
III. Capture-Recapture for group-
structured, “multi-session” or 

stratified populations 



 Examples 

 

 Sex 

 Location (e.g., trapping grid) 

 Time (year) 

 

 Exactly like “model Mh” with finite mixture except we have 
information on which group captured individuals belong to  

 

 Thus the groups have biological context  

 

Group structure or stratified 
populations 



 



Two ways to formulate the model in BUGS:  
 
1. As an additive covariate:  
       logit(p[i]) = alpha0 + alpha1*Xsex[i] 
 Xsex[i] = 1 if male, 0 if female (dummy variable)  
 
2. Index variables:  
       logit(p[i]) = alpha0[Xsex[i]] 
 
          Xsex[i] = 1 if female   
                         2 if male 
Key technical issues:  
 Xsex is missing for M-n individuals in our augmented data set.  
 Put a prior distribution on it….just like Model Mh 
 Xsex can be missing for some captured individuals  
 

 

Sex specificity of model parameters  



Prior distribution for a 2-class variable:  

 

  Pr(Xsex = 1) = f               (estimate the parameter f )  

          then    

            Pr(Xsex = 1) = 1-f 

 

f = “prob. that an individual in the population is female”  

 

Implies class specific population size:  

       

        N1 ~ Bin(N, f )       and     N2 = N – N1 

 

 

SEX SPECIFICITY 



 

 > 2 classes, could be space or time groupings  

 

 The class membership probabilities are a prior distribution 
on the discrete class variable  

GENERAL CASE 



 R work session 

SEX SPECIFICITY 



 If we have data from multiple years (or “sessions”) we can 
use the exactly same model but treat year as a class variable 
to allocate the augmented individuals into years.  

 

 For this model we stack the data from each year:  

 
   Y <- rbind(Y1, Y2, Y3, Y4, Y5)   

                   ## T=5 years Yt = nind[t] x K 

     Then apply data augmentation to the matrix Y  

 

 This is a primitive form of an open model in which 
individual identity is ignored across years , N[t] are 
independent parameters then 

MULTI-YEAR DATA 

A sex-structured data set 

is just: 

Y<- rbind(Ymale, Yfemale) 



 

 year[i] = year to which individual i belongs. This has T 
possible values then 

 

 In BUGS the model looks like this:  

 

    year[i] ~ dcat(probs[]) 

 

  probs[t] <- 1/T 

 

 We could also model the categorical probabilities directly as a 
function of time or explicit covariates :  

       log(mu[t]) = beta0 + beta1*x[t] 

       probs[t]<- mu[t]/sum(mu[]) 

 

MULTI-YEAR DATA 

Multinomial logit 



The R package “secr ” has the ovenbird data 

 

library(secr) 

data(ovenbird) 

 

This is based on 44 mist nets operated for 5 years.  

 

Distracting problems to deal with:  

  

 1. One individual died on capture   

 

 2. Year 1 had K=9 reps, other years had K=10 

 

OVENBIRD STUDY 



 44 nets (+ signs)  

 

 Captures marked with 
circles 

 

 Individuals marked 
with colors 

 

 5 year study, only 3 
years shown here  

 

OVENBIRD STUDY 



 Data are SPATIAL encounter histories  

 

 Mist-nets: individual can only be captured in 1 trap per 
occasion (unlike Fort Drum bear data) 

 

 y[i,j] = TRAP OF CAPTURE. Ordinary CR models operate on 
binary data (captured or not)  

 

 For now we will throw out the spatial information. Just 
change trap of capture to “1”  

OVENBIRD STUDY 



p s i  ~  d u n i f ( 0 , 1 )  
 
f o r ( t  i n  1 : 5 ) {  
    p [ t ]  ~  d u n i f ( 0 , 1 )  
    p r o b s [ t ] < -  1 / 5     # #  u n i f o r m  d i s t r i b u t i o n  o n  y e a r  m e m b e r s h i p  
}  
f o r ( i  i n  1 : M ) {  
  y e a r [ i ]  ~  d c a t ( p r o b s [ ] )  
  z [ i ]  ~  d b e r n ( p s i )  
  
  f o r ( k  i n  1 : K ) {  
    m u [ i , k ] < -  z [ i ] * p [ y e a r [ i ] ] * ( 1 - i s d e a d [ i , k ] ) * s a m p l e d [ k , y e a r [ i ] ]   
    Y s t a c k e d [ i , k ]  ~  d b e r n (  m u [ i , k ]  )   
   }  
 }  
 
f o r ( t  i n  1 : 5 ) {  
  N [ t ] < -  s u m ( i n y e a r [ , t ] )  
  f o r ( i  i n  1 : M ) {  
     i n y e a r [ i , t ] < -  e q ua l s ( y e a r [ i ] , t ) * z [ i ]  
  }  
}  
 

The “year as a class variable” model  

N[t] are derived parameters 

Have to compute number of 

Individuals in each year 



By treating year as a class variable:  

 

 We have to recover N[t] by creating a frequency distribution of 
the year variable.  

 

 Also note that the joint prior distribution for N[1], …, N[t] is  

 

    (N[1], N[2], …, N[T])  ~ Multinomial(M; probs[1:T]) 

 

    Roughly the same as saying N[t] ~ Poisson(lambda)  

 
Reference:  Royle ,  J .  A. ,  & Converse,  S .  J .  (2014).  Hierarchical  spatial  capture –
recapture models :  modell ing  populat ion density in stratif ied 
populat ions.  Methods  in  Ecology and Evolution ,  5 (1) ,  37-43.  

 

YEAR AS A CLASS VARIABLE 



Many ways to analyze multi -year data sets:  

 

 Treat “year ” as a class variable: year[ i] ~ dcat(psi[year]) 

 

 

 Day 3 of the workshop “open population models”  

 

 T-fold data augmentation -- Input the data as a 3-d array 
“individual x replicate x year” with each year augmented 
independently 

 Still regards individuals as independent across years  

 

 Fully dynamic model: preserve individual identity across years.  

MULTI-YEAR DATA/OPEN 
POPULATIONS 



 Discrete classes are common in capture -recapture studies (sex 
is the typical one also year as a class variable is a special type 
of open model) 

 

 Technical problem is that class is unknown for uncaptured 
individuals 

 

 We solve this by putting a prior distribution on class 
membership 

 

 In BUGS this is easy…? 

 

 Model follows naturally from Model Mh, the finite-mixture 
version, but with information about which class  

SUMMARY PART III 



 Year (or other temporal period) can be treated as a class 
variable to model variation in N (and density) across time  

 

 This casts the model as a basic stratified population model 
analogous to models with sex-specificity 

 

 “multi-session” models in “secr ” do a similar thing but not 
exactly the same thing.  

SUMMARY PART III 


