
II. Capture-Recapture models with 
fixed covariates 



Now: 
 
 Model Mb – Behavioral response model. Animals can be “trap happy” or 

“trap shy” 
 

 Model Mt – Time specific encounter probability.  
 

 Model Mh – models of “individual heterogeneity” in p. Each individual 
has it’s own encounter probability p[ i],  and this is a realization of some 
random variable.  

 
Later:  
 
 Models for stratified populations (multi -session models)  

 
 Model Mx – individual covariate models  

 
 SCR models are just a type of Model Mx. 

TYPES OF CR MODELS 



 Behavioral response model  

 

 Trap happiness, or trap shyness  

 

 p depends on whether captured previously, p(before), 
p(after) 

 

 Persistent (or permanent)  vs.  Transient (or ephemeral)  

 

 

 

 

    

Model Mb 



Can be regarded as a type of logit model with a covariate 
being “previous capture” 

 

 x(i,k) = 1 if individual i was captured prior to sample 
  occasion k 

 

logit(p[i,k]) = alpha0 + alpha1*x(i,k) 

 

Or 

 

p[i,k] = p1*(1-x(i,k)) + p2*x(i,k) 

Analysis of model Mb 

Parameterizing intercepts of 

models in terms of probability 

scale parameters is preferred – 

better mixing. 



 

 Because p depends on individual AND sample occasion, the 
model must be formulated in terms of the binary 
observations y[i,k] 

 

 

 R work session 

Model Mb: Implementation in BUGS 



 Behavioral response models are important in CR studies 
because traps are often baited. Especially with new types of 
passive trapping methods (hair snares, camera traps) there 
is usually a +ve behavioral response. 

 

 Parameterization can be really important. Try to use 
probability scale parameters.  

 

 Persistent vs. ephemeral or transient behavioral response.  

 

 Behavioral response models are models with a fixed 
covariate. Other types of models might be “occasion effects” 
(date or environmental conditions). No new considerations.  

 

 

 

COMMENTS 



 Time-specificity: p changes over sampling occasions  

 

   “Trend model” 

 

    full time-specificity 

 

 R work session 

Model Mt 



 For these models (Mb and Mt) the covariate is known  for all 
individuals whether captured or not.  

 

 Models are simply zero-inflated Bernoulli or binomial 
regression models 

 

 For many types of covariates this is not the case. E.g., 
consider “sex” == we observe this for captured individuals 
(sometimes not all) but we don’t know this for uncaptured 
individuals.  

 

 Later we’ll talk about these “individual covariate” models.  

 

 

 

Key point: toward model Mx 



 

We can fit a bunch of models, how do we choose among them?  

 

 Method 1: look at posterior mass, if not in the vicinity of 0, 
then “significant” 

 

 Method 2: DIC – deviance information criterion. Calculation 
of “effective degrees of freedom” is problematic.  Posterior 
deviance also seems unstable. Jury is still out on DIC but it 
is widely used. 

 

 Method 3: Kuo and Mallick (1998) indicator variables 
approach. 

BAYESIAN MODEL SELECTION 



 
Spiegelhalter,  D. J . ,  Best,  N. G.,  Carlin, B. P.,  & Van Der Linde, A. (2002). 
Bayesian measures of model complexity and fit .  Journal of  the Royal 
Statist ical  Society: Series B (Statist ical  Methodology) ,  64(4),  583-639. 

 

 DIC = -2*loglikelihood + pD 

 
 pD = penalty based on “effective number of parameters”  

 

 pD = posterior mean deviance – deviance evaluated at the posterior 
mean of parameters (WinBUGS does this differently) 

 

Think about it like AIC 

 

Use with caution 

 

 

DIC 



Lunn et al. (“The BUGS book”, 2012) noted problems with DIC in 
the way pD is calculated 
 
1. pD is not invariant to reparameterisation, in the sense that  
if the model is rewritten into an equivalent form but in terms of 
a function g(theta), then a different pD may arise.  This can lead 
to misleading values in some   circumstances and even to 
negative values of pD. 
  
2. An inability to calculate pD when theta contains a 
categorical parameter, since the posterior mean is not then  
meaningful. This renders the measure inapplicable to mixture 
models [... .].  
 
The latent variables z are exactly such a categorical parameter.  
 

DIC has issues 



 

 

           dev       sd         pD       DIC 

fit0     489.4968 11.49556   66.07470  555.5715 

fit.Mbv1 558.5401 45.46447 1025.53174 1584.0719 

fit.Mbv2 544.9618 39.96822  795.18595 1340.1477 

fit.Mt1  487.9645 11.46732   65.73807  553.7026 

fit.Mt2  477.7443 11.59752   67.25001  544.9943 

fit.Mtb  562.0742 50.01249 1228.34109 1790.4153 

 

DIC seems very sensitive to the number of individuals 

that were not encountered. 

 

 

 

Deviance and DIC for fort drum black 
bear models 



 Kuo and Mallick (1998) idea is to expand the model to 
include binary variables like this:  

 

     logit(p[i,t]) = alpha0 + w*alpha1*x[i,t] 

 

 Put a prior distribution on the binary indicator variable w 

 

     w ~ Bern(.5) 

 

 Estimation of w is equivalent to deciding if x[ i,t] should be 
in the model 

INDICATOR VARIABLES 



w[1] ~ dbern(.5) 

w[2] ~ dbern(.5) 

 

for (i in 1:M){ 

   z[i]~dbern(psi) 

   for(k in 1:K){ 

     logit(p[i,k]) <- alpha0+ w[1]*beta[occasion[i,k]]+ 

w[2]*alpha1*prevcap[i,k] 

     tmp[i,k]<-p[i,k]*z[i] 

     y[i,k]~dbin(tmp[i,k],1) 

      } 

     } 

 

FORT DRUM MODEL 



  

> model<- paste(fit.Mtb.ms$sims.list$w[,1],     

  fit.Mtb.ms$sims.list$w[,2]) 

> table(model) 

model 

   0 0    0 1    1 0    1 1  

 13649 346245     15     91  

>  

>  

 

Pr(model = “0 1”) = 0.9618 

Posterior model probabilities  



 With fixed effects we can compute posterior model 
probabilities using the model indicator variables  

 

 DIC – don’t use this (but some good calibration studies 
might be useful) 

 

 If you have a small number of factors, no reason you 
couldn’t use judgment based on posterior mass.  

BAYESIAN MODEL SELECTION 
SUMMARY 



 



 A specific type of non-closure 
that is highly motivation to SCR 
models. 

 Individuals are not always 
available to be captured because 
they are “not in the study area”.  

 Individuals on the edge of the 
study area have higher 
temporary emigration rates.  

Temporary emigration 



 Temporary emigration -> heterogeneity in p 

 

 Estimates of encounter probability, p, are biased HIGH and 
therefore estimates of N are biased LOW. 

 

Consequences of non-closure 



 Movement about the edge of the trap array or variable 
exposure to trapping induces heterogeneity  

 

 So people have tried to explain that using “model Mh” 
(Karanth and Nichols papers) 

 

 Maybe not such a good idea according to Bill Link (see 2003 
Biometrics paper). The idea here is that for different types 
of model Mh, it is impossible to choose among them, but 
they produce wildly different estimates of N.   

 

 Better to try to explain heterogeneity explicitly. Model Mx 
is an attempt at doing that.  SCR models are a better 
attempt.  

Model Mh 



 Model Mh is a binomial encounter model just like every 
other CR model:  

 

     y[i] ~ Binomial(K, p[i]) 

 

 But now we have p depending on individual, p[ i], and we 
regard p[i] as a random effect:  

 

     p[i] ~ g(theta) 

 

 g(theta) is some probability distribution  

Model Mh 



A large number of Models Mh have been proposed depending 
on the form of g(theta)  

 

 Logit-normal model: 

   p[i] ~ Normal(mu, sigma^2)   (Coull and Agresti 1999 et al)  

 

 Beta model: 

   p[i] ~ beta(a, b)          (Burnham’s PhD Dissertation,  

                                                Dorazio and Royle (2003) )  

   “finite mixtures” 

   p[i] ~ latent classes           (Norris and Pollock ‘96  

                                                                   Pledger 2000, et al)  

FLAVORS OF MODEL MH 



 Finite-mixture model. This is really a key model because 
SCR models look like a type of finite mixture model when 
we use a discrete state-space.  Also the package “secr ” fits 
this type of model Mh. 

 

 Estimates of N are really sensitive to which model we 
choose for heterogeneity!!!  (Link 2003 Biometrics)  

 

 This is because they have radically different behaviors as p -
> 0 and most real data sets don’t provide much information 
about that behavior.  

Fitting model Mh 



 Finite mixture are also called “latent class models”. The idea is 
some parameter depends on some unobserved (latent) class 
variable. 

 For 2 groups, p[1] and p[2] are the parameters and there is a 
latent variable “class” such that Pr(class[i] = 1) = f  

 Parameters are p[1], p[2] and f  
 BUGS-like notation: 

 
y[i] ~ dbin(p[class[i]], K) 
 
   class[i] ~ dcat( probs[] ) 
 
   class[i] is MISSING for all individuals in the population 

 
 R  work session:  closed_models_part3.R 

Finite Mixtures 



 Multinomial trial: a vector of 0’s with a single 1:  

 

y= (0,0,0,1,0,0) 

 

  ~ multinomial(n=1 ; probs[]) 

 

 Same as 

 

y = 4   (the position of the 1)  

  

  ~ categorical(probs[]) 

MORE ON THE CATEGORICAL 
DISTRIBUTION 



 Fixed covariates are easy to handle in CR models  
 

 We use indicator variables to do Bayesian model selection in 
BUGS 
 

 Model Mh == “latent covariate” to explain heterogeneity  
 Finite mixture model is widely used, easy to implement in BUGS 
 Practical utility of Model Mh has been called into question 

(Extreme sensitivity to class of models (Link 2003)) 
 Nevertheless historical context is interesting and important 
 “secr” fits a type of Model Mh based on the finite mixture models 

(latent class)  
 

 Models with class structure are equivalent to Model Mh but 
with some observed classes (sex, year, site, age class, etc..)  
 

SUMMARY OF PART II 


