j ~ Binomial(K, pi,j)

 pi,j = α0 exp(-α1 dlcp[si, xj]
2)

 α1 = 1/(2σ2)

Adapting the integrated likelihood function

intlik4

to

intlik4ed

Show in editor!

Simulating ecological distance SCR data

scrbook has a function for simulating some two covariates rasters:

create covariate rasters

library(scrbook); library(gdistance)

set.seed(2013)

out <- make.EDcovariates()

inspect them

names(out)

par(mfrow=c(2,1),oma=c(0,0,0,0),mar=c(2,2,1,1))

clr <- rev(heat.colors(100))

plot(out$covariate.trend,col=clr)

plot(out$covariate.patchy,col=clr)

Simulating ecological distance SCR data

covariate.trend:

Systematic covariate increasing form NW to SE.

An ecological gradient or ‘distance to’ covariate.

𝐶 𝒔 = 𝑟𝑜𝑤 𝒔 + 𝑐𝑜𝑙(𝒔)

covariate.patchy:

Correlated noise covariate.

Land cover type/land use: percent cover, understory density etc..

?make.EDcovariates

Standard simulation procedure for generating capture histories:

1. create covariate rasters

library(scrbook); library(gdistance)

set.seed(2013)

out <- make.EDcovariates()

covariate <- out$covariate.patchy

2. parameters and settings

N <- 200

alpha0 <- -2

sigma <- 0.5

alpha1 <- 1/(2*sigma*sigma)

alpha2 <- 1
K <- 5

S <- cbind(runif(N,0.5,4.5),runif(N,0.5,4.5))

3. trap locations

traplocs <- expand.grid(1:4,1:4)

traplocs <- as.matrix(traplocs)

ntraps <- nrow(traplocs)

4. see what we have created so far

par(mfrow=c(1,1),oma=c(0,0,0,0))

plot(covariate)

points(S,pch=16,cex=0.75)

points(traplocs,pch=3,lwd=3,col=2)

Simulating ecological distance SCR data

Simulating ecological distance SCR data

5. make cost surface compute lcp’s and generate captures

cost <- exp(alpha2 * covariate)

tr1 <- transition(cost, transitionFunction=function(x)1/mean(x), directions=8)

tr1 <- geoCorrection(tr1,type="c",multpl=F,scl=F)

D <- costDistance(tr1, S, traplocs) # same as e2dist(S,traplocs)

probcap <- plogis(alpha0) * exp(-alpha1 * D * D)

Y <- matrix(NA,nrow=N, ncol=ntraps)

for(i in 1:N){

 Y[i,] <- rbinom(ntraps,K,probcap[i,])

}

Y <- Y[apply(Y,1,sum)>0,]

Simulating ecological distance SCR data

can do some visualization if you wish #

look at encounter probabilities of a few inds

someGuys <- S[sample(1:N,3),]

D2 <- costDistance(tr1, someGuys, coordinates(covariate))

probcap2 <- plogis(alpha0) * exp(-alpha1 * D2 * D2)

par(mfrow=c(1,4))

plot(covariate)

points(traplocs,pch=3,lwd=3)

points(someGuys,pch=16,cex=1.5,col=4)

for(g in 1:3){

 plot(rasterFromXYZ(cbind(coordinates(covariate),probcap2[g,])))

 points(traplocs,pch=3,lwd=3)

 points(someGuys[g,1],someGuys[g,2],pch=16,cex=1.5,col=4)

}

Simulating ecological distance SCR data

Model fitting

Fit the euclidean distance model

outEuc <- nlm(intlik3ed,c(alpha0,alpha1,3),hessian=T,y=Y,K=K,X=traplocs,

 distmet="euclid", covariate=covariate,alpha2=1)

Fit the ecological distance model

outEcol <- nlm(intlik3ed,c(alpha0,alpha1,3,-0.3),hessian=T,y=Y,K=K,X=traplocs,

 distmet="ecol", covariate=covariate,alpha2=NA)

Model comparison

compare the things

compareTab <- data.frame(

 Model=c("True","Euc","Ecol"),

 negLogLik=round(c(NA,outEuc$minimum,outEcol$minimum),2),

 a0=round(c(-2,outEuc$estimate[1], outEcol$estimate[1]),2),

 a1=round(c(2,outEuc$estimate[2],outEcol$estimate[2]),2),

 logN0=round(c(log(N-nrow(Y)),outEuc$estimate[3],outEcol$estimate[3]),2),

 N = round(nrow(Y)+c(N-nrow(Y),exp(outEuc$estimate[3]),exp(outEcol$estimate[3])),2),

 a2=round(c(1,NA,outEcol$estimate[4]),2))

> compareTab

 Model negLogLik a0 a1 logN0 N a2

1 True NA -2.00 2.00 4.58 200.00 1.00

2 Euc 84.66 -2.12 1.37 4.09 162.03 NA

3 Ecol 51.79 -2.18 1.73 4.62 203.03 -0.12

Assessing bias in 𝑁 in structured landscapes

• Most obvious case of non-Euclidean movements

• Defining the landscape (‘cost’) is straightforward

• Framework for evaluate a common criticism of SCR models

Assessing bias in 𝑁 in structured landscapes

• Simulated populations of size 𝑁 = 200

• Varying degrees of ‘cost’

• Evaluate estimation of N

Riparian species in linear habitats

Riparian species in linear habitats

Summary and Outlook

Summary

• Possibility to fit biologically realistic movement models

• Estimate connectivity parameters using spatial encounter histories

• Estimates of N only slightly biased in most extreme cases

• Learn cool things about species ecology, behavior and habitat use

• Incredibly useful for landscape scale conservation managements

Outlook

• Evaluation of the effects and interactions of non random activity center
placement and non Euclidean movement

• Find more efficient lcp algorithms for larger problems

• Write an ecological distance SCR MCMC in R

