Bayesian Analysis of Multinomial
N-mixture models in BUGS



Multinomial N-mixture in BUGS

e Bayesian analysis of multinomial observation models does not
pose any novel technical difficulty.

 WinBUGS JAGS (and other BUGS) have a multinomial
distribution function.

* |n principle we just specify the multinomial/Poisson model
directly:

y[i,]<-c(yl[i,],NA) # missing value for "not captured"
# Then, in WinBUGS, do this:

yv[i,] ~ dmulti( probs[i,], N[1i] )
N[i] ~ dpois(lambdal[i])



Multinomial N-mixture in BUGS

y[i,]<-c(yl[i,],NA) # missing value for "not captured"

# Then, in WinBUGS, do this:
yv[i,] ~ dmulti( probs[i,], N[1] )
N[i] ~ dpois(lambdal[i])

However, this construction doesn't work (in WinBUGS ). Cannot
have “random” sample size in multinomial distribution. (not so
Binomial!)



Approaches to Bayesian analysis

We have 3 options for analysis in BUGS:

(1) Multinomial/Poisson mixture has Poisson marginals. Use the
Poisson marginal. (this is too easy!).

(2) Can use a “data augmentation' trick (Converse and Royle
2012) with individual-level encounter histories.

(3) Can express the model in terms of the conditional
multinomial observation model. i.e., condition on n; = number
of individuals captured at site i -- the “3 part model”.



Topics in Bayesian analysis

3-part model

Goodness-of-fit

Model selection

Poisson model

Poisson model with random effects

Data Augmentation



The 3-part (conditional multinomial)
model

Statistically equivalent formulation of the
multinomial N-mixture — a reparameterization:

1. y;| nj~ Multinomial(n;, 1t;)
2. n;~ Binomial(N;, 1 — 1)
3. N;~ Poisson(A;)

where

i =
1—7T0



model {

# Prior distributions # Model specification, three parts:

p0 ~ dunif(0,1) yli,1:4] ~ dmulti(pic[i,1:4], n[i]) # component 1 uses the
alphaO <- logit(p0) # conditional cell probabilities
alphal ~ dnorm(0, 0.01) n[i] ~ dbin(pcapli], N[i]) # component 2 is a model
betaO ~ dnorm(0, 0.01) H for the observed sample size

betal ~ dnorm(0, 0.01)
beta2 ~ dnorm(0, 0.01)
beta3 ~ dnorm(0, 0.01)

N[i] ~ dpois(lambdali]) # part 3 is the process model

# log-linear model for abundance: UFC + TRBA + UFC:TRBA
log(lambdal[i])<- beta0 + betal*X[i,1] + beta2*X[i,2] +

for(i in 1:M){ # Loop over sites beta3*X([i,2]*X[i,1]
# Conditional multinomial cell probabilities }
pili,‘1] <- pli] — )
pili,2] <- p[il*(1-p[i]) Have to write out
pili,3] <- plil*(1-p[i])*(1-plil) > the cell

pili,4] <- pli*(1-p[i])*(1-p[i]) *(1-plil)
piO[i] <- 1 - (pi[i,1] + pi[i,2] + pili,3] + pili,4])
pcapl[i] <- 1 - piO[i]
for(jin 1:4){
pic(i,j] <- pili,jil / pcapli]
}
# logit-linear model for detection: understory cover effect
logit(p[i]) <- alpha0 + alphal * X[i,1]

probabilities
—  explicitly




Goodness-of-fit Using Bayesian p-values

* Itis natural to think of “overall fit” as having two
components: How well does the encounter model fit?
How well does the abundance model fit?

 Can we evaluate them independently? The 3-part
model leads to a natural formulation of this dual fit
assessment strategy.
— Fit of multinomial model conditional on n;.

— Fit of the model for n — should be sensitive to wrong
model for because E(n;) = A;p.qp contains the variation

in N; (and spatial variation in p)



Implementation of 2-part GoF idea
for(i in l:nsites) {

ncap.fit[i] ~ dbin(pcap[i],N[1])

y.fit[i,1:4] ~ dmulti(muc[i,1l:4],ncap[i])

for(t in 1:4) {
el[i,t]<- muc[i,t]*ncap[i] # Expected value
residl[1i,t]<- pow(pow(y[i,t],0.5)-pow(el[i,t],0.5),2)
residl.fit[i,t]<- pow(pow(y.fit[i,t],0.5) - pow(el[i,t],0.5),2)

}

e2[i]<- pcap[i]*lambda[i] # Expected value
resid2[1]<- pow( pow(ncap[i],0.5) - pow(e2[i],0.5),2)
resid2.fit[1]<- pow( pow(ncap.fit[i1i],0.5) - pow(e2[1],0.5),2)

}
fitl.data<- sum(residl(, ])

(
fitl.post<- sum(residl.fitl,])
fit2.data<- sum(resid2[])
fit2.post<- sum(resid2.fit[])



Goodness-of-fit Using Bayesian p-values

> mean (outSsims.list$fitl.post>outSsims.listsfitl.data)
[1] 0.7076667

> mean (outSsims.list$fit2.post>outSsims.list$fit2.data)
[1] 0.4556667

No lack of fit is indicated...?????



Goodness-of-fit: Research Question

The power of any particular fit statistic to any particular
departure from the model is unknown and no studies
have been published.



Model Selection in BUGS: Computing
posterior model probabilities

Basic idea: Expand model to include a set of binary indicator variables w;,, = 1 if
variable k is in the model (Kuo and Mallick 1998)

Model selection = estimating Pr(w, = 1). (R&D Book, sec. 3.4.3)

Expanded linear predictor:
log(A;) = Bo + wiB1xi1 + WofaXiz + WiWaWsXig X5
w;~ Bern(0.5)
wy~ Bern(0.5)
w3~ Bern(0.5)

Models are characterized by the sequence (wy, wy, wyw,ws3)
* Estimate functions of wy e.g., Pr(w;, = 1)

* Sensitivity to prior. Posterior model probabilities are sensitive to choice of prior
distribution on 5. See Link and Barker (2010).



Model Selection in BUGS: Computing
posterior model probabilities

model {

betal0 ~ dnorm (0, .1)
Betal ~ dnorm(0,.1)
beta?2 ~ dnorm (0, .1)

beta3 ~ dnorm (0, .1)
wl ~ dbern(.5)
w2 ~ dbern(.5)
w3 ~ dbern(.5)

pO~dunif (0, 1)

for(i in l:nsites) {
plil<- p0 # could have covariates here
muli,1] <- pl[i]
muli,2] <= pli]*(1-p[1])
muli,3] <= pli]*(l-pli])*(1-p[i])
plil*(1-p[i])*(1-p[i])*(1-p[1i])
piO[i]<- 1 - muli,l]-muli,2]-muli,3]-muli,4]

(
(
muli,4] <-

pcap[il<-1-pi0[i]

for(j in 1:4){
muc([i,3] <- muli,j]/pcapli]

}

y[i,1:4] ~ dmulti(muc[i,1l:4],ncapl[i])

ncapl[i] ~ dbin(pcap[i],N[i])

N[i] ~ dpois(lambda[i])

log(lambda[i])<- betal + wl*betal*X[i,1] + w2*beta2*X[i,2] + wl*w2*w3*betal3*X[i,2]*X[1,1]



Model Selection in BUGS: Computing
posterior model probabilities

Post-processing to obtain model frequencies -- combine the
unique values of (w{, w,, w3) into distinct models. i.e., (1,0,0),
(0,1,0), (1,1,0), etc.. Note: When w; represents an interaction
we want to use (wq, w,, w;W,Ws3) so that the model has the
interaction only if the main effects are present.

wl<-outS$sims.listSwl

w2<-outSsims.listSw2

# new "w3" =1 only if the interaction is in the
W model, means wl = 1 AND w2=1
w3<-outSsims.listSw3 * wl * w2

mod<-paste (wl,w2,w3)



Sensitivity to prior distributions

Prior: beta ~ dnorm(0,.1)

> table (mod)

mod

0 0 O 010 1 00 1 10 1 11
2176 517 300 6 1
Prior: beta ~ dnorm(0, .01)

0 0 O 010 1 00 1 10
2760 154 78 8

Prior: beta ~ dnorm(0, .2)
0O 0 O 01 O 1 0 0 110 111
2006 637 340 16 1



Model selection summary

Model selection based on posterior model
probabilities, when models represent different
fixed covariates, is easy to accomplish using

variable weights.

The prior makes a difference, so be careful.



Poisson formulation of the model

If N;~Poisson(A;) then the marginal distribution
of the data is also Poisson!

yin = frequency of encounter history h at site i
yin~Poisson(m;pA;)

i.e., model is just a Poisson GLM!



model {

# Prior distributions
p0 ~ dunif (0, 1)

alpha0 <- logit (p0)
alphal ~ dnorm(0, 0.01)

betal
betal
beta?
beta3

14

14

14

14

dnorm (0, 0.01)
dnorm (0, 0.01)
dnorm (0, 0.01)
dnorm (0, 0.01)

for(i in 1:M) {
# logit-linear model for detection: understory cover effect
logit(p[i]) <- alphaO + alphal * X[i,1]
# log-linear model for abundance: UFC + TRBA + UFC:TRBA
log(lambda[i])<- betal + betal*X[i,1] + beta2*X[i,2] + betal3*X[i,2]*X[i,1]

# Poisson parameter = multinomial cellprobs x expected abundance
pi[i,1] <- p[i] * lambdali]

pi[i,2] <- p[i] * (1-p[i]) * lambdal[il]

pi[i,3] <- p[i] * (1-p[i]) * (1-p[i]) * lambdal[i]

pi[i, 4] <- p[i] * (1-p[i]) * (1-p[i]) * (1-p[i]) * lambda[i]

for(j in 1:4) {
y[i,j] ~ dpois(pili,]jl)

}

# Generate predictions of N[i]

N[i]

~ dpois (lambda[i])



Poisson model with random effects

* [see R script]



Data Augmentation (DA)

Motivation

 ovenbird, ALFL, MHB data are all classical “capture-recapture”
data/models but for those we formulated the model in terms
of encounter frequencies for each site (a multinomial vector
that is site specific). We modeled the latent N; variables as
Poisson (or NB, etc..)

* Inthose models there is no INDIVIDUAL IDENTITY (only a site
identity)

* DA gives us an alternative formulation of the model that

preserves individual identity so that we may model individual
effects in addition to site effects



Data Augmentation (DA)

Conceptual approach

 The idea of DA is to stack all of the site-specific individual encounter history
data sets into one large data set (the “stacked data set”) and treat the data
set as a single capture-recapture data set. Now N is the population size of
the “pooled population”. That is, the population size among all sampled

y <- as.matrix(alfl[,c("intervall","intervall2","interval3")] )

intervall interval? interval3

sites.
head (y)
[1,] 1
[2,] 1
[3,] 0
(4, ] 1
[5,] 0
[6,] 1

site <- as.numeric(alfls$id)

head(site)

(11 1 1 2 2 2 2

1
0
1
1
1

0

1
1
1
1
1
1

# Each row = individual
it ALL SITES POOLED



Data Augmentation (DA)

Conceptual approach

e What is the model for the “stacked” data set?

* Main technical challenge: N is unknown! DA is meant
primarily to deal with the unknown N problem.

)

* First we switch topics and talk about analyzing “basic’
capture-recapture models using DA to make the core
methodological idea clear.



Sampling a closed population

A typical closed
population sampling

data set: Here we sampled a population of size
_ N repeatedly (J= 5 times) and

Ind. |- occasion -| observed n = 8 individuals. We wish
. 010 11 to estimate N. How do we do that?
2 0 01O00O0
3 11000 Models MO, Mh, Mt, Mb, Mbh, Mth,
4 00110 Mbth, Individual covariate models
5 01111 Mx, etc..
6 00110
7 11111 This is just one “Site” (sampling of
8 10110 one population)



Bayesian analysis of closed capture-
recapture models: The basic problem of
variable dimension data/parameters

If N is known, CR model is just a logistic But N is not known. Conceptually we
regression: . .
could just put a prioron N, e.g., N~
Dunif(0, 1000), and analyze the model

del
model { using standard methods of MCMC

~dunif (0, 1 i [
p~dunif ( ) However, the size of the data set, N, is a

parameter of the model so as N is
updated in the MCMC algorithm the
size of the data set must change. Can’t
do this in WinBUGS/JAGS.

for (i in 1:N){
for( jJ in 1:J) {
y[i,3]~dbern (p)
}
}



Bayesian analysis of closed population
models

 Prior distributions:

— N ~ Dunif(0, M), for M some big number (Fixed)
— p ~ uniform(0,1)

 Not amenable to a naive implementation by MCMC (esp in
BUGSs/JAGS) because N, a parameter, which is the size of
the data set, which has to be fixed! Also “variable
dimension parameter space”

Therefore:
* RIMCM/”Trans-dimensional” Gibbs sampling
* Data augmentation <- easier, can be done in BUGS



Data augmentation: Heuristic

N ~ Dunif(0,M) implies a “data set” with M-n all-zero encounter
histories. Some of the y=0 observations correspond to real
individuals and some of them do not.

— Same as:
* N|Yy ~ Bin(M,y) ## KEY POINT!
e Y ~ uniform(0,1)

Implementation: We add too many zeroes to the dataset — creating a
zero-inflated version of the known-N dataset

Model for the augmented data set is a zero-inflated binomial

THIS IS AN OCCUPANCY MODEL!



Heuristic development

Occupancy data Closed pop. sampling Closed pop. + DA
Site |- occasion -| Ind. |- occasion -| Ind. |- occasion -|
1 01011 1 01011 1 01011
2 00100 2 001 0O 2 0 01 0O
e L 00110 L 00110
4 00110 5 01111 5 01111
> 01111 6 00110 6 00110
6 00110 7 11111 7 11111
711111 8 10110 8 10110
00000 00O0UO0TOO
00000 00 00D
00000 0 00O0D O
00000 0 00O0D O
00000 M 000O0TP O
M 00000
Zeros are NOT Bound N <= M where
observed. How many M is fixed.
Zerosar(?l(?bsezved.Allocate “sampling” zeros are Treat Model MO as an
zeros to “fixed” and there?

: occupancy model.
llsampllng" p y



DA and occupancy models

DA makes capture-recapture models the same as
occupancy models.

* The parameter ) replaces population size N. They
are related as follows: N ~ Binomial(M,)

* Occupany model is implemented at the individual
level by introducing latent occupancy state
z;~ Bern(y)



Why can we do this?

N~ Unif(0,M)

* Same as:
— N]psi ~ Bin(M, psi) M = fixed
— psi ~ uniform(0,1)

This 2-part prior implies: N ~ Uniform(0,M) , standard distribution
theory result

* Same as:
— z[i] ~ Bern(psi) for i=1,2,...,M “data augmentation variables”
— yl[i] ~ Bern(p*z[i])
— psi ~ dunif(0,1) “data augmentation parameter”

* The augmented data create a super-population of
individuals available to be “recruited” by the MCMC
algorithm.



Fit model MO in BUGS/JAGS using DA
2 formulations of Model MO in BUGS:

Encounter frequencies Binary encounter events
model { model {
psi~dunif(0, 1) psi~dunif(0, 1)
p~dunif(0,1) p~dunif(0,1)
for (i in 1:M){ for (i in 1:M){
z[i]~dbern(psi) z[i]~dbern(psi)
tmp[i]<-p*z[i] for(k in 1:K){
y[i]~dbin(tmp[i], K) tmp[i, k]<-p*z[i]
} y[i,k]~dbin(tmp[i, k],1)
N<-sum(z[1:M]) }

} )
N<-sum(z[1:M])

}



Data Augmentation (DA)

Analysis of ALFL data using DA

y <- as.matrix(alfl[,c("intervall","interval2", "interval3") ]

intervall interval? interval3

head (y)

[1,] 1
[2,] 1
[3/] 0
[4,] 1
[5,] 0
[6,] 1

site <- as.numeric(alfls$id)

head(site)
[1] 1L 1 2 2 2 2

1
0
1
1
1

0

1
1
1
1
1
1

# Each row = individual

#

ALL SITES POOLED

)



Work session

* Analysis of the ALFL data by data
augmentation



DA for site-structured models

* Change of notation!!!

* |f we have data classified by both site and
individual... we need a new indexing scheme

— [ = individual (not site)
— § = site



DA for site-structured models

 DA: The key idea of DA is to preserve an individual-level
formulation of capture-recapture models which can be
analyzed easily by MCMC (i.e., in BUGS).

* DA: we analyze the “stacked” data set. Take the data set
from each site and pile them up on top of each other.

e We also have site-structured data.

— Introduce an individual covariate g[i] (g for “group”) which
determines the site membership of each individual i

— In BUGS: gli]~ dcat(probs][ ])



DA for site-structured models

e We also have site-structured data.

— Introduce an individual covariate g|i] (g for
“eroup”) which determines the site membership of
each individual i

— In BUGS: gli]~ dcat(probs[])

* When we use DA to analyze models the “site
membership” of individuals appears as a
categorical individual covariate



DA for site-structured models

e Individual site covariate: gli]~ dcat(probs[])
* What is probs|] ????

* Derives from the assumption for N,



DA for site-structured models

. Group membership has a categorical distribution g; ~ Categorical(t) with cell probabilities

Ag

where 4, is the mean of the Poisson abundance just as in an ordinary multinomial or jN-mixture
model.

. The data augmentation parameter ¥ is derived from the A; parameters in the following way:

DA
&

V=M



The end



