
Non-Spatial Closed Population 
Capture-Recapture Models for 

Estimating N 



Part I  

 Basic design and data structure  

 “Model M0” – likelihood analysis  

 Bayesian analysis of Model M0 – 
Data augmentation 

 Converts Model M0 to “site 
occupancy” model 

 Model M0 in BUGS 

 

Part II  

 Model Mb (behavioral response),  
Model Mt and related….  

 Model selection in BUGS 

 

 

Outline 

Transition to spatial capture-
recapture 

 

Part III  

 Model Mh 

 Discrete class models (stratified 
populations)  

 

 

Part IV 

 Model Mx (individual Covariates)  

 



 Simplest conceptual model of a population is that it is 
“closed”. This has two components:  

 

 (a) Demographic closure. No recruitment and no mortality  

 

 (b) Geographic closure. Animals don’t leave the population (no 
emigration) or enter the population (no immigration).  

 

 Model is that of a fish bowl or other spatially constrained 
population over a short period of time 

 

 Closure cannot possibly hold in real populations.  

Closed populations 



 Sampling model: individuals are randomly selected from a 
population with probability p == per sample encounter or 
capture or detection probability  

 

 Conceptually this is a Bernoulli sampling model: whether 
each individual appears in the sample is a “coin toss”:  

 

      y[i] ~ Bernoulli(p)    for i = 1, 2, … N 

    

         N = population size 

 

 CR models: many different ways that p can vary (later…)  

 

Sampling a closed population  



 

 We estimate p by obtaining replicate samples from the 
population.  Let K = number of replicate samples. Individuals are 
released after each sample, may be recaptured.  

 

 Produces individual encounter histories (n x K matrix) 

                               sample 1          sample 2             sample 3   TOTAL 

Individual 1             1                         0                            1             y1 = 2 

Individual 2             0                         0                            1             y2 = 1 

Individual 3             1                         1                            1             y3 = 3 

                etc.. 

Individual n             0                         1                            0             yn = 1 

Closed populations: data structure 



 We need to estimate p in order to estimate N 
  
         Under random sampling:  
  
           n ~ Binomial(N, 𝑝 ) 
 
The heuristic estimator of N: 
 
 E(n) =𝑝 *N 
 
 N = n/𝑝  
 
 (“moment estimator ”, equate the 1 st moment of our 
    statistic n to its expected value and solve)  

 

Closed population models 

This is the probability that an individual 

appears in the sample over the K occasions. 

  

𝑝 = 1 − (1 − 𝑝)𝐾 

 

 



 

 Estimating p is really important!  

 

 How do we estimate p? 

 

 Dozens of models have been proposed that differ mainly in 
how p varies by individuals, time, etc..  

Closed population models 



 The standard models:  

 M0 = “the null model”, p is constant in all dimensions  

 Mt = p is a function of sample occasion , p(t)  

 Mb = behavioral response model. Trap happiness or shyness  

 Mh = individual heterogeneity 

 Mbt = time + behavior, or time*behavior 

 Mbh, Mth, Mbth 

 

 See Kery and Schaub (2012) Ch. 6 for how to do all of these 
in WinBUGS/JAGS 

Otis et al (1978) characterization of 
closed models  



Model M0 is a common point of reference in capture -recapture. 
It consists of the following assumptions:  

 

 Encounter probability, p, constant for all sample occasions and all 
individuals  

 

 Then, encounter observations are Bernoulli random variables 
(just coin flips) and the individual frequencies are binomial: 

 

             y[i,k] ~ Bernoulli(p)   for all i=1,2,..,N and k=1,2,…,K 

     -- same as --  

             y[i] ~ Binomial(K, p) for all i=1,2,…,N 

 

 

MODEL M0 



 

 Looks like binomial GLM, logistic regression , etc..  

 

 Key technical issue: unlike a typical GLM, N, the size of 
some ideal data set, is unknown 

 

 3 things we have to talk about:  

 

 “conditional likelihood” 

 “full likelihood” 

 “data augmentation” 

ANALYSIS OF MODEL M0 



 Under model M0 assumptions, encounter frequencies are 
binomial:  
 

             y i ~ Binomial(K, p) for all i=1,2,…,N 
 

 But N is not known, we only observe y i IF y i > 0. i.e., the 
observed data have a “zero-truncated binomial” distribution 
 

  f(y) = Bin(y; K, p)/(1-(1-p)K) 
 

 This is the basis of the “conditional likelihood” for 
estimating parameters of closed population models.  
 

 This is called the “conditional likelihood” because it is 
“conditional on capture”, i.e., conditional on y>0, or 
“conditional on n” 
 
 
 
 
 

The binomial model and the likelihood 



 

 

lik0.cond<-function(parms){ 

     p<-  plogis(parms[1]) 

     pcap<- 1-(1-p)^K 

     part1<- sum(log(dbinom(y,K,p)/pcap)) 

     -1*(part1) 

} 

 

 

Conditional likelihood in R 



 But n is also part of the observable data. What is the 
distribution of n? 
 
  n ~ Bin(N, 1-(1-p)K) 

 
 So the “joint likelihood” or “full likelihood” is the product of 

the previous bit (the conditional likelihood) and this bit for n:  
 

 
 Full likelihood =  [conditional likelihood] * Bin(N, 1-(1-p)K) 

         = binomial likelihood with combinatorial term 
 

 
This is called the “full likelihood” “joint likelihood” 
“unconditional likelihood” because it has N in it . 
 

The full likelihood 



 

lik0<-function(parms){ 

 p<-  plogis(parms[1]) 

 n0<-  exp(parms[2]) 

 N <-nind + n0 

 part1<- sum(log(dbinom(y,K,p))) 

 part2<-lgamma(N+1) -                   

 lgamma(n0+1) + n0*log(dbinom(0,K,p)) 

-1*(part1 + part2) 

} 

 

In R, lgamma(N+1) = log(factorial(N)) 

 

The full likelihood as an R function 



Simulate some data and obtain the MLE 

 

R work session 

 

 



Hair snare study 

 

J = 38 hair snares 

K = 8 weeks of sampling 

n = 47 individuals captured 

 

Load the data: 

 

library(scrbook) 

data(beardata) 

Fort Drum bear data 



 

> library(scrbook) 

> data(beardata) 

 

> str(beardata) 

List of 4 

 $ trapmat  :'data.frame':      38 obs. of  2 variables: 

  ..$ V1: num [1:38] 448 439 439 442 442 ... 

  ..$ V2: num [1:38] 4886 4881 4879 4884 4881 ... 

 $ bearArray: num [1:47, 1:38, 1:8] 0 0 0 0 0 0 0 0 0 0 ... 

 $ flat     : num [1:151, 1:4] 1 1 1 1 1 1 1 1 1 1 ... 

  ..- attr(*, "dimnames")=List of 2 

  .. ..$ : NULL 

  .. ..$ : chr [1:4] "Session" "ID" "Occasion" "trapID" 

 $ sex      : num [1:47] 1 1 2 1 1 1 1 2 1 2 ... 

 

Fort Drum bear data 



 In practice we have too much data for ordinary capture -
recapture models 

 Individuals can be captured at > 1 trap during a sample occasion  

 

 Therefore we have to summarize the data (i.e., throw some 
of it out) 

 

 A typical encounter data file (EDF) has 3 pieces of 
information 

 Individual captured 

 Trap of capture 

 Occasion of capture 

BASIC DATA FORMATTING 



 A typical encounter data file (EDF) has 3 pieces of 
information 
 Individual captured 

 Trap of capture 

 Occasion of capture 

 

 It is convenient to organize this into a 3 -dimensional array: 
individuals x traps x occasions 

 

 In order to fit ordinary CR models we need to reduce this to 
a 2-dimensional matrix: individuals x occasions   

 

 Lets do this for the Fort Drum bear data  

 

BASIC DATA FORMATTING 



 bearArray =  the encounter data, is a 3-d array…..  

 

 Have to summarize over traps to fit ordinary closed models 

 

 Multiple captures in a sample occasion have no meaning 

 
y <- beardata$bearArray 

y <- apply(bearArray,c(1,3),sum) 

y[y>1] <- 1         # multiple captures are redundant. 

y.summed <- apply(y,1,sum)# total encounters out of K 

 

 We model either the matrix y  or the vector y.summed   

 

 

THIS IS REALLY IMPORTANT! 



R work session 

Fort Drum bear data 



Model M0 

 

Its essence is a simple binomial model, just like logistic regression  

 

 Conditional likelihood:  “zero-truncated” binomial.  Single parameter 
p.   

 

 Full likelihood:  binomial likelihood (has a term for n0 “all  zero” 
encounter histories)  

 

Up next: Bayesian analysis  

 

 We analyze the full l ikelihood using a method known as data 
augmentation. This creates a  “zero -inflated” binomial model.  

  

 Summary so far 



 If N is known, Model M0 is 
just a logistic regression:  

 

model { 

 

p~dunif(0,1) 

 

for (i in 1:N){ 

     y[i]~dbin(p,K) 

    } 

 

} 

 

BAYESIAN ANALYSIS OF CLOSED 
CAPTURE-RECAPTURE MODELS 

 

But N is not known. Conceptually we 

could just put a prior on N, e.g., N ~ 

Dunif(0, 1000), and analyze the 

model using standard methods of 

MCMC 

 

However, the size of the data set, N, 

is a parameter of the model so as N 

is updated in the MCMC algorithm the 

size of the data set must change. 

Can’t do this in WinBUGS/JAGS. 

 



 Prior distributions:  

 
 N ~ Dunif(0, M), for M some big number 

 

 p ~ unif(0,1) 

 

Not amenable to a naïve implementation by MCMC ( esp in 
BUGs/JAGS) because N, a parameter, the number of 
individual effects, is unknown. “variable dimension 
parameter space” 

 

 Therefore: 

 RJMCM/”Trans-dimensional” Gibbs sampling 

 Data augmentation <- easier, can be done in BUGS 

Bayesian analysis of closed population 
models 



 N ~ Dunif(0,M) implies a “data set” with M-n all-zero 
encounter histories.  Some of the y=0 observations 
correspond to real individuals and some of them do not.  

 

 Implementation: We add too many zeroes to the dataset – 
creating a zero-inflated version of the known-N dataset 

 

 Model for the augmented data set is a zero-inflated binomial 

 

 THIS IS AN OCCUPANCY MODEL! 

 

 

DATA AUGMENTATION: HEURISTIC 



 Occupancy data  

Site    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

           0   0   0   0   0    

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

  M      0   0   0   0   0     

 

Zeros  are  observed.  
Allocate  zeros  to  
“f ixed” and 
“sampling”  

HEURISTIC DEVELOPMENT 

 Model  M0 

Ind.    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

 

 

 

 

 

 

 

Zeros  are  NOT 
observed.   How many 
“sampling” zeros  are  
there?  

 Model  M0 +  DA 

Ind.    | -  occas ion -|  

 

  1        0   1   0   1   1  

  2        0   0   1   0   0  

  3        1   1   0   0   0  

  4        0   0   1   1   0   

  5        0   1   1   1   1  

  6        0   0   1   1   0  

  7        1   1   1   1   1      

  8        1   0   1   1   0  

           0   0   0   0   0    

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

           0   0   0   0   0     

   M     0   0   0   0   0     

 

Bound N <= M where 
M is  f ixed.  

Treat  Model  M0 as  an 
occupancy model .   

 

 



 DA makes capture-recapture models the same as occupancy 
models.  

 

 The parameter ψ replaces population size N. They are 
related as follows:  N ~ Binomial(M, ψ) 

 

 

DA AND OCCUPANCY MODELS 



 N ~ Unif(0,M) 

 Same as: 

 N|psi ~ Bin(M, psi)   M = fixed 

 psi ~ uniform(0,1) 

This 2-part prior implies:  N ~ Uniform(0,M) , standard distribution 
theory result 

 Same as: 

 z[i] ~ Bern(psi) for i=1,2,…,M  “data augmentation variables” 

 y[i] ~ Bern(p*z[i]) 

 psi ~ dunif(0,1)   “data augmentation parameter” 

 The augmented data create a super-population of 
individuals available to be “recruited” by the MCMC 
algorithm. 

WHY CAN WE DO THIS? 



 Fit Model M0 in WinBUGS and JAGS using data 
augmentation  

 

 

 

Fort Drum bear data 



 The essence of closed CR models is the binomial observation 
model for encounter frequencies  

 

 Data augmentation is something you are probably 
unfamiliar with but it is really easy to analyze CR models 
using MCMC (esp. in BUGS).  

 

 DA converts all capture-recapture models to “zero-inflated” 
models of one sort or another.  

 

 We analyze all CR and SCR models using data 
augmentation. [even when we write our own code!]  

SUMMARY OF PART 1 


