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Closed populations

Simplest conceptual model of a population is that it is
“closed”. This has two components:

(a) Demographic closure. No recruitment and no mortality

(b) Geographic closure. Animals don’t leave the population (no
emigration) or enter the population (no immigration).

Model is that of a fish bowl or other spatially constrained
population over a short period of time

Closure cannot possibly hold in real populations.



Sampling a closed population

Sampling model: individuals are randomly selected from a
population with probability p == per sample encounter or
capture or detection probability

Conceptually this is a Bernoulli sampling model: whether
each individual appears in the sample is a “coin toss”:

y[i] ~ Bernoulli(p) fori=1,2, ... N
N = population size

CR models: many different ways that p can vary (later...)



Closed populations: data structure

We estimate p by obtaining replicate samples from the

population. Let K = number of replicate samples. Individuals are
released after each sample, may be recaptured.

Produces individual encounter histories (n x K matrix)

sample 1 sample 2 sample 3 TOTAL
Individual 1 1 0 1 y=2
Individual 2 0 0 1 y,=1
Individual 3 1 1 1 y;=3

etc..
Individual n 0 1 0 y.=1



Closed population models

We need to estimate p in order to estimate N

Under random sampling:

This is the probability that an individual
n ~ Binomial(N, ﬁ) appears in the sample over the K occasions.

o . = p=1-(1-p)~
The heuristic estimator of N:

E(n) =p*
N =n/p

(“moment estimator”, equate the 15 moment of our
statistic n to its expected value and solve)



Closed population models

Estimating p is really important!
How do we estimate p?

Dozens of models have been proposed that differ mainly in
how p varies by individuals, time, etc..



Otis et al (1978) characterization of

closed models

The standard models:
MO = “the null model”, p is constant in all dimensions
Mt = p is a function of sample occasion , p(t)
Mb = behavioral response model. Trap happiness or shyness
Mh = individual heterogeneity

Mbt = time + behavior, or time*behavior
Mbh, Mth, Mbth

See Kery and Schaub (2012) Ch. 6 for how to do all of these
in WinBUGS/JAGS



MODEL MO0

Model MO is a common point of reference in capture-recapture.
It consists of the following assumptions:

Encounter probability, p, constant for all sample occasions and all
individuals

Then, encounter observations are Bernoulli random variables
(just coin flips) and the individual frequencies are binomial:

yli, k] ~ Bernoulli(p) for all i=1,2,..,N and k=1,2,...,K
-- same as --
ylil ~ Binomial(K, p) for all i=1,2,...,N



ANALYSIS OF MODEL MO0

Looks like binomial GLM, logistic regression, etc..

Key technical issue: unlike a typical GLM, N, the size of
some ideal data set, is unknown

3 things we have to talk about:

“conditional likelihood”
“full likelihood”
“data augmentation”



The binomial model and the likelihood

Under model MO assumptions, encounter frequencies are
binomial:

y; ~ Binomial(K, p) for all i=1,2,...,N

But N is not known, we only observe y; IF y; > 0. i.e., the
observed data have a “zero-truncated ll)inomial” distribution

f(y) = Bin(y; K, p)/(1-(1-p)*)

This is the basis of the “conditional likelihood” for
estimating parameters of closed population models.

This is called the “conditional likelihood” because it is

“conditional on capture”, i.e., conditional on y>0, or
“conditional on n”



Conditional likelihood in R

1i1k0.cond<-function (parms) {
p<- plogis(parms[1])
pcap<- 1-(1l-p)"K
partl<- sum(log(dbinom(y,K,p)/pcap))
-1*(partl)



The full likelihood

But n is also part of the observable data. What is the
distribution of n?

n ~ Bin(N, 1-(1-p)¥)

So the “joint likelihood” or “full likelihood” is the product of
the previous bit (the conditional likelihood) and this bit for n:

Full likelihood = [conditional likelihood] * Bin(N, 1-(1-p)¥)
= binomial likelihood with combinatorial term

This is called the “full likelihood” “joint likelihood”
“unconditional likelihood” because it has N in it.



The full likelihood as an R function

lik0O<-function (parms) {

p<- plogis(parms[1l])

no<- exp (parms[2])

N <-nind + n0

partl<- sum(log(dbinom(y,K,p)))

part2<-lgamma (N+1) -
lgamma (n0O+1) + nO*log(dbinom(0,K,p))

-1*(partl + part2)
}

In R, lgamma (N+1) = log(factorial (N))



Simulate some data and obtain the MLE

R work session



Fort Drum bear data

Hair snare study kmada
7 N
] = 38 hair snares ’ VAN
K = 8 weeks of sampling RO
£ Ry .'fa-._.g-"'J . .\?b
n = 47 individuals captured AR/ 74
e,
Load the data: LT
20 Kilometers
library(scrbook)

data (beardata)

o
7/06/06 8:13 PM



Fort Drum bear data

> library(scrbook)
> data (beardata)

> str (beardata)
List of 4
S trapmat :'data.frame': 38 obs. of 2 variables:
.S V1: num [1:38] 448 439 439 442 442
.5 V2: num [1:38] 4886 4881 4879 4884 4881
$ bearArray: num [1:47, 1:38, 1:8] 0 0 0 0O O O O O O O

S flat : num [1:151, 1:4] 1 1 1 1 1 1 1 1 1 1
.— attr(*, "dimnames")=List of 2
.$ : NULL
.$ : chr [1:4] "Session" "ID" "Occasion" "trapID"

$ sex : num [1:47] 1 1 2 1 1 1 1 2 1 2



BASIC DATA FORMATTING

In practice we have too much data for ordinary capture-
recapture models

Individuals can be captured at > 1 trap during a sample occasion

Therefore we have to summarize the data (i.e., throw some
of it out)

A typical encounter data file (EDF) has 3 pieces of
information

Individual captured
Trap of capture
Occasion of capture



BASIC DATA FORMATTING

A typical encounter data file (EDF) has 3 pieces of
information

Individual captured
Trap of capture
Occasion of capture

It is convenient to organize this into a 3-dimensional array:
individuals x traps x occasions

In order to fit ordinary CR models we need to reduce this to
a 2-dimensional matrix: individuals x occasions

Lets do this for the Fort Drum bear data



THIS IS REALLY IMPORTANT!

bearArray = the encounter data, is a 3-d array.....

Have to summarize over traps to fit ordinary closed models
Multiple captures in a sample occasion have no meaning

y <- beardataSbearArray
y <- apply(bearArray,c(l,3),sum)
yiy>1l] <- 1 # multiple captures are redundant.

y.summed <- apply(y,1l,sum)# total encounters out of K

We model either the matrix y or the vector y.summed



Fort Drum bear data

R work session



Summary so far

Model MO
Its essence is a simple binomial model, just like logistic regression

Conditional likelihood: “zero-truncated” binomial. Single parameter
p.

Full likelihood: binomial likelihood (has a term for n0 “all zero”
encounter histories)

Up next: Bayesian analysis

We analyze the full likelihood using a method known as data
augmentation. This creates a “zero-inflated” binomial model.



BAYESIAN ANALYSIS OF CLOSED

CAPTURE-RECAPTURE MODELS

If N is known, Model MO is But N is not known. Conceptually we
just a logistic regression: could just put a prioron N, e.g., N ~
Dunif(O0, 1000), and analyze the
model { model using standard methods of
MCMC

p~dunif (0, 1) However, the size of the data set, N,

is a parameter of the model so as N
for (1 in 1:N) { is updated in the MCMC algorithm the
y[i]~dbin (p, K) size of the data set must change.
} Can’t do this in WinBUGS/JAGS.



Bayesian analysis of closed population

models

Prior distributions:

N ~ Dunif(0, M), for M some big number
p ~ unif(0,1)

Not amenable to a naive implementation by MCMC (esp in
BUGs/JAGS) because N, a parameter, the number of
individual effects, is unknown. “variable dimension
parameter space”

Therefore:
= RIMCM/” Trans-dimensional” Gibbs sampling
= Data augmentation <- easier, can be done in BUGS



DATA AUGMENTATION: HEURISTIC

N ~ Dunif(0,M) implies a “data set” with M-n all-zero
encounter histories. Some of the y=0 observations
correspond to real individuals and some of them do not.

Implementation: We add too many zeroes to the dataset —
creating a zero-inflated version of the known-N dataset

Model for the augmented data set is a zero-inflated binomial

THIS IS AN OCCUPANCY MODEL!



HEURISTIC DEVELOPMENT

Occupancy data Model MO Model MO + DA
Site |- occasion -| Ind. |- occasion -| Ind. |- occasion -|
1 01011 1 01011 1 01011
2 00100 2 00100 2 00100
3 11000 3 11000 3 11000
4 00110 4 00110 4 00110
5 01111 5 01111 5 01111
6 00110 6 00110 6 00110
7 11111 7 11111 7 11111
8 1 0110 8 10110 8 1 0110
000O00U 000 O00O O
000O00DU 000 00O
000O00U 00000 O
000O00DU 000 00O
000O00U 00000 O
M 00000 O M 000O0TUO
Zeros are observed. Zeros are NOT Bound N <= M where
Allocate zeros to observed. How many M is fixed.
“fixed” and “sampling” zeros are Treat Model MO as an
“sampling” there?

occupancy model.



DA AND OCCUPANCY MODELS

DA makes capture-recapture models the same as occupancy
models.

The parameter { replaces population size N. They are
related as follows: N ~ Binomial(M, 1)



WHY CAN WE DO THIS?

N ~ Unif(0,M)

Same as:
N lpsi ~ Bin(M, psi) M = fixed
psi ~ uniform(0,1)

This 2-part prior implies: N ~ Uniform(0,M) , standard distribution
theory result

Same as:
z[i] ~ Bern(psi) for i=1,2,...,M “data augmentation variables”
yli] ~ Bern(p*z[i])
psi ~ dunif(0,1) “data augmentation parameter”

The augmented data create a super-population of
individuals available to be “recruited” by the MCMC
algorithm.



Fort Drum bear data

Fit Model MO in WinBUGS and JAGS using data
augmentation



SUMMARY OF PART 1

The essence of closed CR models is the binomial observation
model for encounter frequencies

Data augmentation is something you are probably
unfamiliar with but it is really easy to analyze CR models

using MCMC (esp. in BUGS).

DA converts all capture-recapture models to “zero-inflated”
models of one sort or another.

We analyze all CR and SCR models using data
augmentation. [even when we write our own code!]



