
Introduction to the BUGS
language

Spatial Capture-Recapture Workshop,

USGS Patuxent Wildlife Research Center, Laurel MD,

February 2014

Thanks to

• Marc Kéry, who let us use his workshop materials…

Overview

• What is BUGS?

• WinBUGS as a stand-alone application

• Using BUGS through R

• WinBUGS, JAGS/R2WinBUGS, rjags, R2JAGS

• Q and A

• Exercise: Poisson regression in BUGS

• Exercise: Binomial regression in BUGS

• Exercise: Random effects model in BUGS

• Q and A

• Exercise: Analysis of deer mouse capture data (depending on time and interest)

What is BUGS?

What is BUGS?

• Simple and flexible language to build (sometimes very complex) hierarchical
models and analyze them in a Bayesian framework

• Implemented in a number of software packages

• WinBUGS (Gilks et al. 1994)

• OpenBUGS (Lunn et al. 2009)

• JAGS (Plummer 2003)

• WinBUGS and OpenBUGS: standalone software

• JAGS has command line interface

• All three usually best run from R using interface packages

What is BUGS?

All three applications:

• Let you describe a statistical model using the BUGS language

• Translate this description into an MCMC algorithm

• Run the algorithm according to your specifications to produce samples from the
joint posterior distribution of all unknown quantities in the model

• Provide functionalities for processing of results, convergence monitoring and so
forth

• If you are still not convinced how useful these applications are: Write your own
MCMC algorithm!

What is BUGS?

• WinBUGS is no longer being developed, not open source

• OpenBUGS is the open-source currently active branch of the original BUGS
project

• Differences between the two packages are fairly minimal

• JAGS is a separate project but uses essentially the same language

• Depending on context, BUGS=WinBUGS/OpenBUGS or BUGS = language used by
WinBUGS/OpenBUGS/JAGS

Key components of BUGS language

• Nodes are the building blocks of BUGS

• Deterministic nodes:

• Assigned with <-

• Deterministic functions of other nodes = parent nodes

• E.g. x <- a + b

• Stochastic nodes:

• Assigned with ~

• Random variables, coming from a distribution

• E.g. x ~ dpois(lambda)

• Data

• generally stochastic nodes

• can also be fixed (parent) nodes, appearing only on the right side of equations

• E.g., a and b (above) could be data

Key components of BUGS language

• Nodes cannot be assigned in the form of vectors, matrices, arrays

• Almost all assignments have to happen element-wise in the form of for-loops

• E.g.:

for (i in 1:M){

mu[i]<-alpha + beta * VAR[i]

}

• Whereas in R we could simply write

mu<-alpha + beta * VAR

• Exception: Multivariate distributions, e.g.

X[]~dmultinom(n, p[])

• BUGS is a declarative language, i.e. order of statements does (mostly) not matter

• Math functions and statistical distributions are listed in manuals

BUGS versus glmr

• R functions lmer()/glmer() in package lme4 most widely used to fit mixed models
in ecology

• Mixed models = hierarchical models

• BUGS is much more flexible than glmer

• Bayesian implementation in BUGS allows focus on realizations of latent variables

Bayesian Inference and
Markov chain Monte Carlo Sampling

A quick refresher

The Bayesian paradigm

• Data: observed realization of a random process

• Parameters: fixed and unknown data generating value, realization of a random
process

• Uncertainty about parameters: evaluated using posterior distribution

Bayes‘ Rule

• Let θ be a model parameter and y be data

• Further, let [y|θ] the observation model (“likelihood“)

(e.g. Poisson(y|θ), θ = mean)

� � =
� � [�]

[�]

Bayesian Inference

� � =
� � [�]

[�]

• [θ |y]: Posterior distribution

• [y|θ]: Likelihood; observation model

• [θ]: Prior probability distribution of θ

• [y]: Marginal distribution of y

• In practice, hard to impossible to compute

• Past decades have seen method development that do not require mathematical
understanding of [y]

� � ∝ � � [�]

Prior probability distribution [θθθθ]

• The distribution we assign an unknown parameter or quantity before
any evidence is taken into account

• Informative priors

• incorporate prior knowledge on parameter into the analysis

• Influecen parameter estimate, magnitude of influence depends on evidence
on the data and strength of prior

• Uninformative/vague priors

• Express lack of prior knowledge about parameter

• Generally preferred for an objective analysis

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

p

p
ro
b
a
b
ili
ty
 d
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
5

0
.1
0

0
.1
5

Uninformative/flat prior: Uniform(0,1)Informative prior: Beta(5,10)

Prior probability distribution

0.0 0.2 0.4 0.6 0.8 1.0

0
.0
0

0
.0
5

0
.1
0

0
.1
5

0
.2
0

0
.2
5

p

p
ro
b
a
b
il
it
y
 d
e
n
s
it
y

Mode

95% BCI

Uniform prior

• Inference does not focus on estimating
a single point value but on
characterizing an entire distribution:
[θ|y]

• Posterior can be characterized by
Markov chain Monte Carlo (MCMC)
simluation

Posterior inference

Markov chain Monte Carlo - MCMC

• Simulation-based evaluation of posterior distribution

• Generates random samples from the posterior

• Markov property: the value of each iteration idepends on the preceding value

• MCMC algorithms are constructed so that the Markov chain converges to the
posterior distribution

MCMC terminology

Burn-in

• Chains are starte at initial values

• First set of iterations are influenced by initial values

• Transition phase from initial values to stationary distribution = burn-in

• Needs to be discarded Trace plot

Terminology

Convergence

• Has the chain reached ist stationary (i.e. the posterior) distribution?

• Assessment:

• Trace plot - Do the chains look grassy?

Convergence

• Assessment:

• Trace plot - Do the chains look grassy?

• Gelman-Rubin-statistic (
); compares within-chain and between chain variation;
should be <1.1

Terminology

Posterior sample size; Monte Carlo error:

• MCMC samples are not independent because of the Markov property

• Effective sample size: number of samples after accounting for autocorrelation

• Determines the MC error – “noise“ introduced into the sample by the

stochastic MCMC process

• You can reduce the MC error by running longer chains

• Rule of thumb: MC error should be <5% (1%)

Terminology

References

• Lunn, D. J., Best, N. and Whittaker, J. (2008) Generic reversible jump MCMC using graphical
models, Statistics and Computing, DOI: 10.1007/s11222-008-9100-0

• Lunn, D. J., Whittaker, J. C. and Best, N. (2006) A Bayesian toolkit for genetic association studies,
Genetic Epidemiology 30: 231-247.

• Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009) The BUGS project: Evolution, critique
and future directions (with discussion), Statistics in Medicine 28: 3049--3082.

WinBUGS as a stand-alone application

Spatial Capture-Recapture Workshop,

USGS Patuxent Wildlife Research Center, Laurel MD,

February 2014

Overview

• We will almost exclusively be using the R packages to call WinBUGS/JAGS from
within R

• Important to get familiar with the workings of WinBUGS directly (if only to see

how much more practical it is to use R)

(1) Ingredients of a typical BUGS analysis

(2) Demo - Fit a simple model (linear regression)

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Define parameters to be monitored

• Run model

• Look at output

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

• Look at output

Consider a simple linear regression where observations, y, are a function of some covariate,

cov.

��~
����� �� , ��

�� = � + � ∗ ����

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

• Look at output

In R we would simply write

lm(y ~ cov)

alpha (intercept), beta (slope) and �� are parameters to be estimated but R takes care of

that ‘under the hood’.

��~
����� �� , ��

�� = � + � ∗ ����

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

• Look at output

In the BUGS language we have to be more (algebraically) explicit

Likelihood

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha + beta * cov[j]

}

alpha (intercept), beta (slope) and tau (precision: 1/��) are parameters to be estimated

J: number of observations (sites, individuals etc…)

��~
����� �� , ��

�� = � + � ∗ ����

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

• Look at output

In the BUGS we also have to supply (typically vague/uninformative) prior distributions for our

parameters

Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

*normal with mean 0 and ��= 1/0.001 = 1000

-4000 -2000 0 2000 4000

��~
����� �� , ��

�� = � + � ∗ ����

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

• Look at output

In the BUGS we also have to supply (typically vague/uninformative) prior distributions for our

parameters

Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

*normal with mean 0 and ��= 1/0.001 = 1000

-10 -5 0 5 10

��~
����� �� , ��

�� = � + � ∗ ����

Ingredients of a BUGS analysis

• Write the model

model{

Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

Likelihood

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha + beta * cov[j]

} #end j

} #end model

��~
����� �� , ��

�� = � + � ∗ ����

Ingredients of a BUGS analysis

• Write the model

model{

Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

Likelihood

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha + beta * cov[j]

} #end j

} #end model

��~
����� �� , ��

�� = � + � ∗ ����

• Write the model

• Compile the data

Ingredients of a BUGS analysis

- Load the data into WinBUGS

• Write the model

• Compile the data

Ingredients of a BUGS analysis

- Load the data into WinBUGS

• Write the model

• Compile the data

Ingredients of a BUGS analysis

- Load the data into WinBUGS

- Select the number of parallel chains

• Write the model

• Compile the data

Ingredients of a BUGS analysis

- Load the data into WinBUGS

- Select the number of parallel chains

- Compile the data and model

• Write the model

• Compile the data

• Provide (or generate) initial values

initial values ('inits')

list(alpha = 0, beta = 1, sigma = 1)

list(alpha = 0, beta = 1, sigma = 10)

list(alpha = 0, beta = 1, sigma = 100)

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

* Monitors all named nodes

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

- Select the number of iterations (updates)

- Hit update

- Viola!!!

Ingredients of a BUGS analysis

• Write the model

• Compile the data

• Provide (or generate) initial values

• Determine parameters to be monitored

• Run model

• Look at output

Ingredients of a BUGS analysis

Lets do it!

Model: lmModelWinBUGS.odc

Data: lmDataWinBUGS.odc

Inits: lmInitsWinBUGS.odc

Combined: lmWinBUGS.odc

Data simulated using: � = 0.5, � = 1.5, �� = 1

��~
����� �� , ��

�� = � + � ∗ ����

Accessing BUGS through R

Spatial Capture-Recapture Workshop,

USGS Patuxent Wildlife Research Center, Laurel MD,

February 2014

Overview

• Generate observation data from a normal model with continuous covariate

• Run linear regression in R, BUGS and JAGS using different R packages

• Categorical covariates in BUGS

• Quick check:

• What is the program path to WinBUGS?

• Have you installed OpenBUGS?

• Have you installed JAGS?

• Have you installed the following R packages: R2WinBUGS, R2jags, rjags, BRugs, coda?

Generate data

generate data for a normal regression

J=100 #number of sampling points

cov<-rnorm(J, 2,2) #covariate

alpha<-0.5 #intercept

beta<--1.5 #coefficient

mu<-alpha+beta*cov #expected value

sd<-1

y<-rnorm(J,mu,sd) #observations

##analyze data using lm()

rmod<-lm(y~cov)

Model 1: ��~
����� �� , ��

�� = � + � ∗ "#$�

The six steps of a BUGS analysis

1. Write the model

2. Compile the data

3. Write an initial values function

4. Determine parameters to be monitored

5. Run model

6. Look at output

The same for all

packages/programs

Package/program-specific

Step 1: Write the model

��~
����� �� , ��

�� = � + � ∗ $%	�

model{

##vague prior distributions for parameters

alpha~dnorm(0, 0.001)

beta~dnorm(0, 0.001)

sigma~dunif(0,100)

tau<-1/(sigma*sigma) #you can also put a prior on tau

##describe model for our data = likelihood

for (j in 1:J){ ##loop over all sampling points

y[j]~dnorm(mu[j], tau) #observation model

mu[j]<-alpha + beta*cov[j] #model for expected value

}#end J-loop

} #end model description

Step 2. – 4. Data, initial values, parameters

Data

data<-list(J=J, cov=cov, y=y)

Initial values

• Supply initial values only for unobserved stochastic nodes

• Initial values have to fall within the range of support of the prior

inits<-function(){list(alpha=runif(1), beta=runif(1),

sigma=runif(1,0,5))}

Parameters

params<-c("alpha", "beta", "sigma")

Step 5. Run the model

• WinBUGS and R2WinBUGS

• OpenBUGS and R2WinBUGS/BRugs

• JAGS and R2JAGS

• JAGS and rjags

• Information needed:

• Data, initial values, parameters

• Number of parallel chains

• Number of iterations

• Length of adaptive phase/burn-in

• Thinning interval

Side note: Adaptive phase versus burn-in

R2WinBUGS - burn-in

• Burn-in specified in model call

• Number of burn-in iterations is subtracted from total iterations and not saved

rjags – adaptive phase

• Adaptive phase = phase during which the MCMC algorithm is adapted to the data
at hand (also: tuning).

• Good tuning depends on the parameter value � usually includes part of burn-in

• BUT: chains are not necessarily fully burned in after the adaptive phase

R2jags - ???

• Calls it burn-in but actually sets the adaptive phase with the burn-in argument

Step 6. Look at output

• Gelman-Rubin (R-hat) statistic, effective sample size

• Included in R2WinBUGS and R2jags output

• Called with extra commands for rjags output

• Trace plots – using xyplot() in package coda

• Do chains look grassy?

• Do they oscillate around the same mean?

• Posterior density plots – using densityplot() in package coda

• Were parameters estimable?

• Are posterior distributions truncated, skewed, multimodal, …?

Categorical variables in the BUGS language

Model 2: ��~
����� �� , ��

�� = �&'()

for COV = {1, 2, 3, 1, 1, 2, 1…}

OR

�� = � + �� ∗ "#$2� + �+ ∗ "#$3�

For COV2 = {0, 1, 0, 0, 0, 1, 0,…}

COV3 = {0, 0, 1, 0, 0, 0, 0,…}

Means parameterization

Contrast parameterization

Alternative parameterizations for a categorical variable

MEANS

Priors

for(g in 1:ngr){

alpha[g] ~ dnorm(0,0.001)

}

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

Likelihood

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha[cov[j]]

}

CONTRAST/REFERENCE

Priors

for(g in 2:ngr){

beta[g] ~ dnorm(0,0.001)

}

beta[1] <- 0

alpha ~ dnorm(0,0.001)

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

Likelihood

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha + beta[cov[j]]

}

Categorical variables in the BUGS language

Q & A

????

Picture: dashburst.com

Exercise 1 – Poisson regression in JAGS

• Script: “IntroBUGSscript2.R”

• Contains code to simulate data and write model

• Your task: Complete steps to run Poisson regression in JAGS

Mixed models in the BUGS language
(random effects)

Spatial Capture-Recapture Workshop,

USGS Patuxent Wildlife Research Center, Laurel MD,

February 2014

• GLMs (fixed effects models) to GLMMs (mixed effects models)

� Normal GLM -> GLMM

� Binomial GLM -> GLMM

• Scripts: “normGLMM.R” -- complete

“binomGLMM.R” -- incomplete

Overview

GLM (fixed effect) GLMM (mixed effect)

Stochastic part ��~
����� �� , �� ��~
����� �� , ��

Linear predictor �� = � + � ∗ ���� �� = �- + � ∗ ����

Hyper parameters ------- �-~
�����(�/ , �/
�)

Random effects?

• Some parameters themselves may be realizations of a random process

• Lets consider a random intercept model

• i.e. intercepts come from a common distribution

GLM (fixed effect) GLMM (mixed effect)

Stochastic part ��~
����� �� , �� ��~
����� �� , ��

Linear predictor �� = � + � ∗ ���� �� = �- + �- ∗ ����

Hyper parameters -------
�-~
�����(�/ , �/

�)

�-~
�����(�1 , �1
�)

Random effects?

• Some parameters themselves may be realizations of a random process

• Lets consider a random coefficient model

• i.e. intercepts come from a common distribution

Generate some data?

generate data for a normal regression

J = 100 # number of sampling points

cov <- rnorm(J, 2,2) # covariate

alpha <- 0.5 # intercept

beta <- -1.5 # coefficient

mu <- alpha+beta*cov # expected value

sd <- 1

y <- rnorm(J,mu,sd) # observations

��~
����� �� , ��

�� = � + � ∗ ����

GLM

Generate some data?

generate data for a random intercept normal regression

J = 200 # observations

grp = gl(10,20) # group membership k=10

cov <- rnorm(J, 2,2) # covariate

mu.alpha <- 0.5 # hyper mean for intercept

sd.alpha <- 1 # hyper sd for intercept

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas

beta <- -1.5 # coefficient

mu <-alpha+beta*cov #expected value

sd <-1

y <- rnorm(J,mu,1) #observations

��~
����� �� , ��

�� = �- + � ∗ ����

�-~
�����(�/ , �/
�)

GLMM

Generate some data?

generate data for a random intercept normal regression

J = 200 # observations

grp = gl(10,20) # group membership

cov <- rnorm(J, 2,2) # covariate

mu.alpha <- 0.5 # hyper mean for intercept

sd.alpha <- 1 # hyper sd for intercept

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas

beta <- -1.5 # coefficient

mu <-alpha+beta*cov #expected value

sd <-1

y <- rnorm(J,mu,1) #observations

��~
����� �� , ��

�� = �- + � ∗ ����

�-~
�����(�/ , �/
�)

GLMM

Generate some data?

generate data for a random intercept normal regression

J = 200 # observations

grp = gl(10,20) # group membership

cov <- rnorm(J, 2,2) # covariate

mu.alpha <- 0.5 # hyper mean for intercept

sd.alpha <- 1 # hyper sd for intercept

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas

beta <- -1.5 # coefficient

mu <-alpha[grp]+beta*cov # expected value

sd <-1

y <- rnorm(J,mu,1) # observations

��~
����� �� , ��

�� = �- + � ∗ ����

�-~
�����(�/ , �/
�)

GLMM

Generate some data?

��~
����� �� , ��

�� = �- + � ∗ ����

�-~
�����(�/ , �/
�)

Fitting a Normal GLM in the BUGS language

• Write the model - likelihood

Likelihood for the GLM

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha + beta * cov[j]

}

GLM

Fitting a Normal GLMM in the BUGS language

Likelihood for the GLMM

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha[grp[j]] + beta * cov[j]

}

• Write the model - likelihood

Likelihood for the GLM

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha + beta * cov[j]

}

GLMM

Fitting a Normal GLMM in the BUGS language

• Write the model - priors

Priors GLM

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

sigma ~ dunif(0,100)

tau <- 1/(sigma*sigma)

Priors GLMM

for(k in 1:n.gr){

alpha[k] ~ dnorm(mu.alpha,tau.alpha)

}

mu.alpha ~ dnorm(0,0.001)

tau.alpha <- 1/sd.alpha*sd.alpha

sd.alpha ~ dunif(0,20)

beta ~ dnorm(0,0.001)

tau <- 1/(sigma*sigma)

sigma ~ dunif(0,100)

Fitting a Normal GLMM in the BUGS language

• Write the model: model{

Priors GLMM

for(k in 1:n.gr){

alpha[k] ~ dnorm(mu.alpha,tau.alpha)

}

mu.alpha ~ dnorm(0,0.001)

tau.alpha <- 1/sd.alpha*sd.alpha

sd.alpha ~ dunif(0,20)

beta ~ dnorm(0,0.001)

tau <- 1/(sigma*sigma)

sigma ~ dunif(0,100)

Likelihood

for(j in 1:J){

y[j] ~ dnorm(mu[j],tau)

mu[j] <- alpha[grp[j]] + beta * cov[j]

}

}

��~
����� �� , ��

�� = �- + � ∗ ����

�-~
�����(�/ , �/
�)

Fitting a Poisson GLMM in the BUGS language

• Write the model: model{

Priors GLMM

for(k in 1:n.gr){

alpha[k] ~ dnorm(mu.alpha,tau.alpha)

}

mu.alpha ~ dnorm(0,0.001)

tau.alpha <- 1/sd.alpha*sd.alpha

sd.alpha ~ dunif(0,20)

beta ~ dnorm(0,0.001)

#tau <- 1/(sigma*sigma)

#sigma ~ dunif(0,100)

Likelihood

for(j in 1:J){

y[j] ~ dpois(mu[j])

log(mu[j]) <- alpha[grp[j]] + beta * cov[j]

}

}

��~2�344�5 ��

��6 (��) = �- + � ∗ ����

�-~
�����(�/ , �/
�)

Fitting a Normal GLMM in the BUGS language

• Write the model: model{

Priors GLMM

for(k in 1:n.gr){

alpha[k] ~ dnorm(mu.alpha,tau.alpha)

}

mu.alpha ~ dnorm(0,0.001)

tau.alpha <- 1/sd.alpha*sd.alpha

sd.alpha ~ dunif(0,20)

beta ~ dnorm(0,0.001)

#tau <- 1/(sigma*sigma)

#sigma ~ dunif(0,100)

Likelihood

for(j in 1:J){

y[j] ~ dbern(mu[j])

logit(mu[j]) <- alpha[grp[j]] + beta * cov[j]

}

}

��~78�5�9��3 ��

��63:(��) = �- + � ∗ ����

�-~
�����(�/ , �/
�)

Exercises

• GLMs (fixed effects models) to GLMMs (mixed effects models)

� Normal GLM -> GLMM example

� Binomial GLM -> GLMM exercise

• Scripts: “normGLMM.R” -- complete

“binomGLMM.R” -- incomplete **

**alter the code from GLM to GLMM and finish the analysis

BUGS through R – Extra exercise

Deer mouse (Peromyscus maniculatus) abundance in the Lake Tahoe
region, Sierra Nevada, CA

Data source:

USDA Forest Service, Pacific Southwest Research Station, Davis, CA

Study

• Trapping grids of 6x8 sampling points with 30-m spacing

• Placed at 23 sites throughout the Lake Tahoe region

• Each site sampled in two years between 2009 to 2011

• 15 small mammal species captured

• Deer mouse one of the most frequently captured critters

© www.nsf.gov

Data

• Table with 46 rows (23 sites x two samples)

• Columns

• n.cap: number of individuals trapped

• site: Site index, 1-23

• year: Year index, 1-3 (corresponding to 2009-2011)

• shrub: Scaled measure of shrub density at the site level

• cwd: Scaled measure of volume of coarse woody debris at the site level

• canopy: Scaled measure of canopy density at the site level

Your task

• Build a model relating deer mouse abundance to habitat covariates

• For simplicity, we will consider the number caught as an adequate measure of
abundance

• In addition to habitat effects, include in your model:

• A random site-specific intercept

• A year effect (categorical)

• First few lines of command in script “ExtraExerciseScript.R”

• Data file: “PEMAdata.csv”

Introduction to the BUGS
language

Summary and Outlook

Summary

• Many ways to implement MCMC

• Win/Open BUGS, JAGS

• R2WinBUGS, R2jags, rjags

• Beyond BUGS

• BUGS language -> flexibility, transparency

• Natural means to deal with latent variables/random effects

• Do Bayesian analysis without writing samplers

• Often easier or even only way to code more complex hierarchical models

Beyond ‘simple’ BUGS

• Special features in Win/OpenBUGS

• WinBUGS Jump interface: Reversible jump MCMC

• Autologistic models

• Alternative MCMC software

• Stan (mc-stan.org): faster, different algorithms, but still somewhat limited
applicability

• SAS/STAT MCMC Procedure and other applications

• Do-it-yourself in R

