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8.1 INTRODUCTION
Distance sampling (DS) is one of the most widely used statistical methods in ecology for estimating
density or population size (Burnham et al., 1980; Buckland et al., 2001, 2004a; Williams et al., 2002).
There is an enormous body of literature, which the two classics by Buckland et al. summarize suc-
cinctly. Clearly, our aim here is not to try and present an exhaustive overview of distance sampling but
rather to summarize the salient features of this important methodology, in order to show how it fits into
the larger picture of hierarchical modeling of spatially indexed abundance data.

Conventional distance sampling (CDS; Buckland et al., 2001) uses information on observed dis-
tances of animals from transect lines or observation points to characterize the detection probability of
individuals. Under the eminently plausible hypothesis that detection probability is related to the
distance between animals and the observer, one may obtain an estimate of absolute density. Often
sampling is done from boats or planes in open environments and thus animals that are amenable to
such sampling are widely studied using distance sampling methods, including ungulates, whales, and
other marine mammals. More recently, CDS methods have become very popular in the sampling of
birds using point counts (Buckland et al., 2001; Rosenstock et al., 2002). In point count surveys,
distances are recorded from a point of observation (instead of along a transect), and this is usually
referred to as point transect sampling. In this chapter, we use the terms ‘point count’ and ‘point
transect’ synonymously. Distance sampling methods are attractive because they do not require that
individuals be uniquely marked and recaptured (or resighted) through time. Furthermore, unlike most
capture-recapture models (but not spatial capture-recapture models), distance sampling requires only a
single sample of the population, making it “cheaper” in terms of logistics (because a single visit to a
site is enough) and modeling (because no closure assumption is needed). Finally, distance sampling is
one of the only methods, along with spatial capture-recapture (Royle et al., 2014), which accom-
modates the basic problem of unknown sample area (see also Section 6.10).

The main assumptions of the CDS method are: (1) animals are distributed uniformly in space, (2)
detection probability is a function of distance and is equal to 1 at distance 0, (3) individuals are
detected at their original location, i.e., there is no responsive movement, and (4) distances are
measured without error. Usually assumption (1) is not stated explicitly but, instead, it is assumed
that sample points or transects are distributed randomly (Buckland et al., 2001, p. 29). As far as the
mechanics of distance sampling are concerned, these two are effectively equivalent assumptions about
the system, the former being a model-based version of random sampling of individuals, the latter being
more of a design-based argument.

Conventional distance sampling has been a popular sampling method for many decades. However,
historically little attention has been paid to modeling spatial variation in abundance using distance
sampling methods. While it has been standard practice to obtain distance sampling data at multiple
sample units using essentially the type of meta-population design we have encountered in Chapters 1,
6 and 7, the data from such replicate samples have typically been pooled in order to estimate
parameters of the detection probability model. Thus, information about, or explicit attention to, factors
that influence abundance among sites has been neglected. This is unfortunate because spatial or
spatiotemporal patterns in abundance are often the primary interest of ecological studies!

This is not to say that information from replicate sample units is not used at all in CDSdindeed, the
spatial replicate sample units are used to estimate the encounter rate variance, i.e., the variance in ns
(number of encountered individuals) among replicate units s ¼ 1, 2, ., S. This provides a sort of
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nonparametric variance estimator while, on the other hand, in a formal hierarchical modeling
framework, we use parametric models to describe variation in abundance among sample units. Instead
of pooling data as in CDS, we think it makes sense, following the basic ideas of Chapters 6 and 7, to
provide an explicit model for the variation of local population size Ns, the population size for spatial
sampling unit s. We call this hierarchical distance sampling (HDS). By specifying a model for this
latent variable, we can then build explicit models for distance sampling data that account for variation
in population size (or local density) among sample units, thus facilitating inference about factors that
influence spatial variation in abundance or the making of explicit spatial predictions of abundance.

While conventional distance sampling is very mature and established in ecology and wildlife
science, HDS has only existed for a few years. There are two key conceptual papers that develop ideas
of HDS. Hedley and Buckland (2004) adopt a two-stage estimation procedure where they use the usual
distance sampling model for observed distances to estimate detection probability, pooling the data
among sample units, and then in a second-stage procedure they fit a model (e.g., a Poisson GLM with
an offset being a function of the probability of detection) to the observed count of individuals ns for
each of s ¼ 1, 2, ., S sample units. Miller et al. (2013a) call this methodology density surface
modeling and describe an R package named dsm and the implementation of this in the popular program
Distance (Thomas et al., 2010). Royle et al. (2004) develop HDS as a formal hierarchical model in
which the two components (detection and abundance) are simultaneously estimated in a single hier-
archical model exactly analogous to the binomial or multinomial N-mixture model framework of
Chapters 6 and 7. The HDS methodology is implemented in unmarked using the distsamp and
gdistsamp functions and is the topic of this chapter and the next. We note that in this chapter we will
temporarily deviate from our usual notation and for now index sites by s for s ¼ 1,., S. The reason is
that we also need to index individuals, for which we will use index i, with i ¼ 1, ., M, where M will
usually be the number of individuals in an augmented data set; see below.

Since 2004, only a trickle of papers have appeared that develop HDS ideas or provide novel
implementations. Chelgren et al. (2011b) and Moore and Barlow (2011) appear to be the first to do a
Bayesian analysis of an HDS model in BUGS. Chelgren et al. (2011b) contains quite a few novel ele-
ments. They formulate an HDSmodel in continuous space (using the “ones trick” in BUGS) and provide
a three-part hierarchicalmodel with a binomial observationmodel for nsjNs, a Poisson model for Ns, and
then the ordinary distance sampling model for the observed distances conditional on ns. They also
accommodate within-unit heterogeneity in density by zeroing out “nonhabitat” in the sampled region.
Moore and Barlow (2011) have a temporal dimension and embed an exponential population model into
their distance sampling observation model and also model group size (see also Pardo et al., 2015).

Shirk et al. (2014) adopt the Chelgren et al. formulation of the model and provide a nice application
to sampling chameleons. Oedekoven et al. (2013) also use a variation of the three-part formulation of
the HDS model but remove N from the model by summation to reduce this to a two-part model.
Schmidt et al. (2012) and Schmidt and Rattenbury (2013) fit HDS models with variation in group size
in BUGS using data augmentation (DA). They may be the first to use “S-fold data augmentation,” i.e.,
doing DA for each (transect) population and then linking the different transects by modeling the data
augmentation parameter j (see also Tenan et al., 2014b). Sillett et al. (2012) develop an application of
likelihood-based HDS with covariates on detectability (e.g., the parameter s of some detection
function) and E(N), and considered Poisson and negative binomial abundance models. This is the first
paper using unmarked’s gdistsamp function. Chelgren et al. (2011b) and Shirk et al. (2014) included
effects on s in the context of Bayesian HDS models. Conn et al. (2012) develop a combined double-
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observer HDS model with group structure and a CAR formulation of spatial correlation, using a
Bayesian analysis conducted with a custom MCMC algorithm implemented in R package
hierarchicalDS. Amundson et al. (2014) develop an HDS model with time of removal and individual
level effects (see Chapter 9). Finally, Niemi and Fernandez (2010) develop a spatial point process
model for line transect data and Johnson et al. (2010), including their R package Dspat, develop a
similar model (see also ver Hoef et al., 2014, and Pardo et al., 2015).

In this chapter we begin with a fairly detailed introduction to basic ideas of distance sampling
models, absent the hierarchical structure of having multiple spatial sample units, i.e., conventional
distance sampling, as it is covered in the classic textbook by Buckland et al. (2001) and implemented
in the widely used Distance software (Thomas et al., 2010). We do this so that we can introduce the
reader to the mechanics of formulating the distance sampling model, simulating data, and fitting the
model for the two standard sampling contexts: (1) transects and (2) point counts (“point transects”).
For both cases we consider both continuous and “binned” distance measurements. These are statis-
tically equivalent models as the number of bins gets large, but the practical issues of their analysis, and
especially their implementation in BUGS, are very different. Hence, it’s useful to see and experiment
with both formulations. In addition, there are technical distinctions having to do with whether we adopt
a conditional or full likelihood formulation of the model, and also whether we analyze the data by
classical likelihood or Bayesian analysis. We first cover all of these various manifestations of the
conventional (nonhierarchical) distance sampling (CDS) model.

Only once these basic principles have been developed dowe extend the ideas to hierarchical distance
sampling, where we use hierarchical models to combine the data from sampling at multiple locations
formally into a single joint model. The distance sampling protocol, combined with a model for abun-
dance, produces what we’ll call the hierarchical distance sampling (HDS) model. When continuous
distance sampling measurements are binned into distance classes, a multinomial observation model is
produced. Therefore, the multinomial mixture models of the previous chapter can be applied with only
some minor technical modifications that we have to consider when computing the multinomial cell
probabilities.

8.2 CONVENTIONAL DISTANCE SAMPLING
We first develop the basic concepts and technical details of “classic” distance sampling without
thinking about spatial replication and hierarchical models. A simple way to motivate distance sampling
is to think about our heuristic estimator of N derived by solving the relationship

EðnÞ ¼ pN:

Therefore, we can estimate N from a sample count n and an estimate of p, the probability that an
object (i.e., animal) appears in our sample of size n. The idea of distance sampling is to estimate p by
modeling detection probability of objects as a function of distance x from the object to an observer
recording data at a point or walking along a transect. This is done by specification of some function, the
“detection (probability) function,” g(x; q), describing detection probability as a function of distance x
and parameter(s) q. That is, the detection function is a model for the probability of detection of an
object conditional on its distance from the observer x, i.e., gðx; qÞ ¼ Prðy ¼ 1jxÞ in our usual notation
of conditional probabilities, where y is a Bernoulli trial indicating detection (y ¼ 1) or nondetection
(y ¼ 0). The traditional notation can be a little confusing because if we just write g(x; q) then it looks
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like this could be a probability distribution for x, which it is notdrather it is the parameter of a
Bernoulli probability mass function for a variable y, whether or not an object is detected conditional on
x. This is why we will write this as Prðy ¼ 1jxÞ when we want to be clear that it is a probability of an
event, that is, of being detected.

How is p related to this detection function g(x; q)? It is the marginal or average detection prob-
ability (therefore we write p instead of bp ), which is the probability that an individual in the population
at large appears in the sample, and it is computed by averaging g(x; q) over all possible values of x.
Formally, the calculation is

ph Prðy ¼ 1Þ ¼
Z
x

gðx; qÞ½x�dx ð8:1Þ

Note that the averaging is being done with respect to a probability density for x, denoted here by [x]
(using our established bracket notation), although we have yet to specify this quantity. Thus, the basic
distance sampling model has two explicit and essential components:

1. The “observation model,” which describes how individuals appear in the sample, characterized by
the function g(x; q).

2. The “process model,” [x], which describes how objects in the population are distributed with
respect to the observer or the transect.

Conventional distance sampling adopts an explicit and intensive focus on inference about
component (1), typically considering many and fairly complex models for the detection function and
choosing among those by AIC (e.g., Miller and Thomas, 2015). Historically, very little attention has
been focused on modeling the “process,” i.e., the probability distribution [x]. Conversely, HDS adopts
an explicit focus on modeling [x] as we will see later in this chapter. It may seem like we’re making a
big deal about this because how can “distance from observer” be any kind of meaningful ecological
process? Well, in and of itself it is not, but, in specific cases, the distribution of [x] is precisely
equivalent to the distribution of objects in space, and models for such things are usually called point
process models (Illian et al., 2008; Wiegand and Moloney, 2014). In a sense then, HDS is all about
merging an “observation model” that describes the detection of individuals conditional on where they
are located during sampling with a “process model” that describes where the individuals are located.

Before elaborating on that concept in more detail we discuss how to obtain p from a sample of
distance data obtained by surveying a transect and recording distances to each of n objects that are
detected. Conceptually, we think it is extremely helpful to think about distance sampling as a logistic
regression capture-recapture problem by introducing a population of N individuals each characterized
by a pair of random variables (yi, xi) where yi is a binary indicator of whether we captured (or
observed) that individual with yi ¼ 1 meaning “captured” and yi ¼ 0 “not captured,” and xi is the
distance from the observer to the individual at the instantaneous time of sampling. Given the popu-
lation of N (y, x) pairs, we only observe (y, x) for those n individuals having y ¼ 1. So our “data” for a
distance sampling study consist of the sample of distances x1,.,xn that appear in our sample condi-
tional on the event that y ¼ 1 (i.e., that the individual was detected).

To obtain the likelihood for a sample of distances we need to identify the probability distribution of
the observed distances x, which is to say the probability distribution of x conditional on the event
y ¼ 1. This can be calculated from a simple application of Bayes’ rule. The observed data are the
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values of x for which y ¼ 1, and thus we seek to identify the probability distribution ½xjy ¼ 1�. Bayes’
rule tells us that

½xjy ¼ 1� ¼ ½y ¼ 1jx�½x�
½y ¼ 1�

where ½y ¼ 1jx� is the function that we choose to model detection probability as a function of dis-
tancedthe “detection function.” The other two components require some specific discussion and
analysis: (1) [x] is the population distribution of distances. Therefore we must specify this probability
distribution in order to compute ½xjy ¼ 1�. (2) Once we specify the probability distribution [x], then we
can compute the denominator directly as ½ y ¼ 1� ¼ R B0 ½ y ¼ 1rx�½x�dx. This is the average probability
of detection over the interval [0, B], where B represents some maximal distance out to which in-
dividuals are counted. So, the probability density for distance observation xi is the following:

½xiryi ¼ 1� ¼ gðxi; qÞ½x�R
x
gðx; qÞ½x�dx ð8:2Þ

for whatever distribution for [x] we choose.
What sorts of distributions make sense for x? To gain some intuition about this we note that the

distribution for x is essentially a prior distribution on “distance from observer,” and it can be derived
equivalently from a prior distribution on the location of individuals in the surveyed region. To make
life simple here we first assume that the survey is done along a linear transect of length L so that we can
imagine the surveyed region is a long rectangle with a line running down the middle. We will assume
that individuals are only counted up to some maximum distance, say B, and so the surveyed region is a
rectangle of dimension L � 2B. Lacking specific knowledge to the contrary, it is sensible to assume
that individuals are distributed uniformly over the sampled rectangle. Let’s define the individual
locations by the coordinates ui for i ¼ 1, 2, ., N. As it turns out, if individuals are uniformly
distributed in space, then their distances to a transect (but not to a point, see below) also have a uniform
distribution on the interval [0, B], i.e., the density [x] ¼ 1/B.

One of the important concepts of distance sampling is that the observed distances are biased with
respect to the population distribution [x]. The conditional density in Eq. (8.2) makes it clear that the
density of observed x should be proportional to the detection function. So if we simulate data under a
half-normal detection model (with scale parameter s, see Figure 8.1 left) the distribution of the
observed distances, represented by blue histogram shown in Figure 8.1 (right), is clearly not uniform.

Under the assumption that individuals are uniformly distributed in space, so that distances are
uniformly distributed on the interval [0, B], [x] cancels from the numerator and denominator of the
conditional distribution given above and therefore does not further influence the likelihood contri-
bution of each xi (for point count data, things are slightly different in the sense that x doesn’t cancel
from the likelihood; see below). The likelihood for n observed distances is therefore

Lðx; qÞ ¼
Yn
i¼1

gðxi; qÞR
x
gðx; qÞdx ð8:3Þ

which we maximize to obtain bq. It is worth pointing out that in order to evaluate the likelihood we have
to do a numerical integration of the detection function over the support of x, the interval [0, B]. This is a
key calculation because the integral in the denominator is also the average probability that an
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individual in the population is encountered, i.e., p from Eq. (8.1), and thus it is instrumental to
“converting” n to bN . Once we obtain MLEs of the model parameters bq, we evaluate the expression
p ¼ ½y ¼ 1� ¼ Rx½y ¼ 1

��x�½x�dx, which is the marginal (or average) probability of detection, and we can
get an estimate of N directly by bN ¼ n=bp. It is customary in distance sampling not to estimate N but,
rather, to estimate density D, which is related deterministically to N by dividing by the sampled areabD ¼ bN=ð2 � L � BÞ ¼ n=ð2 � L � B � bpÞ. The denominator here is the effective sample area (more
commonly B � bp is called the effective strip half-width for transect sampling, see Buckland et al.,
2001, p. 53).

We make four remarks here:
Remark 1: Density and abundance. Conventional distance sampling is talked about almost

exclusively in terms of estimating density, D ¼ N/A, where A is the area over which animals were
counted. This area is not usually precisely defined; however, it is implicit in the estimation (i.e., buried
under the hood) because formal bounds of integration for a distribution of distance must (usually) be
specified, and this effectively implies an area A. We discuss this shortly. As a technical matter,
estimation of N or D are statistically equivalent problems.

Remark 2: Realized versus expected abundance. In general, whenever an explicit model is placed
on the unknown parameter N, this induces a distinction between realized and expected abundance and
density (Efford and Fewster, 2013; Dorazio, 2013; Section 5.7.3 in Royle et al., 2014). Expected
population size is E(N) where the expectation is with respect to the distribution of N. Expected density
is E(N)/A. The interpretation of these expected quantities is as the mean value of some hypothetical
unit to which our model applies.

Remark 3: Replicate transects. Normally we have distances observed from multiple spatial units
(transects, points), whereas we have so far only described the situation as if we had only a single spatial

FIGURE 8.1

Half-normal detection function for two different values of s (left: s ¼ 30 (solid) and s ¼ 60 (dashed)) and

(right) histogram of a sample of true (gray) and observed distances (blue) for s ¼ 30; see Section 8.2.3 for

R code (function sim.ldata).
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unit. Having multiple spatial sample units does not change the fundamental estimation problem nor the
mechanics of how we achieve it in CDS. In this case, we simply pool all of the distances into one data
set and do the analysis as just outlined. We show this with simulated data below.

Remark 4: The uniformity assumption. We stated an explicit assumption that distances from the
transect are uniformly distributed. This is induced by the equivalent assumption that animal locations
are distributed uniformly in two-dimensional space. However, sometimes formal distance sampling
developments do not state such assumptions about distances or points or else they make general claims
that they are not necessary. Instead, uniformity can be induced by design by randomly locating
transects (Barry and Welsh, 2001). Our view is that the model assumption and sampling assumption
yield equivalent statistical procedures, and so we’re not too concerned with how you describe them.

8.2.1 THE FULL LIKELIHOOD
The previous section described estimation of N by first estimating the detection function parameter q
from the likelihood for the observed distances constructed for the n observations, a procedure that is
naturally conditional on the event that y ¼ 1. As a result, this is usually called the “conditional
likelihood,” and the estimator of N obtained by “adjusting” n is the conditional estimator of population
size. However, it is also common in practice to use the so-called full likelihood (Borchers et al., 2002;
p. 232 in Royle and Dorazio, 2008), which recognizes that n is also a stochastic outcome of the study
and should be modeled. The distribution of n is

nwBinomialðN; pÞ
and to obtain the full likelihood we simply multiply the conditional likelihood by the binomial
component for n. This yields (note: we leave the [x] part in the conditional likelihood for a moment,
instead of canceling it from both numerator and denominator):

Lðs;NÞ ¼
(Yn

i¼1

gðxi; qÞ½x�R
x
gðx; qÞ½x�dx

)
N!

n!ðN � nÞ!p
nð1� pÞN�n

where after some factorizing, canceling, and rearranging, we are left with:

Lðs;NÞ ¼ N!

n!ðN � nÞ!

(Yn
i¼1

gðxi; qÞ½x�
)
ð1� pÞN�n: ð8:4Þ

This resembles the usual full likelihood for every other capture-recapture type of model and, in
particular, the individual covariate models (Borchers et al., 2002; Section 7.1 in Royle and Dorazio,
2008). Therefore, we can understand distance sampling as a special type of capture-recapture model
where only a single (J ¼ 1) sample is taken, and there is an individual covariate, distance x, measured on
each observed individual. The full likelihood can be maximized to obtain the MLE of q and N.

8.2.2 MODELS OF DETECTION PROBABILITY
So far we have just talked about the general concepts and mechanics of distance sampling and how to
construct the likelihood of observed distances. However, much of practical distance sampling is
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focused on the encounter probability model g(x; q) and, in particular, choosing among large classes of
detection probability models to find models that fit the observed distance distribution (usually in the
AIC sense). Here, we don’t go into a catalog of types of models but simply mention that some common
models include the following:

“half normal” g(x; s) ¼ exp(ex2/2s2)

negative exponential g(x; s) ¼ exp(ex/s)

hazard rate g(x; s, b) ¼ 1 � exp(�h(x; s, b))
where h(x; s, b) ¼ 1 � exp(�(x/s)�b)

One key feature of these standard models is that they represent monotone decreasing functions of
distance with one or two parameters. Another key feature is they all have a known intercept of 1, i.e.,
g(0) ¼ 1, which is a requirement of conventional distance sampling models when we have no other
ancillary data. We discuss generalizing this shortly (Alpizar-Jara and Pollock, 1996; Borchers et al.,
1998). Why is it required that g(0) ¼ 1? Think about the definition of p:

p ¼ Prðy ¼ 1Þ ¼
Z
x

½y ¼ 1rx�½x�dx

If our model for ½y ¼ 1rx� had some arbitrary intercept, say ½y ¼ 1jx� ¼ a � kðx; sÞwhere k() was itself
some function such that k(0) ¼ 1, then the constant intercept a would be confounded with a level shift
in density, i.e., a detection model with intercept a and density [x] ¼ 1/(2 � L � B) is equivalent to a
detection model with intercept 1 and density a/(2 � L � B). The two are indistinguishable and, in fact,
a just cancels from the conditional likelihood expression (Eq. (8.2)). In other words, an intercept in the
detection function in CDS is not estimable using standard data for this design.

8.2.3 SIMULATING DISTANCE SAMPLING DATA
We demonstrate some of these basic distance sampling concepts by simulating an imaginary popu-
lation of the extinct Chihuahuan musk oxen along a transect of length L ¼ 10 km. We subject the
individual musk oxen to detection by an observer traversing the transect and use a half-normal
detection probability function (Figure 8.1). All of this goes according to the following:

strip.width <- 100 # one side of the transect, really half-width
sigma <- 30 # Scale parameter of half-normal detection function

# Define half-normal detection function
g <- function(x, sig) exp(-x^2/(2*sig^2)) # Function definition
g(30, sig=sigma) # Detection probability at a distance of 30m

# Plot the detection function
par(mfrow=c(1,2))
curve(g(x, sig=30), 0, 100, xlab="Distance (x)", ylab="Detection prob.", lwd = 2, frame = F)
curve(g(x, sig=60), 0,100, add=TRUE, lty = 2, lwd = 2)
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# Define function to simulate non-hierarchical line transect data
sim.ldata <- function(N = 200, sigma = 30){
# Function to simulate line transect data under CDS.
# Function arguments:
# N: number of individuals along transect with distance u(-100, 100)
# sigma: scale parameter of half-normal detection function
# Function subjects N individuals to sampling, and then retains the value
# of x[distance only for individuals that are captured
par(mfrow = c(1,2))
# Plot the detection function
curve(exp(-x^2/(2*sigma^2)), 0, 100, xlab="Distance (x)", ylab="Detection prob.", lwd =
2, main = "Detection function", ylim = c(0,1)) # Plot detection function as function of sigma
text(80, 0.9, paste("sigma:", sigma))
xall <- runif(N, -100,100) # Distances of all N individuals
hist(abs(xall), nclass=10, xlab = "Distance (x)", col = "grey", main = "True (grey) \nand
observed distances (blue)") # Histogram of distances
g <- function(x, sig) exp(-x^2/(2*sig^2))
p <- g(xall, sig=sigma) # detection probability
y <- rbinom(N, 1, p) # some inds. are detected and their distance measured
x <- xall[y==1] # this has direction (right or left side of transect)
x <- abs(x) # now it doesn't have direction
hist(x, col = "blue", add = TRUE)
return(list(N = N, sigma = sigma, xall = xall, x = x))
}

# Obtain a data set for analysis
set.seed(2015) # If you want to get same results
tmp <- sim.ldata(sigma = 30) # Execute function and assign results to 'tmp'
attach(tmp)

We see that the blue histogram in Figure 8.1 vaguely resembles the half-normal detection prob-
ability function (you can increase the resemblance greatly by increasing N, e.g., to 10^6). Next, we will
obtain the maximum likelihood estimates of the half-normal parameter s (log-transformed to enforce
a positive value) from the simulated data. To do this we define an R function that evaluates the
conditional and full likelihoods and use optim to minimize the negative log-likelihood in each case.

# Conditional likelihood
Lcond <- function(lsigma){ # Define conditional nll

sigma <- exp(lsigma)
-1*sum(log(g(x,sig=sigma)/integrate(g, 0, 100, sig=sigma)$value/100))

}

# Call optim to maximize conditional likelihood
optim(log(30), Lcond, hessian=TRUE, method="Brent", lower=-5, upper=10)
$par
[1] 3.257716

$value
[1] 626.8964

[ . output deleted . ]
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# Full likelihood
Lfull <- function(parm){ # Define full nll

sigma <- exp(parm[1])
n0 <- exp(parm[2])
N <- length(x)+ n0
pbar <- integrate(g, 0, 100, sig=sigma)$value/100
-1*( lgamma(N+1) - lgamma(n0+1) + sum(log(g(x,sig=sigma)/100)) + n0*log(1-pbar) )

}

# Call optim to maximize full likelihood
optim(c(log(30), log(4)), Lfull, hessian=TRUE)
$par
[1] 3.259401 5.012220

$value
[1] 50.31808

[. output deleted .]

In the first case, we get the MLE of log(s), which we have to convert to the MLE of p and then
compute bNc ¼ n=bp. In the second case, we get the MLE of N directly by maximizing the full
likelihood. Or rather, in this case, we estimate the logarithm of n0 ¼ N � n and then have to back-
transform and add back n to it for an estimate of N. To convert estimates of density we need simply
divide the estimates of N by the area of the transect, which was 10 km long and 0.2 km wide (100 m on
either side) ¼ 2 km2. This is all done as follows:

pbar <- integrate(g, 0, 100, sig=exp(3.26))$value/100
n <- length(tmp$x)

(Nhat.condl <- n/pbar)
[1] 223.6231
(Dhat.condl <- Nhat.condl/(10*.2))
[1] 111.8115

n0hat <- exp(5.01)
(Nhat.full <- n + n0hat)
[1] 222.9047
(Dhat.full <- Nhat.full/(10*.2))
[1] 111.4524

We find that the densities of Chihuahuan musk oxen are quite respectable this year, to say the least
(C. Amundson, pers. comm.), being on the order of 111 per km2. Perhaps we will open a harvest season.

8.2.4 BINNED DATA
It is common in applications of distance sampling to produce observations in distance bands. In that
case, the observation model is multinomial and therefore the multinomial N-mixture models, which we
developed in Chapter 7, are directly relevant. We develop the likelihood for this case here. Suppose
observations are recorded into h ¼ 1,2,.,H distance bands or strips on the intervals
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[b0,b1],(b1,b2],.,(bH�1,bH], where we define b0 ¼ 0 and bH ¼ B, the upper bound of recording dis-
tances. (Note that for pure notational convenience here we use H for the number of observed multi-
nomial categories, while in Chapter 7 it was for all categories.) Let yh be the frequency of encounters in
distance interval h, and let y ¼ (y1,.,yH) denote the vector of frequencies with n ¼P

h
yh. We assert

that the vector of observations y has a multinomial distribution:

yjNwMultinomialðN; fphgÞ
with parameters N and cell probabilities {ph}. The number of individuals not detected will be denoted
by n0 ¼ N � n, and the corresponding cell probability for these undetected individuals is
pHþ1 ¼ 1�PH

h¼1ph.
It remains to define the cell probabilities ph. These are, in words, “the probability that an individual

occurs and is detected in distance class h” (see Buckland et al., 2001, p. 52), which is also “the
probability that an individual is detected given that it occurs in class h times the probability that it
occurs in class h.” This is, using a formula,

Prðy ¼ 1 and x˛hÞ ¼ Prðy ¼ 1jx˛hÞPrðx˛hÞ
which we’ll simplify by writing

ph ¼ phjh

where jh is the probability that x is located in distance interval h, which is, for a line transect,
jh ¼ (bhþ1 � bh)/B, i.e., just the interval width over the transect half-width, and is implied by the
uniform distribution assumption. But what is Prðy ¼ 1jx˛hÞ? It is the integral over the distance band
of the detection function multiplied by the conditional probability of x, given that x is in distance
band h:

ph ¼
Z

x˛h

Prðy ¼ 1jx; x˛hÞPrðxjx˛hÞdx

Under the uniformity assumption x is also uniformly distributed in each interval, and so the
conditional pdf of x is ½xjx˛h� ¼ 1=ðbhþ1 � bhÞ. Putting this all together then, we just integrate the
detection function over the interval with an adjustment for area

ph ¼ ð1=BÞ �
Z

x˛h

Prðy ¼ 1jx; x˛hÞ:

In our on-going line transect example with the muskoxen suppose we use 10-m distance bands for
distances between 0 and 100 m. Then the conditional probability density of x is 1/10 for each 10-m
distance band, and we have to do the calculation

ph ¼
Zbh

bh�1

Prðy ¼ 1jxÞ=10 dx
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and then the multinomial cell probabilities are

ph ¼ jh ph ¼ ð1=10Þph
The last cell probability, p0, is 1 minus the sum of the rest: p0 ¼ 1�Pph. Thus, binned distance

data have a multinomial distribution with these cell probabilities and we can obtain the full likelihood
directly:

Lðs; n0; yÞ ¼ ðnþ n0Þ!
n!n0!

p
y1
1 p

y2
2 .p

yH
H p

n0
0 ð8:5Þ

where n ¼P yh.

8.2.4.1 Conditional and Other Likelihoods
The conditional likelihood is easily derived by noting that the distribution of detections among the H
distance classes, conditional on n, is also multinomial but with multinomial index n instead of N and
conditional probabilities pc

h ¼ ph=ð1� p0Þ. To uncondition on n, in order to obtain the full likelihood
again, we note that n w Binomial(N, 1 � p0) and so the full likelihood is the product of the
conditional likelihood and this binomial piece, which leads us back to Eq. (8.5). The point is,
the conditional multinomial and the binomial for n together are exactly equivalent specifications to
the multinomial likelihood in Eq. (8.5) (see Section 5.1.2 in Royle and Dorazio, 2008). In practice,
some may analyze the full likelihood by retaining the two individual pieces, although there is no need
to do this in most cases.

As a final point, we might think like a Bayesian here and assume that N is not a fixed number to
estimate but, rather, is itself the realization of a random variable. If N w Poisson(l), then this implies
precisely that n w Poisson((1 � p0)l), and we can estimate the parameter l instead of N. This
“Poisson integrated full likelihood” has the following form (see Royle et al., 2014, p. 192):

Lðq; lÞ ¼
(Yn

i¼1

gðxi;qÞ
)
lnexpð� lð1� p0ÞÞ

(see also Borchers and Efford, 2008). Instead of a Poisson prior for N we can consider a Binomial(M, j)
whereM is prescribed, similar in spirit to the model forN in data augmentation (DA; Royle and Dorazio,
2012). For large M this approximates the Poisson prior but it yields a different likelihood, having the
form (see Royle and Dorazio, 2008, p. 238): Yn

i¼1

jgðxi;qÞ
!

M!

n!ðM � nÞ!ð1� jð1� p0ÞÞM�n:

This binomial integrated form of the full likelihood is equivalent to the model we would analyze
using data augmentation (see below). These various considerations give us a number of essentially
equivalent ways to analyze distance sampling models with binned data. It is worth knowing of these
different formulations because one or another may have certain advantages in a given instance. For
example, in Bayesian analysis of the distance sampling model we use a method of DA that is easily
implemented in the BUGS language. The model implied by DA is the binomial integrated likelihood
just shown.
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8.2.4.2 Simulating Binned Distance Sampling Data
There are two ways to go about simulating binned distance sampling data, and we show both here. First,
we can simulate continuous-space data exactly as we have done beforewith function sim.ldata and then
aggregate into distance intervals. Second, we can simulate directly multinomial observations with cell
probabilities ph. Here is a script that does it both ways using a half-normal detection function. (To verify
that the same cell probabilities are produced, you could execute it with very large population size N).

set.seed(2015)
# Design settings and truth (population size N and detection function g)
interval.width <- 10
strip.width <- 100 # half-width really (one side of transect)
nbins <- strip.width%/%interval.width
sigma <- 30 # Scale parameter of half-normal detection function
g <- function(x, sig) exp(-x^2/(2*sig^2)) # Half-normal detection function
N <- 200 # Population size

# Method 1: simulate continuous distances and put into intervals
x <- runif(N, -strip.width, strip.width) # Distance all animals
p <- g(x, sig=sigma) # Detection probability
y <- rbinom(N, 1, p) # only individuals with y=1 are detected
x <- x[y==1] # this has direction (right or left side of transect)
x <- abs(x) # now it doesn't have direction

# Compute the distance category of each observation
xbin <- x %/% interval.width + 1 # note integer division function %/%

# Multinomial frequencies, may have missing levels
y.obs <- table(xbin)

# Pad the frequencies to include those with 0 detections
y.padded <- rep(0,nbins)
names(y.padded) <- 1:nbins
y.padded[names(y.obs)] <- y.obs
y.obs <- y.padded
y.true <- c(y.obs, N-length(xbin)) # Last category is "Not detected"

# Relative frequencies by binning continuous data (pi). These should compare
# with the cell probabilities computed below when N is very large
(y.rel <- y.true/N) # Last category is pi(0) from above
(pi0.v1 <- y.rel[nbins+1])
0.635

# Compute detection probability in each distance interval
dist.breaks <- seq(0, strip.width, by=interval.width)
p <- rep(NA, length(dist.breaks)-1)
for(j in 1:length(p)){

p[j] <- integrate(g, dist.breaks[j], dist.breaks[j+1],
sig=sigma)$value / (dist.breaks[j+1]-dist.breaks[j])

}
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round(p, 2)
[1] 0.98 0.88 0.71 0.51 0.33 0.19 0.10 0.05 0.02 0.01

# Compute the multinomial cell probabilities analytically. These are exact.
# psi = probability of occurring in each interval
interval.width <- diff(dist.breaks)
psi <- interval.width/strip.width
pi <- p * psi
sum(pi) # This is 1 - pi(0) from above
[1] 0.3756716
(pi0.exact <- 1-sum(pi))
[1] 0.6243284 # Compare with 0.635 above

# Method 2: Use rmultinom to simulate binned observations directly
# This includes 0 cells AND n0
pi[length(p)+1] <- 1 - sum(pi)
(y.obs2 <- as.vector(rmultinom(1, N, prob=pi)))
(y.obs2 <- y.obs2[1:nbins]) # Discard last cell for n0 (because not observed)

We see that, under this model, we expect to encounter about 38% of the individuals along the transect.
Now let’s take our simulated data and obtain the MLEs of the model parameters. Keep in mind that

we have only simulated a single multinomial sample, which we could think of as sampling one transect
of a certain length or multiple transects but then pooling the resulting data. Shortly we will get on to the
meta-population sampling context and consider having spatial replicates, but, for now we continue our
focus on the basic analysis of distance sampling data. The likelihood is just a multinomial, so if we
package up most of the previous simulation R code into a function that computes the likelihood, given
the parameter values, a multinomial data vector, and the distance breaks, then we can use optim or nlm
to obtain the MLEs. Note that the multinomial full likelihood must include the combinatorial term in N
and, as before, we parameterize the model in terms of the number of uncaptured individual n0 so that
N ¼ n þ n0. Note also that the observed multinomial frequencies may include zero counts in some
distance bands, and we must be sure to pad the observed data vector when appropriate.

Lik.binned <- function(parm, data, dist.breaks){
# Note that the parameters are parm[1] = log(sigma), parm[2] = log(n0)

sigma <- exp(parm[1])
n0 <- exp(parm[2])
p <- rep(NA, length(dist.breaks)-1)
for(j in 1:length(p)) {

p[j] <- integrate(g, dist.breaks[j], dist.breaks[j+1],
sig=sigma)$value / (dist.breaks[j+1]-dist.breaks[j])

}
psi <- interval.width/strip.width
pi <- p * psi
pi0 <- 1-sum(pi)

N <- sum(data) + n0
-1*(lgamma(N+1)-lgamma(n0+1) + sum(c(data,n0)*log(c(pi,pi0))))
}
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# Evaluate likelihood for some particular value of the parameters
Lik.binned(c(2,0), data=y.obs, dist.breaks=dist.breaks)
[1] 335.1482

# Obtain the MLEs for the simulated data
optim(c(2,0), Lik.binned, data=y.obs, dist.breaks=dist.breaks)
$par
[1] 3.263681 5.006211

$value
[1] -117.0331

The MLE of N is bN ¼ bn0 þ n ¼ expð5:006Þ þ n where n ¼P yh for the observed distance cat-
egories; this yields bN ¼ expð5:006Þ þ 73 ¼ 222:3063, not too far from the true data-generating value
of N ¼ 200 (and compare to the estimates of musk oxen abundance we obtained back in Section 8.2.3).
(Note the object y.obs2 simulated using the rmultinom function produces a different number of
observed individuals due to randomness of random number generation.) The point of this was to build
basic tools of simulating and fitting distance sampling data, for use later when we develop hierarchical
distance sampling models, and so we don’t do anything else with this for right now. At the same time,
simulating data sets using R provides another and, to some, perhaps more intuitive, description of the
basic distance sampling model than algebra.

8.2.5 POINT TRANSECT DATA
So-called “point transect data” are distance sampling data collected from circular point counts where
an observer stands at a point and records distance to detected individuals within some radius B.
Formulation of the likelihood for such data follows the same logic as for transect data, but this time the
natural probability density for distance x is not uniform. Recall that, in the transect case, if we assume a
uniform distribution of individuals, then distance is also uniform. But in the case of a circular sample
unit, the uniform distribution of individuals implies a triangular distribution for distance. We can
understand this by computing the cumulative probability distribution directly, noting that the proba-
bility that distance is less than any value x should be proportional to the area of a circle of radius x
relative to a circle of radius B. That is, the cumulative distribution function F of distance x is (note that
for clarity we use the uppercase X for the variable and x to represent a specific value):

FðxÞ ¼ PrðX � xÞ ¼ px2

pB2

The probability density is then obtained by differentiating with respect to x, i.e., f(x) ¼ vF(x)/vx,
which produces:

f ðxÞ ¼ 2x

B2

This triangular distribution has increasing probability density with distance from the center of the
circle, to account for the increasing area of successive annuli. Recall our general expression for the
conditional likelihood:

½xiryi ¼ 1� ¼ gðxi; qÞ½x�R
x
½y ¼ 1rx�½x�dx
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In the case of point transects [x] is not constant and so it does not cancel out from the numerator and
denominator and the likelihood has to retain the [x]h f(x) bit. Using the half-normal detection
function model, the contribution of each observed distance xi to the conditional likelihood looks like
this (note that 1/B2 cancels from numerator and denominator):

LðsjxiÞ ¼
exp
�
x2i
�
2s2
�
2xiR

x
expðx2=2s2Þ2xdx

Shortly we will simulate some data and fit the model using the conditional likelihood expressed as
an R function.

For binned point count data the vector of frequencies of encounters in each distance class,
including the cell “not encountered,” has a multinomial distribution with cell probabilities ph for
h ¼ 1,2,.,H distance classes, and the last cell, H þ 1, corresponds to “not encountered.” To
compute these cell probabilities we have to do the integrations over successive annuli of the circle,
and we have to make a smallish bit of math argumentation following our development in Section
8.2.4 above to do this. The multinomial cell probability ph is, in words, “the probability that an
individual is detected and in distance class h,” which is the same as saying, “the probability that an
individual is detected, given that it occurs in class h, times the probability that it occurs in class h.”
This is, using a formula,

Prðy ¼ 1 and x˛hÞ ¼ Prðy ¼ 1jx˛hÞPrðx˛hÞ
which we write simply as: ph ¼ phjh where jh is the probability that x is in distance interval h, which
is jh ¼ (Ahþ1 � Ah)/pB

2, where Ah ¼ prh
2 is the area of a circle having radius rh. So, jh here is just the

area of the annulus over the whole area of the point count circle. But what is Prðy ¼ 1jx˛hÞ? Our
expression from before had us compute this integral:

ph ¼
Z

x˛h

Prðy ¼ 1jx; x˛hÞPrðxjx˛hÞdx:

Under the assumption that individuals are uniformly distributed in space, x has the triangular
distribution on [0, B] as noted above. But for the interval it has a slightly different form; we have to
compute f ðxjx˛hÞ, which is f ðxjx˛hÞ ¼ f ðxÞ=Prðx˛hÞ, and it works out that the pdf of x is
½xjx˛h� ¼ 2x=ðb2hþ1 � b2hÞ. Also, jh ¼ ðb2hþ1 � b2hÞ=B2. Putting this all together, we just integrate the
detection function over the interval with an adjustment for area:

ph ¼ jh

Zbhþ1

bh

Prðy ¼ 1jx; x˛hÞ � 2x
.�

b2hþ1 � b2h

�
This might seem a bit conceptual, but let’s see how this looks in the form of an R function, which

we then apply to our point count situation:

# Define function to compute cell probs for binned distance sampling
cp.ri <-function(radius1, radius2, sigma){

Pi <- 3.141593
a <- Pi*radius2^2 - Pi*radius1^2
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integrate(function(x, s=sigma) exp(-x^2 / (2 * s^2)) * x, radius1,
radius2)$value *(2*Pi/a)

}

# Define distance intervals and compute multinomial probabilities
delta <- 0.5 # Width of distance bins
B <- 3 # Max count distance
dist.breaks <-seq(0, B, delta) # Make the interval cut points
nD <-length(dist.breaks)-1
sigma <- 1
p.x <-rep(NA,nD) # Conditional detection probabilities
for(i in 1:nD){

p.x[i] <- cp.ri(dist.breaks[i], dist.breaks[i+1], sigma =1)
}
area <- 3.141593 * dist.breaks[-1]^2
ring.area <- diff(c(0, area))
# Pr(detectionj in ring)*Pr(in ring)
cp <- p.x* ring.area/sum(ring.area)

These cell probabilities are used below to simulate data using the rmultinom function or to
construct the multinomial likelihood, which was given previously (for line transects) as,

Lðs; n0; yÞ ¼ ðnþ n0Þ!
n!n0!

p
y1
1 p

y2
2 .p

yH
H p

n0
0 :

Here, n ¼P yh, but we have to go through the gyrations of computing the cell probabilities ph for
the case of a circle instead of a nice rectangular transect.

8.2.5.1 Simulating Point Transect Data
To simulate point transect data we can simulate individuals uniformly on a 2B � 2B square and
then toss out those individuals located >B from the center point of the square. This produces
continuous distance data, which we can then bin into distance classes. Alternatively, we could
compute the multinomial cell probabilities and simulate multinomial (i.e., grouped) observations
directly using rmultinom. We show both in this section. First, we define a function that will simulate
a population of individuals on the square and return the required data objects and give summary plots
(Figure 8.2):

sim.pdata <- function(N=1000, sigma=1, B=3, keep.all=FALSE) {
# Function simulates coordinates of individuals on a square
# Square is [0,2*B] x[0,2*B], with a count location on the center
# point (B,B)
# Function arguments:
# N: total population size in the square
# sigma: scale of half-normal detection function
# B: circle radias
# keep.all: return the data for y [ 0 individuals or not
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# Plot the detection function
par(mfrow = c(1,2))
curve(exp(-x^2/(2*sigma^2)), 0, B, xlab="Distance (x)", ylab="Detection prob.", lwd = 2,
main = "Detection function", ylim = c(0,1))
text(0.8*B, 0.9, paste("sigma:", sigma))

# Simulate and plot simulated data
library(plotrix)
u1 <-runif(N, 0, 2*B) # (u1,u2) coordinates of N individuals
u2 <- runif(N, 0, 2*B)
d <- sqrt((u1 - B)^2 + (u2 - B)^2) # distance to center point of square
plot(u1, u2, asp = 1, pch = 1, main = "Point transect")
N.real <- sum(d<= B) # Population size inside of count circle

# Can only count indidividuals in the circle, so set to zero detection probability of
individuals in the corners (thereby truncating them):
p <- ifelse(d < B, 1, 0) * exp(-d*d/(2*(sigma^2)))
# Now we decide whether each individual is detected or not
y <- rbinom(N, 1, p)
points(u1[d <= B], u2[d <= B], pch = 16, col = "black")
points(u1[y==1], u2[y==1], pch = 16, col = "blue")
points(B, B, pch = "+", cex = 3, col = "red")
draw.circle(B, B, B)

# Put all of the data in a matrix:
# (note we don't care about y, u, or v normally)

if(!keep.all){
u1 <- u1[y==1]
u2 <- u2[y==1]
d <- d[y==1]

}
return(list(N=N, sigma=sigma, B=B, u1=u1, u2=u2, d=d, y=y, N.real=N.real))
}

# obtain a data set by distance sampling a population of N[1000 out to a distance of B[3
set.seed(1234)
tmp <-sim.pdata(N=1000, sigma=1, keep.all=FALSE, B=3) # produces Figure 8.2

attach(tmp)

Here we simulated a complete data set (Figure 8.2) but returned only the location coordinates of
each individual (u1, u2) and the observed distances for captured (y ¼ 1) individuals. We will use these
locations later in the chapter. For now, we develop likelihood analyses of the distance data. We start
by taking the data just simulated and “bin” them by using the integer division function %/%. To apply
this to our simulated distance data, we do the following (and note we must always make sure that we
have a vector of encounter frequencies that includes the zeros, i.e., the distance bins where nobody
was detected!).
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# Bin the data and tabulate the bin frequencies. Be sure to pad the 0s!
delta <- 0.5 # Width of distance bins
dist.breaks <-seq(0, B, delta) # Make the interval cut points
dclass <- tmp$d %/% delta +1 # Convert distances to categorical distances
nD <-length(dist.breaks)-1 # How many intervals do we have ?
y.obs <- table(dclass) # Next pad the frequency vector
y.padded <- rep(0, nD)
names(y.padded) <- 1:nD
y.padded[names(y.obs)] <- y.obs
y.obs <- y.padded

Next, we will simulate binned distance data with the rmultinom function which uses numerical
construction of the multinomial cell probabilities based on the cp.ri function defined in the previous
section:

cp <- c(cp, 1-sum(cp)) # Compute the last cell and add it to the vector

as.vector(rmultinom(n=1, size=1000, prob=cp))
[1] 25 59 74 53 25 9 755

We can check that these cell probabilities are in agreement with what we get when we simulate
continuous distance data and then bin them as follows: we simulate an extremely large data set (e.g.,
N ¼ 10 5̂) and compute the relative frequencies in each distance class. These should then be very close
to the multinomial cell probabilities obtained by numerical integration.

8.2.5.2 Likelihood Analysis of Point Transect Data
To do likelihood analysis of the point transect data, we define an R function that evaluates the
likelihood for a particular value of the parameter(s) and other arguments, such as the observed
distance data and the upper distance bound of counting B. Here we provide three versions of the

FIGURE 8.2

Plot of the simulation of point transect data (seeR code sim.pdata). (left) Form of detection function for chosen

value of sigma. (Right) Map of simulated point pattern. Locations of individuals inside of the maximum detection

distance (circle) are black, individuals detected are blue, and the point count location is at the red cross.
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likelihood: (1) the multinomial full likelihood for binned data; (2) the full likelihood for continuous
distance data; (3) the conditional likelihood for continuous data. (We omit the conditional likelihood
based on the binned data.) In the following block of code, we define the three likelihood functions and
then optimize each to obtain the estimated population size for the circular sample unit (note: you may
want to re-create the data set from above in case you overwrote stuff in your R workspace).

# (1) Define multinomial likelihood for binned data
Lik.binned.point <- function(parm, data, dist.breaks){

sigma <- exp(parm[1])
n0 <- exp(parm[2])
p.x <-rep(NA, nD)
for(i in 1:nD){

p.x[i] <- cp.ri(dist.breaks[i], dist.breaks[i+1], sigma =sigma)
}
area <- 3.141593 * dist.breaks[-1]^2
ring.area <- diff(c(0, area))
cp <- p.x* ring.area/sum(ring.area) # Pr(detectionj in ring)*Pr(in ring)
pi0 <- 1-sum(cp)
N <- sum(data) + n0
negLL <- -1*(lgamma(N+1)-lgamma(n0+1) + sum(c(data,n0)*log(c(cp,pi0))))

return(negLL)
}

# Fit model
mle1 <- optim(c(2,0), Lik.binned.point, data=y.obs, dist.breaks=dist.breaks)

# (2) Define full likelihood for continuous data
Lik.cont.point <- function(parm, data, B){

sigma <- exp(parm[1])
n0 <- exp(parm[2])
n <- length(data)
N <- n + n0
p <- exp(-data*data/(2*sigma*sigma))
f <- 2*data/(B^2)
pbar <- integrate(function(r, s=sigma) exp(-r^2 / (2 * s^2)) * r, 0, B)$value*2/(B^2)
negLL <- -1*sum( log(p*f/pbar )) -1*(lgamma(N+1) - lgamma(n0+1) +

n * log(pbar) + n0*log(1-pbar))
return(negLL)

}

# Fit model
mle2 <- optim(c(0, 5), Lik.cont.point, data=tmp$d, B=B, hessian=TRUE)

# Compare two solutions and with realized true value of N
(Nhat.binned <- length(tmp$d) + exp(mle1$par[2]))
[1] 792.9483
(Nhat.cont <- length(tmp$d) + exp(mle2$par[2]))
[1] 799.0507
tmp$N.real
[1] 797
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These are different by about 1%! It is tempting to regard the estimate under the continuous distance
model as being better, and, indeed, it is both closer to the truth and also the data were simulated in that
way, so in this case, it is. However, in practice, we don’t know the truth, and there is no theoretical
reason to prefer the continuous distance estimator to the binned estimator. They are alternative models
both being used as approximations to the truth, which we don’t know.

Finally, we provide the conditional likelihood for the continuous distance data, which only has a
single parameter s (for the half-normal model) to be estimated:

# (3) Define conditional likelihood for continuous data
Lik.cond.point <- function(parm, data, B){

sigma <- exp(parm)
p <- exp(-data*data/(2*sigma*sigma))
f <- 2*data/(B^2)
pbar <- integrate(function(x, s=sigma) exp(-x^2 / (2 * s^2)) * x, 0, B)$value*2/(B^2)
negLL <- -1*sum( log(p*f/pbar ))
return(negLL)

}

# Fit the model
mle3 <- optim(c(0), Lik.cond.point, data=tmp$d, B=B, method="Brent", hessian=TRUE,
lower=-10, upper=10)

# Inspect the output
mle3
$par
[1] 0.01523024

$value
[1] 160.8509

[ . . . output truncated . . . ]

$hessian
[,1]

[1,] 544.0608

# Estimated sigma
(sigma.hat <- exp(mle3$par))
[1] 1.015347

We see that bs ¼ expð0:0152Þ ¼ 1:015, which is pretty close to the true value of 1, and so we
surmise that our likelihood implementation is likely correct. With the conditional estimator we don’t
obtain directly an estimate of density or population size. Instead we have to use the MLE of s after the
fact and compute p, which we do as follows, finding that the conditional estimator of N (¼ n=p) is in
the same ballpark as the other two, and yet slightly different.

# Estimated average detection probability and conditional estimator of N
pbar <- integrate(

function(x, s=sigma.hat) exp(-x^2 / (2 * s^2)) * x, 0, B)$value*2/(B^2)

(Nhat.condl <- length(d) / pbar)
[1] 800.2388
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8.2.6 SENSITIVITY TO BIN WIDTH
When you write a paper that uses distance sampling with binned data, one criticism raised by a referee
undoubtedly will be that it would be better to use a continuous data model instead of an “approxi-
mation.” However, both the continuous distance model and the model for binned data are mere
approximations to the actual data-generating process, which we don’t know. Nevertheless, it is
interesting to see how similar a discrete distance model is to a particular continuous data-generating
model, which we can handily know if we happen to be simulating data.

To evaluate the effect of binning data that are generated from a truly continuous model, we show a
small simulation study here that you can easily repeat for your own situation. We simulate data as
above (all of the code is repeated here) using bin widths of d ¼ 0.5, and we fit both the continuous and
discrete distance models as in the previous section. We do 1000 Monte Carlo (simulation) replicates
of each bin width scenario and, at the end, we compute the mean of bN and also the standard deviation.
All of this goes as follows:

set.seed(1234)
simrep <- 1000 # Number of sim reps
simout <- matrix(NA, nrow=simrep, ncol=3)
colnames(simout) <- c("N.real", "N.binned", "N.continuous")
delta <- 0.5 # Set width of bins

# Begin simulation loop
for(sim in 1:simrep){

tmp <- sim.pdata(N=1000, sigma=1, keep.all=FALSE, B=3)
B <- tmp$B
d <- tmp$d
N.real <- tmp$N.real

# Bin data, tabulate frequencies and pad 0s if necessary
dist.breaks <- seq(0, B, delta)
dclass <- d%/%delta + 1 # Convert distances to categorical distances
nD <- length(dist.breaks) -1# How many intervals do we have ?
y.obs <- table(dclass) # Next pad the frequency vector
y.padded <- rep(0, nD)
names(y.padded) <- 1:nD
y.padded[names(y.obs)] <- y.obs
y.obs <- y.padded

# Obtain the MLEs using both models
binned.est <- optim(c(2,0), Lik.binned.point, data=y.obs,

dist.breaks=dist.breaks)
cont.est <- optim(c(1, 6), Lik.cont.point, data=d, B=B, hessian=TRUE)
Nhat.binned <- length(d) + exp(binned.est$par[2])
Nhat.cont <- length(d) + exp(cont.est$par[2])

# Store results in a matrix
simout[sim,] <- c(N.real, Nhat.binned, Nhat.cont)

}
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# Now summarize the output
apply(simout, 2, mean)

N.real N.binned N.continuous
785.0580 782.5183 782.7314

sqrt(apply(simout, 2, var))
N.real N.binned N.continuous

12.84647 84.25812 82.70834

What we see here is essentially the same expected value of both estimators and an only very
slightly increased standard deviation of the binned estimator. This is a general truth: binning has
essentially no effect on bias and only negligibly decreases precision of the estimator compared to
fitting the correct continuous distance model. Of course, in practice, we will not know the true
model.

To gauge the sensitivity to bin width, we repeated the analyses for the same 1000 data sets using bin
widths of 0.1, 0.2, 0.3, 0.5, 0.6, and 1.0 (all of these produce equal-width bins for B ¼ 3). The results
are tabulated as follows:

Width Truth Nhat.binned SD.binned
0.1 785.06 782.82 82.80
0.2 785.06 782.90 82.82
0.3 785.06 782.45 83.49
0.5 785.06 782.52 84.26
0.6 785.06 782.19 84.38
1.0 785.06 783.51 89.27

What we see here is negligible bias in the estimated population size (much less than 1%), although
we do see a systematic increase in the standard deviation of the estimator. For a bin width of 0.1 the SD
is about the same as the continuous distance model, whereas for the bin width of 1.0 (one-third of the
total count radius!) the SD increases by about 8%. What all of this means is that you’ll suffer a small
cost in terms of precision by using a bin width that is extremely coarse but no practical effect at all for
bin widths that are roughly <10% of the count radius. Note that the mean MLE for all six cases is
systematically less than the true average of 785.06. This is because the same 1000 data sets were used
for each simulation and a different 1000 data sets will produce a different (higher or lower)
discrepancy, on average. As always, we encourage you to play around with simulations to gain
intuition and understanding of the effects of data collecting and analysis decisions.

8.2.7 SPATIAL SAMPLING
In practice we virtually always have more than a single sample unit. What do we do in this situation if
we’re doing conventional distance sampling ? Let’s say we have S transects, which we imagine to be S
multinomial samples with size (¼ local population size) Ns, then the conventional distance sampling
approach is to just pool all of the distance data and fit a single conditional likelihood to it (remember
our change of notation for site index; see Section 8.1). So the Ns are not involved in this at all. Spatial
sampling is ignored. This is surprising, since probably most applications of CDS have an interest in
assessing hypotheses about spatiotemporal variation in Ns, and yet when doing CDS we usually ignore
the problem almost completely by using the conditional likelihood of the pooled data.
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We say “almost” since spatial sampling is not entirely ignored. The conditional estimator of
density is bD ¼ n

��bp � 2 � L � B�
To obtain the variance of this estimator we need to estimate the quantity Var(n), which CDS

estimates using the variance of ns among sample units (Buckland et al., 2001, p. 79). The latter is
usually called the “encounter rate variance” and can be thought of as a nonparametric estimator of the
variance among spatial units. That is the only way in which spatial sampling is dealt with in CDS.

8.3 BAYESIAN CONVENTIONAL DISTANCE SAMPLING
While we have not yet analyzed a hierarchical distance sampling (HDS) model, we have learned the
four basic operations: simulation and analysis of continuous and binned data for line transects and for
point transects. For point transects, this is only slightly more complicated than for transects due to the
different geometry. We have shown how to write out the likelihood and obtain MLEs. We now cover
how to analyze these models using Bayesian methods, which will come in handy when we finally get to
the analysis of hierarchical distance sampling models. Part of the reason for building up this material in
such a leisurely way is that there is not “one way” to analyze HDS models, just as we saw with CDS
models. The various ways of analyzing these models will all be useful in analyzing HDS models in
different situations or using different BUGS engines. So, wewill go through the various formulations of
the models above (line/point transects, continuous/binned distances, conditional/full likelihood) using
Bayesian methods implemented in BUGS. To implement continuous distance models in BUGS often
takes a little bit of trickery because the probability distribution of the observed distances is not usually a
standard form. It is easy to resolve this by using distance bins, in which case we can use a categorical or
multinomial distribution, where we build the cell probabilities explicitly. And, as we saw previously,
there is almost no statistical cost for using a discrete distance model, even when we happen to know the
correct continuous distance model.

For analyzing the full likelihood in BUGS we use the idea of parameter-expanded data
augmentation (PX-DA or DA for short; Royle et al., 2007a; Royle and Dorazio, 2012), which we also
discussed briefly in Section 7.8.4 and will encounter again in Chapters 9, 11, and later. The idea of DA
is that we take our data set of n observed encounters (and distances) and augment it with a large
number of M � n “not encountered” individuals, which necessarily have missing distance data. We
further expand our model by introducing a set of binary latent variables (the data augmentation var-
iables) zi, which are indicators of whether an individual in the larger data set of size M is a “real”
individual, so that the observation of 0 is a stochastic (sampling) zero, or whether it is a fixed zero,
which is to say y ¼ 0 with probability 1. We assume zi w Bernoulli(j), where j is the data
augmentation parameter. (There is a sense in which DA transforms a capture-recapture type of model
into an occupancy type of model, and our notation with z and j is intended to reflect this.) This
formulation of the model is equivalent to putting a Binomial(M, j) prior distribution on population
size N (see Section 8.2.4.1 above) and a Uniform(0,1) prior on j. Those two priors together imply that
the marginal (induced) prior distribution for N is Discrete Uniform(0,M). Of course the binomial prior
is roughly equivalent to a Poisson prior distribution when M is large, but even when it is not, it is not
clearly a better or worse prior than the Poisson, just different. Next, we demonstrate the use of DA for
line transect data with continuous and binned data measurements.
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8.3.1 BAYESIAN ANALYSIS OF LINE TRANSECT DATA
We illustrate a Bayesian analysis of distance sampling data from a transect using the famous impala
data set from Burnham et al. (1980; analysis modified from Royle and Dorazio 2008, p. 235). In this
study, distance data were collected along a 60 km transect. If we use a transect width of 1000 m, the
total area is 60 km2, which we’ll use to convert estimated N to estimated density, D. The line transect
situation is especially easy to deal with in BUGS because we can specify the uniform distribution for
distance explicitly and then, conditional on the distances, the observation model is specified as a
simple Bernoulli trial, like in a logistic regression. The Bayesian formulation of the distance sampling
model therefore makes clear the elegant hierarchical structure of distance sampling as involving a
process model (the distribution of individuals) and an observation model (the detection or nondetection
of individuals; for this we use the half-normal model throughout). Next, we input the data directly into
the R workspace, package things up, and run BUGS as follows:

# Get data and do data-augmentation
# Observed distances (meters) in the impala data set
x <- c(71.93, 26.05, 58.47, 92.35, 163.83, 84.52, 163.83, 157.33,
22.27, 72.11, 86.99, 50.8, 0, 73.14, 0, 128.56, 163.83, 71.85,
30.47, 71.07, 150.96, 68.83, 90, 64.98, 165.69, 38.01, 378.21,
78.15, 42.13, 0, 400, 175.39, 30.47, 35.07, 86.04, 31.69, 200,
271.89, 26.05, 76.6, 41.04, 200, 86.04, 0, 93.97, 55.13, 10.46,
84.52, 0, 77.65, 0, 96.42, 0, 64.28, 187.94, 0, 160.7, 150.45,
63.6, 193.19, 106.07, 114.91, 143.39, 128.56, 245.75, 123.13,
123.13, 153.21, 143.39, 34.2, 96.42, 259.81, 8.72)

B <- 500 # Strip half-width. Larger than max observed distance
nind <- length(x)

# Analysis of continuous data using data augmentation (DA)
nz <- 200 # Augment observed data with nz = 200 zeroes
y <- c(rep(1, nind), rep(0, nz)) # Augmented inds. have y=0 by definition
x <- c(x, rep(NA, nz)) # Value of distance are missing for the augmented

# Bundle and summarize data set
str( win.data <- list(nind=nind, nz=nz, x=x, y=y, B=B) )

# Save text file with BUGS model
cat("
model {

# Priors
sigma ~ dunif(0,1000) # Half-normal scale
psi ~ dunif(0,1) # DA parameter

# Likelihood
for(i in 1:(nind+nz)){

# Process model
z[i] ~ dbern(psi) # DA variables
x[i] ~ dunif(0, B) # Distribution of distances
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# Observation model
logp[i] <- -((x[i]*x[i])/(2*sigma*sigma)) # Half-normal detection fct.
p[i] <- exp(logp[i])
mu[i] <- z[i] * p[i]
y[i] ~ dbern(mu[i]) # Simple Bernoulli measurement error process

}

# Derived quantities
N <- sum(z[1:(nind + nz)]) # Population size
D <- N / 60 # Density, with A = 60 km^2 when B = 500
}
",fill=TRUE,file="model1.txt")

# Inits
zst <- y
inits <- function(){ list (psi=runif(1), z=zst, sigma=runif(1,40,200)) }

# Params to save
params <- c("N", "sigma", "D")

# Experience the raw power of BUGS and summarize marginal posteriors
library(R2WinBUGS)
bd <- "c:/Program Files/WinBUGS14/" # May have to adapt for your computer
out1 <- bugs(win.data, inits, params, "model1.txt", n.thin=2,n.chains=3,

n.burnin=1000, n.iter=11000, debug=TRUE, DIC=FALSE, bugs.dir=bd)
print(out1, 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
N 221.468 24.746 174.0 204.0 222.0 240.0 267.00 1.004 600
sigma 131.466 10.798 112.8 123.8 130.6 138.2 155.20 1.003 1100
D 3.691 0.412 2.9 3.4 3.7 4.0 4.45 1.004 600

Next, we provide an analysis of the impala data but using binned data to demonstrate the BUGS
implementation using data augmentation. We first need to convert the distance data into distance bins,
which we define here to be 50 m bins. Then we specify the model in BUGS using the dcat distribution
for individual distance class observations. In BUGS we have to define detection probability for each
interval, which we do by evaluating the half-normal detection probability function at the midpoint of
each interval (input as data), which will look like this:

log(p[g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma)

We also have to compute the probability mass for each distance interval:

pi[g] <- delta / B # probability of x in each interval

# Analysis of binned data using data augmentation
delta <- 50 # Width of distance bins
xg <- seq(0, B, delta) # Make the interval cut points
dclass <- x %/% delta + 1 # Convert distances to distance category
nD <- length(xg) -1 # N intervals = length(xg) if max(x) = B
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# Bundle data
# Note data changed to include dclass, nD, bin-width delta and midpt
midpt <- xg[-1] - delta/2 # Interval mid-points
str( win.data <- list (nind=nind, nz=nz, dclass=dclass, y=y, B=B,

delta=delta, nD=nD, midpt=midpt) ) # Bundle and summarize

# BUGS model specification
cat("
model{
# Priors
psi ~ dunif(0, 1)
sigma ~ dunif(0, 1000)

# Likelihood
# Construct conditional detection probability and Pr(x) for each bin
for(g in 1:nD){ # midpt = mid point of each cell

log(p[g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma) # half-normal model
pi[g] <- delta / B # probability of x in each interval

}

for(i in 1:(nind+nz)){
z[i] ~ dbern(psi) # model for individual covariates
dclass[i] ~ dcat(pi[]) # population distribution of distance class
mu[i] <- z[i] * p[dclass[i]] # p depends on distance class
y[i] ~ dbern(mu[i])

}
# Derived quantities: Population size and density
N <- sum(z[])
D <- N / 60
}
",fill=TRUE, file = "model2.txt")

# Inits function
zst <- y # DA variables start at observed value of y
inits <- function(){ list (psi=runif(1), z=zst, sigma=runif(1,40,200)) }

# Parameters to save
params <- c("N", "sigma", "D")

# Unleash WinBUGS and summarize posteriors
out2 <- bugs(win.data, inits, params, "model2.txt", n.thin=2, n.chains=3,

n.burnin=1000, n.iter=11000, debug=TRUE, DIC=FALSE, bugs.dir = bd)
print(out2, 2)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
N 218.48 25.27 170.00 200.00 218.00 236.00 267.00 1.01 320
sigma 134.24 11.16 114.90 126.30 133.30 141.20 158.50 1.00 840
D 3.64 0.42 2.83 3.33 3.63 3.93 4.45 1.01 320

These are similar to those obtained previously using the continuous distance model, and they
should become more similar as we decrease the bin width, and perhaps also by increasing the number
of MCMC iterations so as to reduce Monte Carlo error.
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8.3.2 OTHER FORMULATIONS OF THE DISTANCE SAMPLING MODEL
We have shown transect models with binned and continuous distances analyzed in BUGS using data
augmentation. But there are many other exciting formulations of distance sampling models. For
example, in Chapter 9 we will provide a formulation of the model not in terms of distance but in
terms of location of encounter. This is one of our favorites. Another type of model that might be
useful to develop is that in which we have binned data but parameterize the model in terms of latent
continuous observations. The observed bin data are a “cut” of the continuous data that have the
standard DS model for continuous data. This is an interesting idea because it allows us to
“downscale” the observations, or make predictions, to a finer scale than the available observations.
We think that this can be done directly in JAGS using its function for interval censoring. Finally, it
is possible to formulate conditional likelihood models in BUGS. This is somewhat more compli-
cated because the conditional distribution of the distances cannot be specified directly. However, we
can formulate the model for binned data and then compute the conditional cell probabilities
explicitly in the BUGS code. Then we can use either a multinomial distribution for distance bin
frequencies or the categorical distribution for individual distance bin observations. We will show
this in the next section in the context of point transect data, but we leave it to you as an exercise for
the transect case.

8.3.3 A TREATISE ON THE INTEGRATION OF MATHEMATICAL FUNCTIONS
IN ONE DIMENSION

Before we proceed with a development of Bayesian analysis of point transect data in BUGS, we first
discuss the basic concept of integration using the “rectangular rule” whereby, to compute the integral
of some function f(x), we approximate the function by a bunch of rectangles centered at points xi and
then sum up the area of those rectangles. This is precisely the approach we used in the analysis of
binned transect data in the previous section. The virtue of being able to do this is that it gives us a way
of parameterizing any distribution in BUGS if we just know a formula for its pdf. Instead of the “ones
trick” or the “zeros trick” (Section 5.8, and p. 204–206 in Lunn et al., 2013), we just compute the area
under chunks of the curve and use dcat as a model for a binned version of the variable. The error in
making a discrete approximation to any continuous distribution is usually negligible compared to the
MC error in our MCMC analysis, provided we use enough bins.

To demonstrate this we show, in Figure 8.3, the right side of a normal kernel, and we ask, “what is
the area under this curve?” Of course, we can use the integrate function to compute that directly
(which we do below). Or, we can line up a bunch of rectangles as shown in Figure 8.3 and sum up the
area of those rectangles. All of the code for doing this together is as follows:

sigma <- 2 # normal scale (standard deviation)
curve(exp(-x^2 / (2*sigma^2)), 0, 10, frame = F)

delta <- 1 # bin width
mid <- seq(0.5, 9.5, delta) # 10 rectangles
f.mid <- exp(-mid^2 / (2*sigma^2))
barplot(f.mid, add=T, space=0, col="grey", width=delta)
curve(exp(-x^2 / (2*sigma^2)), 0, 10, add = TRUE, col = "blue", lwd = 3)
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# Integral done using the integrate function
integrate( function(x){ exp(-x^2/(2*sigma^2)) }, lower=0, upper=100)
2.506628 with absolute error < 8.1e-07

# Summing up the 10 rectangular areas:
areas <- f.mid * delta
sum(areas)
[1] 2.506627

At the end of the day we see no practical difference between these two results, and therefore it stands
to reason that if we model continuous distributions in BUGS using even a moderate number of rect-
angles, we would not expect to be badly led astray. Moreover, as we’ve said a few times already in this
chapter and will continue to say some more, discrete distributions are perfectly reasonable models of
random variables, without even having to think about them as approximations to any continuous thing.

8.3.4 BAYESIAN ANALYSIS OF POINT TRANSECT DATA
As with the formulation of the conditional likelihood for line transect data, the problem with analyzing
point transect data in BUGS is that there is no built-in distribution for the distances, which we noted, in
Section 8.2.5, has a triangular distribution. This can be dealt with in several ways by using the “zeros
trick” or the “ones trick” (see Chelgren et al., 2011b, for a neat distance sampling application) or,
alternatively, we can analyze the model for binned data on the circle and use the dcat or multinomial
model. We show that here. This is sufficient in practice because of course we can always use a huge
number of distance intervals to obtain what essentially is a continuous distance model if that was
necessary. But also, as we discussed in Section 8.2.6, the continuous distance model is not any more
correct than an a similar step function model. The key thing is to identify, for each individual, which
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All you need to know about integration in one figure. The area under the blue curve is approximated by the

area of the gray rectangles.
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distance category it belongs in and then compute the probabilities for that categorical random variable.
We can use these to specify a model based either on the conditional likelihood or we can use specify an
‘unconditional’ model based on data augmentation. We show both of these.

The mathematical argumentation to define the distance class probabilities goes like this: The
probability density of detections is the product of the detection function (here, a half-normal) and the
density of x:

Prðdetection in xÞ ¼ PrðdetectionjxÞPrðxÞ ¼ exp

�
� 1

2s2
x2
	
f ðxÞ;

where f(x) ¼ pdf of radial distance from a point (for a transect f(x) is constant). The probability dis-
tribution of radial distance x on a circle of radius B is:

f ðxÞ ¼ 2x

B2

(there is more mass in a distance band as you move far away from the point). As we showed back in

Section 8.2.5, we need to integrate exp
�� 1

2s2 x
2
�
f ðxÞ over distance bands to get multinomial cell

probabilities (this is what unmarked does, see Section 8.4.3). But from our treatise on the integration of
one-dimensional functions, we know that, approximately, the multinomial cell probabilities should be
“width times height” of a rectangle centered at xh and therefore:

pðxhÞ ¼ Prðxh � d=2 � x � xh þ d=2Þz exp

�
� 1

2s2
x2h

	
f ðxhÞd

(this is the rectangular approximation to an integral). So we can choose xh to be the mid-points of our
intervals or we can use many very narrow intervals and then add them up into coarser bins. To
implement a conditional model we need to compute conditional distance class probabilities:

pcðxhÞ ¼ pðxhÞ
1� p0

;

where the denominator: 1� p0 ¼ PrðcaptureÞ ¼P
h

pðxhÞ

Note that the conditional distance class probabilities are used when we analyze the conditional
likelihood version of the model in BUGS, in which case N is a derived parameter. We can also analyze
the full likelihood version of the model by data augmentation, which we also show below. The full
likelihood DAversion uses the probabilities f(xh) as the distribution for the population of true distances
and then also models detection/nondetection of each individual, yi.

We can simulate binned distance sampling data either directly by simulating categorical random
variables, or we can simulate continuous distance data and bin the data as we did previously. We will
simulate continuous data here, bin the data into classes, and then use the categorical distribution in
BUGS to fit the point transect model.

### Version 1: Point count data in BUGS (conditional likelihood)
# Simulate a data set and harvest the output
set.seed(1234)
tmp <- sim.pdata(N=200, sigma=1, keep.all=FALSE, B=3)
attach(tmp)
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# Chop the data into bins
delta <- 0.1 # width of distance bins for approximation
xg <- seq(0, B, delta) # Make the mid points and chop up the data
midpt <- xg[-1] - delta/2

# Convert distances to categorical distances (which bin?)
dclass <- d %/% delta + 1
nD <- length(midpt) # how many intervals
nind <- length(dclass)

# Bundle and summarize data set
str( win.data <- list(midpt=midpt, delta=delta, B=B, nind=nind, nD=nD, dclass=dclass) )

# BUGS model specification, conditional version
cat("
model{

# Prior for single parameter
sigma ~ dunif(0, 10)

# Construct cell probabilities for nD cells (rectangle approximation)
for(g in 1:nD){ # midpt[g] = midpoint of each distance band

log(p[g]) <- -midpt[g] * midpt[g] / (2*sigma*sigma)
pi[g] <- (( 2 * midpt[g] ) / (B*B)) * delta
f[g] <- p[g] * pi[g]
fc[g] <- f[g] / pcap

}
pcap <- sum(f[]) # capture prob. is the sum of all rectangular areas

# Categorical observation model
for(i in 1:nind){

dclass[i] ~ dcat(fc[])
}

# Derived quantities: population size and density
N <- nind / pcap
D <- N/(3.141*B*B)
}
",fill=TRUE, file="model3.txt")

# Inits function
inits <- function(){list (sigma=runif(1, 1, 10)) }

# Params to save
params <- c("sigma", "N","D")

# MCMC settings
ni <- 62000 ; nb <- 2000 ; nt <- 2 ; nc <- 3

# Run BUGS and summarize posteriors
bd <- "c:/Program Files/WinBUGS14/" # May have to adapt this to your computer
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out3 <- bugs(win.data, inits, params, "model3.txt", n.thin=nt,
n.chains=nc, n.burnin=nb, n.iter=ni, debug=FALSE, bugs.dir = bd)

## Version 2: point count data (full likelihood with data augmentation)
# Do data augmentation (for same simulated data set)
M <- 400
nz <- M - nind
y <- c(rep(1, nind), rep(0, nz))
dclass <- c(dclass, rep(NA, nz))

# Bundle and summarize data set
str( win.data <- list(midpt=midpt, delta=delta, B=B, nind=nind, nD=nD, dclass=dclass,
y=y, nz=nz) )

# BUGS model
cat("
model{

# Priors
sigma ~ dunif(0, 10)
psi ~ dunif(0, 1)

# Construct cell probabilities for nD cells (rectangle approximation)
for(g in 1:nD){ # midpt[g] = midpoint of each distance band

log(p[g]) <- -midpt[g] * midpt[g] / (2*sigma*sigma)
pi[g] <- ((2 * midpt[g]) / (B * B)) * delta
pi.probs[g] <- pi[g] / norm
f[g] <- p[g] * pi[g]
fc[g] <- f[g] / pcap # conditional probabilities

}
pcap <- sum(f[])# capture prob. is the sum of all rectangular areas
norm <- sum(pi[])

# Categorical observation model
for(i in 1:(nind+nz)){

z[i] ~ dbern(psi)
dclass[i] ~ dcat(pi.probs[])
mu[i] <- p[dclass[i]] * z[i]
y[i] ~ dbern(mu[i])

}

# Derived quantities: population size and density
N <- sum(z[])
D <- N/(3.141*B*B)

}
",fill=TRUE,file="model4.txt")

# Inits
inits <- function(){list (sigma=runif(1,1,10), psi=runif(1) ) }
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# Parameters to save
params <- c("sigma", "N","D","psi")

# MCMC settings
ni <- 62000 ; nb <- 2000 ; nt <- 2 ; nc <- 3

# Run BUGS and summarize posteriors
out4 <- bugs(win.data, inits, params, "model4.txt", n.thin=nt,

n.chains=nc, n.burnin=nb, n.iter=ni, debug=FALSE, bugs.dir = bd)

# Compare posterior summaries
print(out3,2) # Conditional likelihood
Inference for Bugs model at "model3.txt", fit using WinBUGS,
3 chains, each with 62000 iterations (first 2000 discarded), n.thin = 2
n.sims = 90000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
sigma 1.11 0.13 0.91 1.02 1.10 1.18 1.41 1 90000
N 142.96 27.20 93.71 123.80 141.60 160.60 200.00 1 90000
D 5.06 0.96 3.31 4.38 5.01 5.68 7.08 1 90000
deviance 246.92 1.59 245.80 245.90 246.30 247.30 251.40 1 90000

print(out4,2) # Full likelihood
Inference for Bugs model at "model4.txt", fit using WinBUGS,
3 chains, each with 62000 iterations (first 2000 discarded), n.thin = 2
n.sims = 90000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
sigma 1.09 0.12 0.90 1.01 1.08 1.16 1.37 1 28000
N 150.16 35.14 91.00 125.00 147.00 172.00 229.00 1 51000
D 5.31 1.24 3.22 4.42 5.20 6.08 8.10 1 51000
psi 0.38 0.09 0.22 0.31 0.37 0.43 0.58 1 59000
deviance 396.00 18.01 361.80 383.70 395.70 407.90 432.40 1 44000

We see a slight inconsistency between the two analyses, both producing posterior means of N
slightly less than the true value of N ¼ 152 ( = sum(tmp$N.real) ). However, relative to the uncertainty
of these estimates (quantified by the posterior standard deviation), the discrepancy between the two
estimates is fairly small.

8.4 HIERARCHICAL DISTANCE SAMPLING (HDS)
Now we transition from the basic elements of conventional distance sampling models to situations
where we have distance sampling data collected at S spatial locations, usually either transects or point
count locations, but we could also have a mixture of both or even strange shapes or irregular transects.
(Remember our change of notation for sites, which now have index s, which runs from 1 to S.) As
we’ve noted a few times before, the traditional way to deal with this in distance sampling is to pool the
distance data from all S spatial locations and estimate the parameter(s) of the detection function, e.g., s
for a half-normal. This is used to obtain an estimate of density, and then the variance is based on the
encounter rate variance, which does use some information from among the sample units. However,
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conventional distance sampling does not directly address problems of spatial inference either in the
form of modeling variation in Ns or local density across sample units s or making explicit predictions at
other transects or point locations. We would argue that modeling variation in N among sample units is
critically important and, indeed, often the primary interest in studies that use distance sampling.
Therefore, HDS models should be in every ecologist’s toolbox.

The models we deal with here assume that Ns is the population size of spatial sample unit s, and
they don’t make any explicit assumptions about “within sample unit” variation in density. Rather, they
assume that the average covariate value defined for the sample unit is meaningful for explaining among
sample unit variation. Thus, when we assume that Ns w Poisson(ls) the parameter ls is constant for the
sample location s and represents the mean for the sample unit. This is not to say that HDS models
assume that density is constant within a sample unit, just that the aggregate density is adequately
modeled by the covariates defined for the sample unit. We discuss this more in Chapter 9.

8.4.1 HDS DATA STRUCTURE AND MODEL
To develop distance sampling in an explicit meta-population setting, we suppose that S distinct spatial
units are sampled using the distance sampling protocol. These might be transects or point counts for
birds, distributed in some region (e.g., a park or forest). Distance x is naturally viewed as a continuous
measurement, but for now we jump right into the discrete distance class formulation (we discuss
continuous measurements shortly). Thus, we consider binned data here, wherein distances are recorded
in discrete intervals from the central point of observation for each site. Let h ¼ 1, 2, ., H index the
distance classes, with end points, or distance breaks (c1, c2), (c2, c3), ., (cH, cHþ1). Here, cHþ1 is the
maximum distance at which birds were counted, or the radius of the point count (which we called B
previously). Let ysh be the observed count of individuals in distance class h for site s ¼ 1, 2,., S. The
data structure is summarized in Table 8.1.

We follow the basic ideas of the binomial and multinomial mixture models of Chapters 6 and 7, and
assume that sample unit s has local abundance Ns, which is a random variable having a suitable
distribution. For now we assume:

NswPoissonðlsÞ

Table 8.1 Typical hierarchical distance sampling data structure. For each of S transects we have
encounter frequencies in each of a number of distance classes (three illustrated here). In addition,
we may have one or more site-level covariates (v).

Transect
dclass 1
(0e50 m)

dclass 2
(50e100 m)

dclass 3
(100e200 m) Covariate1 Covariate2

Transect 1 2 0 1 v11 v12

Transect 2 3 0 0 v21 v22

Transect 3 2 1 1 v31 v32

« « « « «

Transect S 4 2 0 vS1 vS2

8.4 HIERARCHICAL DISTANCE SAMPLING (HDS) 427



where one or more covariates (v) may influence the expected abundance, ls, on a suitable scale:

logðlsÞ ¼ b0 þ b1vs:

In addition, we assume the detection frequencies in each of the H distance classes have, conditional
on the population size Ns, a multinomial distribution:

ðys1;.; ysHÞ w MultinomialðNs;psÞ
where psh is the multinomial cell probability for distance class h and sample unit sdthese depend on
detection-function parameter(s) s. These are computed exactly as we’ve described previously for either
line or point transects. If there are no site covariates then there are no additional considerations. If, on
the other hand, we also have covariates that influence detection probability and vary across sites, then
we have to compute the multinomial cell probabilities separately for each site. It would be natural to
model such covariates on the parameter s, allowing this parameter to vary as a function of covariates
that may be site specific (Marques et al., 2007). For example:

logðssÞ ¼ a0 þ a1vs

The scale parameter (s) is a continuous, nonnegative number, hence, it is natural to apply a linear model
of covariates on a transformed scale, typically the log, as for the expected count (l) in a Poisson GLM.

8.4.2 HDS IN unmarked
The unmarked package has two specific functions for fitting HDS models. The older function distsamp
assumes a basic closed population model (i.e., for one sample occasion) and allows only for a Poisson
abundance model: Ns w Poisson(ls). The more general (and newer) function gdistamp allows for a type
of simple open population structure (see Chapter 9) and also for a negative binomial abundance dis-
tribution. Both of these functions accept only binned distance data, i.e., multinomial distance class
frequencies.

In this section we mainly consider the distsamp function, which works about the same way as
multinomPois (Chapter 7), where the abundance parameters Ns are marginalized out of the multi-
nomial likelihood according to

½ysra; b� ¼
XN
Ns¼0

½ysrNs;a�½Nsrb�

In practice, we truncate the upper bound of summation (called K in unmarked). As do otherN-mixture
model fitting functions in unmarked, distsamp uses as a default for K the maximum observed count at a
site plus 100. For the Poisson abundance model this likelihood reduces to the product of independent
Poisson components (as in Section 7.4), which is very efficient to compute with. As with other unmarked
functions, distsamp and gdistsamp have helper functions, called unmarkedFrameDS and
unmarkedFrameGDS, for packaging up the data for use by either fitting function. These functions take the
basic data and some metadata and set it all up in an unmarkedFrame for analysis by either fitting function
and certain summary functions. We demonstrate their use shortly. The distsamp function itself is used
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roughly like the multinomial N-mixture functions of Chapter 7, and it has a few critical arguments as
follows (not all arguments shown):

distsamp(formula, data, keyfun=c("halfnorm", "exp", "hazard", "uniform"),
output=c("density", "abund"), unitsOut=c("ha", "kmsq"), starts, .)

formula: Double right-hand formula describing detection covariates followed by abundance
covariates. ~1 ~1 would be an intercepts-only model.

data: object of class unmarkedFrameDS, containing response matrix, covariates,
distance interval cut points, survey type ("line" or "point"), transect lengths
(for survey = "line"), and units ("m" or "km") for cut points and transect lengths.
See example for set up.

keyfun: One of the following detection functions: "halfnorm", "hazard", "exp", or "
uniform." See details.

output: Model either "density" or "abund"
unitsOut: Units of density. Either "ha" or "kmsq" for hectares and square kilometers,

respectively.
starts: Vector of starting values for parameters.

A more versatile function that allows the fitting of negative binomial abundance models is the
gdistsamp function, which has the following structure:

gdistsamp(lambdaformula, phiformula, pformula, data,
keyfun =c("halfnorm", "exp", "hazard", "uniform"),
output = c("abund","density"), unitsOut = c("ha", "kmsq"),
mixture = c("P", "NB"), K, starts, method = "BFGS",
se = TRUE, rel.tol=1e-4, .)

This function will also handle a type of open population structure, allowing for random availability
to sampling with a parameter f (corresponding to a temporary emigration probability 1 � f). We
cover such models in Chapter 9. The temporal structure is accommodated via a third formula argu-
ment, “phiformula,” in addition to formulas for the expected abundance (E(N), l) and p. Note that the
three formulas are separated in a gdistsamp call by a comma while there is no comma between the two
components of the hierarchical model in distsamp. And, importantly, the order of the formulas is
“lambda, phi, p,” whereas the order in the double formula in distsamp is “p, lambda.” Because
there are two “state” parameters (l and f), certain summary functions such as predict, which pre-
viously required type=state or type=det, require that you now specify which state parameter to
predict (type=lambda, type=phi or type=det).

The abundance distribution (Poisson or negative binomial) is specified by the “mixture” argument.
As with the pcount (Chapter 6) and the gmultmix function (see Section 7.5.3), the negative binomial
parameterization used in gdistsamp contains the mean, l, and logarithm of the negative binomial
“size” parameter, say log(s), with a variance of l þ l2/s. Therefore, as 1/s / 0 or s /N, the
negative binomial tends to the Poisson (i.e., no overdispersion is indicated). The gdistsamp function
relies on the same basic technology as gmultmix. In general it computes the marginal likelihood by
summing over possible values of N from N ¼ 0 up to some finite value N ¼ K. Thus K has to be
specified either by the user or it defaults to 100 plus the maximum count at a site. Sensitivity of the
estimates to the choice of K, beyond some large number such as this default, may indicate problems
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with parameter estimability (Couturier et al., 2013; Dennis et al., 2015a). The main arguments to the
gdistsamp function are defined as follows:

lambdaformula: A right-hand side formula describing the abundance
covariates.

phiformula: A right-hand side formula describing the availability
covariates.

pformula: A right-hand side formula describing the detection function
covariates.

data: An object of class 'unmarkedFrameGDS"
keyfun: One of the following detection functions: "halfnorm",

"hazard", "exp", or "uniform." See details.
output: Model either "density" or "abund"

unitsOut: Units of density. Either "ha" or "kmsq" for hectares and
square kilometers, respectively.

mixture: Either "P" or "NB" for the Poisson and negative binomial
models of abundance.

K: An integer value specifying the upper bound used in the
integration.

In the following section, we apply distsamp and gdistsamp to the analysis of a distance sampling
data set on the island scrub-jay.

8.4.3 EXAMPLE: ESTIMATING THE GLOBAL POPULATION SIZE OF
THE ISLAND SCRUB-JAY (ISSJ)

The island scrub-jay (Aphelocoma insularis; Figure 8.4) is a species that is endemic to Santa Cruz
Island, California (Figures 8.5 and 8.6), and of some conservation interest to the National Park Service
(NPS) and other organizations due to the extremely local distribution of the species and previous
reports of low and declining population sizes. Our esteemed colleague T. S. Sillett and others initiated
an island-wide survey in 2008 to obtain a statistical estimate of population size. The study was reported
in Sillett et al. (2012), and we reproduce some of the analyses here. The island scrub-jay data are
available in unmarked by typing data(issj).

The data are distance sampling point count data from 307 point count locations (Figure 8.5) with
counts made out to 300 m. For analysis, the raw distance data were binned into three 100-m distance
classes because nearby birds were responding to the observer (by moving closer, representing
responsive movement), so it was believed that the large distance classes should mitigate that affect.
The objectives were to (1) estimate the global population size; (2) produce a map of the distribution of
the population (i.e., E(N)), as a function of local habitat conditions; and (3) make predictions of E(N)
under alternative/historical landscapes. Until recently, the island had been heavily grazed by livestock,
and an intense removal effort successfully eradicated the livestock causing vegetation to return to
historical conditions. But we have the vegetation map for the state of the island under heavy grazing,
and so we want make a hypothetical statement about how many jays there may have been.

430 CHAPTER 8 MODELING ABUNDANCE USING HIERARCHICAL DISTANCE SAMPLING



FIGURE 8.4

A proud island scrub-jay (Aphelocoma insularis). (Photo credit: Melanie Klein.)
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To do the analysis in unmarked we load the data and do a few other bookkeeping things such as
computing the area of the point count circle to use as an offset so that density in ha is reported, and we
build the unmarkedFrameDS.

# Load, view and format the ISSJ data
library(unmarked)
data(issj)

FIGURE 8.5

Santa Cruz Island, Channel Islands, California. The 307 distance sampling point count locations are shown as

solid triangles.

FIGURE 8.6

Current habitat and topography of Santa Cruz island.
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round(head(issj), 2)
issj[0-100] issj(100-200] issj(200-300] x y elevation forest chaparral

1 0 0 2 234870.1 3767154 51.39 0.02 0.24
2 0 0 0 237083.0 3766804 156.88 0.01 0.47
3 0 0 0 235732.0 3766717 144.81 0.02 0.77
4 0 0 0 237605.0 3766719 184.27 0.26 0.21
5 0 0 0 234239.1 3766570 111.35 0.00 0.00
6 0 0 0 235005.1 3766420 204.13 0.16 0.34

# Package things up into an unmarkedFrame
covs <- issj[,c("elevation", "forest", "chaparral")]
area <- pi*300^2 / 100^2 # Area in ha
jayumf <- unmarkedFrameDS(y=as.matrix(issj[,1:3]),

siteCovs=data.frame( covs, area),
dist.breaks=c(0, 100, 200, 300),
unitsIn="m", survey="point")

We note that the island scrub-jay (ISSJ) data comes with site covariates, which are elevation of the
point, and cover types forest and chaparral. We input these along with the point count area (constant
for all points) using the siteCovs argument to the unmarkedFrameDS. We also specify the distance breaks
and the units of distance intervals, and declaring survey="point", that the sample unit is a point count
circle (clearly, distances and distance breaks must be in the same units). Now we’re ready to fit a few
models, which we do like this, first with chaparral as a covariate on both the detection scale s and on
expected abundance l and also elevation as a covariate on l, and then, the secondmodel has a constant s:

# Fit model 1
(fm1 <- distsamp(~chaparral ~chaparral + elevation + offset(log(area)),

jayumf, keyfun="halfnorm", output="abund"))

Call:
distsamp(formula = ~chaparral ~ chaparral + elevation + offset(log(area)),

data = jayumf, keyfun = "halfnorm", output = "abund")

Abundance:
Estimate SE z P(>jzj)

(Intercept) -3.50982 0.31261 -11.23 2.99e-29
chaparral 4.11503 0.62458 6.59 4.44e-11
elevation -0.00216 0.00073 -2.96 3.11e-03

Detection:
Estimate SE z P(>jzj)

sigma(Intercept) 5.02 0.161 31.15 5.65e-213
sigmachaparral -1.07 0.319 -3.36 7.73e-04

AIC: 964.7203

# Fit model 2

(fm2 <- distsamp(~1 ~chaparral + elevation + offset(log(area)),
jayumf, keyfun="halfnorm", output="abund"))

8.4 HIERARCHICAL DISTANCE SAMPLING (HDS) 433



Call:
distsamp(formula = ~1 ~ chaparral + elevation + offset(log(area)),

data = jayumf, keyfun = "halfnorm", output = "abund")

Abundance:
Estimate SE z P(>jzj)

(Intercept) -2.71972 0.200946 -13.53 9.77e-42
chaparral 2.12760 0.309172 6.88 5.92e-12
elevation -0.00212 0.000728 -2.91 3.59e-03

Detection:
Estimate SE z P(>jzj)

4.58 0.0488 93.9 0

AIC: 976.2306

We see the model with chaparral on both s and l is favored by a wide margin according to AIC. We
check the goodness-of-fit of this model by bootstrapping the fitstats function first introduced in
Section 7.5.4 (see also Section 6.8).

(pb <- parboot(fm1, fitstats, nsim=1000, report=5))
(c.hat <- pb@t0[2] / mean(pb@t.star[,2])) # c-hat as ratio of observed

# and mean of expected value of Chi2 (under H0)
# (see, e.g., Johnson et al., Biometrics, 2010)

Chisq
2.590553

residuals(fm1) # Can inspect residuals
plot(pb) # Not shown
print(pb)

Call: parboot(object = fm1, statistic = fitstats, nsim = 1000, report = 5)

Parametric Bootstrap Statistics:
t0 mean(t0 - t_B) StdDev(t0 - t_B) Pr(t_B > t0)

SSE 421 262.7 16.5 0
Chisq 2357 1447.1 66.1 0
freemanTukey 210 42.9 10.1 0

t_B quantiles:
0% 2.5% 25% 50% 75% 97.5% 100%

SSE 110 130 147 158 169 193 213
Chisq 739 806 864 903 950 1056 1364
freemanTukey 131 147 161 167 174 187 202

t0 = Original statistic compuated from data
t_B = Vector of bootstrap samples

The bootstrap analysis shows that the model does not fit at all, with not a single bootstrap sample
falling to the right of the observed value, for any of the three fit statistics. That is, under the Null
hypothesis of a fitting model, we don’t expect to see any more extreme values of the fit statistics than
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their value for the observed data set. The “c-hat” statistic (Johnson et al., 2010) indicates a fairly high
degree of overdispersion (2.59). This suggests that there is more unexplained variation in the data than
allowed for by the distributional assumptions of the model. In the worst case this could mean that the
main inference, e.g., regarding covariate effects, is wrong (i.e., that the model is structurally wrong),
while in the much less dramatic case it could simply mean that we have unstructured noise, which
would make the SEs too small and CIs too narrow. To mitigate that, we go through a more detailed
process of model fitting, evaluation, and prediction by expanding the covariate structure of the model.
First, however, we will standardize the covariates in the unmarkedFrame because this generally causes
the fitting and analysis functions to perform more smoothly (i.e., often it avoids various types of
numerical errors or errors due to bad starting values). You can repeat the analysis below without
standardizing the covariates to see what happens.

# Standardize the covariates
sc <- siteCovs(jayumf)
sc.s <- scale(sc)
sc.s[,"area"] <- pi*300^2 / 10000 # Don't standardize area
siteCovs(jayumf) <- sc.s
summary(jayumf)

unmarkedFrameDS Object

point-transect survey design
Distance class cutpoints (m): 0 100 200 300

307 sites
Maximum number of distance classes per site: 3
Mean number of distance classes per site: 3
Sites with at least one detection: 76

Tabulation of y observations:
0 1 2 3 4 5 6 9 <NA>

833 53 19 9 1 2 3 1 0

Site-level covariates:
elevation forest chaparral area

Min. :-1.4884 Min. :-0.49215 Min. :-1.1562 Min. :28.27
1st Qu.:-0.7974 1st Qu.:-0.49215 1st Qu. :-0.8721 1st Qu.:28.27
Median :-0.1687 Median :-0.44295 Median :-0.2014 Median :28.27
Mean : 0.0000 Mean : 0.00000 Mean : 0.0000 Mean :28.27
3rd Qu.: 0.6650 3rd Qu.:-0.06982 3rd Qu. : 0.6872 3rd Qu.:28.27
Max. : 3.5731 Max. : 5.42362 Max. : 2.8809 Max. :28.27

# Fit a bunch of models and produce a model selection table.
fall <- list() # make a list to store the models

# With the offset output[abund is the same as output [ density
fall$Null <- distsamp(~1 ~offset(log(area)), jayumf, output="abund")
fall$Chap. <- distsamp(~1 ~chaparral + offset(log(area)), jayumf,

output="abund")
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fall$Chap2. <- distsamp(~1 ~chaparral+I(chaparral^2)+offset(log(area)),
jayumf, output="abund")

fall$Elev. <- distsamp(~1 ~ elevation+offset(log(area)), jayumf,
output="abund")

fall$Elev2. <- distsamp(~1 ~ elevation+I(elevation^2)+offset(log(area)),
jayumf, output="abund")

fall$Forest. <- distsamp(~1 ~forest+offset(log(area)), jayumf,
output="abund")

fall$Forest2. <- distsamp(~1 ~forest+I(forest^2)+offset(log(area)),
jayumf, output="abund")

fall$.Forest <- distsamp(~forest ~offset(log(area)), jayumf,
output="abund")

fall$.Chap <- distsamp(~chaparral ~offset(log(area)), jayumf,
output="abund")

fall$C2E. <- distsamp(~1 ~ chaparral + I(chaparral^2) + elevation +
offset(log(area)),jayumf, output="abund")

fall$C2F2. <- distsamp(~1 ~chaparral + I(chaparral^2) + forest +
I(forest^2)+offset(log(area)), jayumf, output="abund")

fall$C2E.F <- distsamp(~forest ~chaparral+I(chaparral^2)+elevation+
offset(log(area)), jayumf, output="abund")

fall$C2E.C <- distsamp(~chaparral ~chaparral + I(chaparral^2) + elevation +
offset(log(area)), jayumf, output="abund")

# Create a fitList and a model selection table
(msFall <- modSel(fitList(fits=fall)))

nPars AIC delta AICwt cumltvWt
C2E.C 6 951.35 0.00 9.9e-01 0.99
C2E. 5 961.01 9.66 7.9e-03 1.00
C2E.F 6 962.95 11.60 3.0e-03 1.00
Chap2. 4 965.95 14.60 6.7e-04 1.00
C2F2. 6 968.13 16.78 2.2e-04 1.00
Chap. 3 981.39 30.04 3.0e-07 1.00
.Chap 3 1007.02 55.67 8.1e-13 1.00
Forest2. 4 1015.07 63.72 1.4e-14 1.00
Elev2. 4 1017.33 65.98 4.7e-15 1.00
Elev. 3 1018.10 66.75 3.2e-15 1.00
Null_D 2 1018.12 66.77 3.1e-15 1.00
Null 2 1018.12 66.77 3.1e-15 1.00
Forest. 3 1019.65 68.30 1.5e-15 1.00
.Forest 3 1020.08 68.73 1.2e-15 1.00

# Check out the best model
fall$C2E.C

Call:
distsamp(formula = ~chaparral ~ chaparral + I(chaparral^2) +

elevation + offset(log(area)), data = jayumf, output = "abund")
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Abundance:
Estimate SE z P(>jzj)

(Intercept) -2.562 0.1589 -16.12 1.75e-58
chaparral 1.230 0.1602 7.68 1.64e-14
I(chaparral^2) -0.282 0.0775 -3.64 2.68e-04
elevation -0.238 0.0926 -2.57 1.02e-02

Detection:
Estimate SE z P(>jzj)

sigma(Intercept) 4.686 0.0682 68.75 0.000000
sigmachaparral - 0.208 0.0626 -3.32 0.000892

AIC: 951.3504

# Check out the goodness-of-fit of this model
(pb.try2 <- parboot(fall$C2E.C, fitstats, nsim=1000, report=5))
Call: parboot(object = fall$C2E.C, statistic = fitstats, nsim = 1000, report = 5)

Parametric Bootstrap Statistics:
t0 mean(t0 - t_B) StdDev(t0 - t_B) Pr(t_B > t0)

SSE 425 267.7 16.13 0
Chisq 2197 1285.9 70.54 0
freemanTukey 207 43.4 9.76 0

t_B quantiles:
0% 2.5% 25% 50% 75% 97.5% 100%

SSE 112 128 147 156 168 190 233
Chisq 752 794 864 904 946 1057 1419
freemanTukey 134 144 157 164 170 183 195

# Express the magnitude of lack of fit by an overdispersion factor
(c.hat <- pb.try2@t0[2] / mean(pb.try2@t.star[,2])) # Chisq
2.411948

Once again we see the fit is pretty bad, even considering the more complex covariate structures, and
the overdispersion ratio is only negligibly smaller. We could think about trying to improve on this by
considering more complex covariate models. However, there may be excess Poisson variation that
simply cannot be explained by the available covariates. For example, jays are not uniformly distrib-
uted, and there is some amount of aggregation that might be explained by overdispersion (i.e.,
unstructured additional noise to the Poisson variation). So next, we try fitting a negative binomial
model using the gdistamp function. To do that we have to create a new unmarkedFrame using the
unmarkedFrameGDS constructor function, which takes at a minimum one new argument called
numPrimary, which is the number of sampling occasions within which it is reasonable to assume a
closed population was sampled. In a normal distance sampling survey, we view the sampling as
instantaneous and so we specify numPrimary=1. However, if we did a survey of the same points
separated in time by days, weeks, or even years, then numPrimary would be the number of such
temporal surveys. We don’t discuss modeling temporal structure here (see Sections 9.5–9.7 in this and
Chapter 14 in volume 2).

covs <- issj[,c("elevation", "forest", "chaparral")]
area <- pi*300^2 / 100^2 # Area in ha
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jayumf <- unmarkedFrameGDS(y=as.matrix(issj[,1:3]),
siteCovs=data.frame(covs, area), numPrimary=1,
dist.breaks=c(0, 100, 200, 300),
unitsIn="m", survey="point")

sc <- siteCovs(jayumf)
sc.s <- scale(sc)
sc.s[,"area"] <- pi*300^2 / 10000 # Don't standardize area
siteCovs(jayumf) <- sc.s
summary(jayumf)

# Fit the model using gdistsamp and look at the fit summary
(nb.C2E.C <- gdistsamp( ~chaparral + I(chaparral^2) + elevation +

offset(log(area)), ~1, ~chaparral, data =jayumf, output="abund",
mixture="NB", K = 150))

gdistsamp(lambdaformula = ~chaparral + I(chaparral^2) + elevation +
offset(log(area)), phiformula = ~1, pformula = ~chaparral,
data = jayumf, output = "abund", mixture = "NB", K = 150)

Abundance:
Estimate SE z P(>jzj)

(Intercept) -2.516 0.198 -12.73 4.17e-37
chaparral 1.432 0.229 6.25 4.01e-10
I(chaparral^2) -0.376 0.114 -3.28 1.04e-03
elevation -0.227 0.146 -1.55 1.20e-01

Detection:
Estimate SE z P(>jzj)

(Intercept) 4.679 0.0658 71.14 0.000000
chaparral -0.199 0.0600 -3.32 0.000905

Dispersion: # Note the NB dispersion parameter
Estimate SE z P(>jzj) # scale is log(tau)

-1.02 0.215 -4.73 2.23e-06

AIC: 695.4445

This produces a long list of warnings of this sort:

42: In log(cp[J + 1]) : NaNs produced

These are related to having near 0 probability in the very last cell (individuals > 300 m away)
and in general are not a problem. The size parameter is exp(�1.02) ¼ 0.36, which, as we noted
above, is the s parameter in the negative binomial distribution. The AIC of gdistsamp is not com-
parable to that of distsamp. If you run the same Poisson model using both functions, you get a
different AIC! This is because the likelihood construction is completely different. However, we will
use this model here to carry out some further analysis. We check the model fit using our parametric
bootstrap procedure:

(pb.try3 <- parboot(nb.C2E.C, fitstats, nsim=1000, report=5))

Call: parboot(object = nb.C2E.C, statistic = fitstats, nsim = 1000, report = 5)

438 CHAPTER 8 MODELING ABUNDANCE USING HIERARCHICAL DISTANCE SAMPLING



Parametric Bootstrap Statistics:
t0 mean(t0 - t_B) StdDev(t0 - t_B) Pr(t_B > t0)

SSE 430 97.4 99.7 0.143856
Chisq 2200 868.1 161.2 0.000999
freemanTukey 211 20.8 20.9 0.159840

t_B quantiles:
0% 2.5% 25% 50% 75% 97.5% 100%

SSE 117 188 265 315 379 576 1133
Chisq 921 1073 1225 1313 1425 1706 2556
freemanTukey 113 150 177 190 205 234 260

There were 50 or more warnings (use warnings() to see the first 50)

(c.hat <- pb.try3@t0[2] / mean(pb.try3@t.star[,2])) #
Chisq

1.65186

This also produces many warnings of the previously mentioned variety. But, on the brighter side,
this model does fit in a slightly more satisfactory way according to two out of three of our fit statistics.
And, the overdispersion ratio is reduced by nearly 50% and so things appear to be more tolerable for
this model. We could also produce predictions that are corrected for overdispersion as we did for the
multinomial mixture models (see Section 7.9.4).

Next we use the results to produce an estimate of population size. We first define a function getN,
which computes the sum of the predicted values for a given model object, and then we can apply it to
any model we wish, and we can also use it as an input to the parboot function to produce uncertainty
measures (SEs, CIs). For comparison, we also compute the predictions the old-fashioned way by
constructing the model matrix and doing the linear algebra “by hand.” In addition, we compute the
Best Unbiased Predictor (BUP) of local abundance.

# *Expected* population size for the sample points
getN <- function(fm, newdata=NULL)

sum(predict(fm, type="lambda", newdata=newdata)[,1])

getN(nb.C2E.C)
[1] 889.6142

# This does the same thing as the following commands
X <- model.matrix(~chaparral+I(chaparral^2)+elevation+log(offset(area)),

siteCovs(jayumf))
head(X) # The design matrix

(Intercept) chaparral I(chaparral^2) elevation log(offset(area))
1 1 -0.1218243 0.01484117 -1.20607849 3.341954
2 1 0.8384709 0.70303345 -0.36132054 3.341954
3 1 2.1319298 4.54512461 -0.45797193 3.341954
4 1 -0.2737078 0.07491594 -0.14196112 3.341954
5 1 -1.1562240 1.33685389 -0.72588125 3.341954
6 1 0.2989173 0.08935153 0.01704522 3.341954
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# Prediction of total expected population size at the sample points
sum(exp(X %*% c(coef(nb.C2E.C, type="lambda"), 1)))
[1] 889.6142

# Empirical Bayes estimates of posterior distribution:
# Pr(N[x j y, lambda, sigma) for x[0,1,.,K
re.jay <- ranef(nb.C2E.C, K = 150)

# *Realized* population size
sum(bup(re.jay, "mean"))
[1] 827.4331

So there are about 889 ISSJs on the total area sampled by the 307 point counts, based
on the fitted mean of the Poisson model. On the other hand, if we use the best unbiased
predictor we have only about 827 ISSJs on the 307 point counts. In general, the two predictions
should not be the same because the BUP “adjusts” the predictions toward the data (the observed
counts) and so uses some additional information. The BUP is conditional on the particular sample
at hand.

Next, we do two further summary analyses of the ISSJ models. First, we produce a graphical
display of the effect of chaparral on expected local population size, and then we show a predictive map
of expected density over the whole island (Figure 8.7).

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Proportion chaparral

P
re

di
ct

ed
 ja

y 
ab

un
da

nc
e

FIGURE 8.7

Response curve of the expected abundance, E(N), of island scrub-jays per 28 ha pixel to the covariate

chaparral (with 95% CI limits).
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summary(jayumf) # Note the range of chaparral which we need to know

[.output shortened.]

Site-level covariates:
elevation forest chaparral area

Min. : -1.4884 Min. : -0.49215 Min. : -1.1562 Min. : 28.27
1st Qu.: -0.7974 1st Qu.: -0.49215 1st Qu.: -0.8721 1st Qu.: 28.27
Median : -0.1687 Median : -0.44295 Median : -0.2014 Median: 28.27
Mean : 0.0000 Mean : 0.00000 Mean : 0.0000 Mean : 28.27
3rd Qu.: 0.6650 3rd Qu.: -0.06982 3rd Qu.: 0.6872 3rd Qu.: 28.27
Max. : 3.5731 Max. : 5.42362 Max. : 2.8809 Max. : 28.27

# Create a new data frame with area 28.27 ha, the area of a 300 m circle
chap.orig <- seq(0, 1, 0.01) # Values from 0 to 1 prop. chaparral
chap.pred <- (chap.orig - mean(issj$chaparral)) / sd(issj$chaparral)
newdat <- data.frame(chaparral = chap.pred, elevation = 0, area=28.27)

# Expected values of N for covariate values in "newdat"
E.N <- predict(fall$C2E.C, type="state", newdata=newdat, appendData=TRUE)
head(E.N)

Predicted SE lower upper chaparral elevation area
1 0.3606945 0.1108475 0.1974927 0.6587612 -1.1562240 0 28.27
2 0.3907380 0.1163551 0.2179779 0.7004205 -1.1134578 0 28.27
3 0.4228468 0.1220244 0.2401844 0.7444256 -1.0706916 0 28.27
4 0.4571217 0.1278586 0.2642091 0.7908898 -1.0279254 0 28.27
5 0.4936646 0.1338616 0.2901490 0.8399297 -0.9851591 0 28.27
6 0.5325784 0.1400385 0.3181008 0.8916661 -0.9423929 0 28.27

# Make a plot of the response curve for the grid of chaparral values
plot(chap.orig, E.N[,"Predicted"], xlab="Proportion chaparral", ylab="Predicted jay
abundance", type="l", ylim = c(0, 20), frame = F, lwd = 2)
matlines(chap.orig, E.N[,3:4], lty = 1, col = "grey", lwd = 1)

Finally, now we take the habitat map for the whole island (Figure 8.6) and we predict the expected
abundance, E(N), on every pixel of the map. These pixels are 9 ha pixels instead of 28 ha sample units,
and so we have to account for that area change. In addition, because models were fitted with stan-
dardized covariates, we need to appropriately standardize the landscape variables by exactly the same
mean and SD used for the data in the analysis. To do that we first look at the attributes of the scaled site
covariates, for which we computed several pages of R code previously:

attributes(sc.s) # means are "scaled:center". SDs are "scaled:scale"
$dim
[1] 307 4

$dimnames
$dimnames[[1]]
NULL
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$dimnames[[2]]
[1] "elevation" "forest" "chaparral" "area"

$'scaled:center'
elevation forest chaparral area

202.0023616 0.0673357 0.2703592 28.2743339

$'scaled:scale'
elevation forest chaparral area

124.8818069 0.1368199 0.2338295 0.0000000

And now we can apply these values of the mean and SD to the grid variables and then predict for
each pixel of the Santa Cruz landscape.

cruz.s <- cruz # Created a new data set for the scaled variables
cruz.s$elevation <- (cruz$elevation*0.3048-202)/125
cruz.s$chaparral <- (cruz$chaparral-0.270)/0.234
cruz.s$area <- (300*300)/10000 # The grid cells are 300x300m=9ha
EN <- predict(nb.C2E.C, type="lambda", newdata=cruz.s)

# Total population size (by summing predictions for all pixels)
getN(nb.C2E.C, newdata=cruz.s)
[1] 2282.039

# Parametric bootstrap for CI
# A much faster function could be written to doing the sum
set.seed(2015)
(EN.B <- parboot(nb.C2E.C, stat=getN, nsim=1000, report=5))

Call: parboot(object = nb.C2E.C, statistic = getN, nsim = 1000, report = 5)

Parametric Bootstrap Statistics:
t0 mean(t0 - t_B) StdDev(t0 - t_B) Pr(t_B > t0)

1 890 -13.1 160 0.535

t_B quantiles:
0% 2.5% 25% 50% 75% 97.5% 100%

t*1 481 607 788 903 1004 1237 1425

t0 = Original statistic compuated from data
t_B = Vector of bootstrap samples

So we have a population size estimate and a 95% confidence interval, and now let’s make a map
of the predictions (i.e., create a species distribution map in terms of the expected abundance). To do
this we use the raster package to create a raster stack using the land cover variables (standardized)
that are provided when the ISSJ data are loaded. Then we use the predict function with this raster
stack.

library(raster)
cruz.raster <- stack(rasterFromXYZ(cruz.s[,c("x","y","elevation")]),

rasterFromXYZ(cruz.s[,c("x","y","chaparral")]),
rasterFromXYZ(cruz.s[,c("x","y","area")]))
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names(cruz.raster) # These should match the names in the formula
[1] "elevation" "chaparral" "area"
plot(cruz.raster) # not shown
# Elevation map on the original scale (not shown)
plot(cruz.raster[["elevation"]]*125 + 202, col=topo.colors(20),
main="Elevation (in feet) and Survey Locations", asp = 1)
points(issj[,c("x","y")], cex=0.8, pch = 16)

The predict function will use a raster stack having the appropriate covariates and produce raster
output of predictions, SEs, and lower and upper confidence limits (Figure 8.8). Where else can you get
such goodness from one function call? Here we show the Holy Grail of population ecology: a spatial

FIGURE 8.8

Global species distribution map of the island scrub-jay (Aphelocoma insularis), an endemic on the island of

Santa Cruz, California, based on the best model in the model set. Predictions show the expected abundance

(ls) under the AIC-best negative binomial model for every pixel. Three maps are shown to depict uncertainty

in these predictions: the prediction SE and the lower and upper limit of a 95% prediction interval.
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map depicting global population size predictions from the distance sampling model applied at the
landscape scale:

EN.raster <- predict(nb.C2E.C, type="lambda", newdata=cruz.raster)
doing row 1000 of 5625
doing row 2000 of 5625
doing row 3000 of 5625
doing row 4000 of 5625
doing row 5000 of 5625

plot(EN.raster, col = topo.colors(20), asp = 1) # See Figure 8.8

While we conclude our analysis here merely by showing an estimate of the global population
distribution of this important species, we note that the ultimate objective of this analysis was to use the
model to make predictions of population size and distribution using the 1985 land cover of the island
(pre-sheep cull; see Sillett et al., 2012, for more detail).

8.5 BAYESIAN HDS
Bayesian hierarchical distance sampling can be implemented in a number of different ways (following
our developments of Section 8.3). There are two basic formulations that we demonstrate here: (1) The
conditional (three-part) formulation of the model using either continuous or discrete data, which is
similar to that which we outlined for the multinomial mixture model in Section 8.3. This three-part
formulation of the model is similar to Chelgren et al. (2011b) and Shirk et al. (2014) and also
similar to Hedley and Buckland (2004; although, they didn’t do a joint estimation of the parameters
from the different model components); and (2) formulation of the model for either discrete or
continuous data using data augmentation. We should note before getting into the details that for some
problems it might be perfectly reasonable to just pool all of the data and analyze one big data set
having a single parameter N, the population size among all sampled populations. This may be
reasonable to do if estimating overall abundance or mean density was the primary objective and the
investigation of patterns in the variation among sample units was not important.

8.5.1 SIMULATING HDS DATA
We start by developing some familiarity with the data structure and processing by defining a function
for simulating HDS data and fitting models to it. The function simHDS (with its default arguments
shown) is called as follows:

simHDS(type="line", nsites = 100, mean.lambda = 2,
beta.lam = 1, mean.sigma = 1, beta.sig = -0.5, B = 3, discard0=TRUE)

The function arguments mean the following:

• type lets you choose between either a line (type = "line") or a point (type = "point") transect
protocol.

• nsites is the number of sites
• alpha.lam (= log(mean.lambda)) and beta.lam are the intercept and the slope of a log-linear

regression of expected abundance per site on a habitat covariate
• alpha.sig (= log(mean.sigma)) and beta.sig are the intercept and the slope of a log-linear

regression of scale parameter s of the half-normal detection function on wind speed
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• B is the strip half width
• discard0=TRUE subsets to sites at which >0 individuals were captured. You may or may not want

to do this depending on how the model is formulated, so be careful.

Calling the function produces a visualization of the generated data set (see Figure 8.9 for type ¼
“line” and Figure 8.10 for type ¼ “point”).

By default we simulate line transect data for 100 sites, with abundance Ns for transect s having a
Poisson distribution with a mean that depends on some simulated site covariate, “habitat.” We also
incorporate an effect of another site-specific covariate, wind speed, which we assume affects the
observation model via the detection function (specifically parameter s; Marques et al., 2007). We now
execute the function to obtain a point or a line transect data set (with default arguments).

set.seed(1234)
tmp1 <- simHDS("point") # Point transect
tmp2 <- simHDS() # Line transect (this is the default)
str(tmp1) # Look at function output
List of 14
$ type : chr "point"
$ nsites : num 100
$ mean.lambda: num 2
$ beta.lam : num 1
$ mean.sigma : num 1
$ beta.sig : num -0.5
$ B : num 3
$ data : num [1:76, 1:5] 2 3 6 13 21 22 24 29 31 31 .

..- attr(*, "dimnames")=List of 2

.. ..$ : NULL

.. ..$ : chr [1:5] "" "y" "u" "v" .

$ B : num 3
$ nsites : num 100
$ habitat : num [1:100] -1.207 0.277 1.084 -2.346 0.429 .

$ wind : num [1:100] 0.643 0.113 -0.73 1.071 0.105 .

$ N : int [1:100] 0 6 6 0 6 3 0 4 1 1 .

$ N.true : int [1:100] 0 5 5 0 3 2 0 3 1 1 .

Note that N.true is the number of animals with distance � B, so for a line transect, N = N.true,
while for a point transect, N.true � N because we are simulating on a square.

Now we have a nice set of distance sampling data collected at 100 sites and with two site-specific
covariates called habitat (affecting local abundance) and wind (affecting the distance out to which
individuals are detected).

As always, it is extremely useful to play around with data simulation functions with changed
arguments to train your intuition about a certain modeled process and also about the statistical model
we use to make an inference about the parameters in this process; see Exercise 7.

8.5.2 BAYESIAN HDS USING DATA AUGMENTATION
We have discussed data augmentation (Royle et al., 2007a) several times in previous chapters, and we
analyzed the distance sampling model using the Impala data with DA in Section 8.3 for both binned and
continuous distance measurements. Herewe apply these ideas to HDSmodels. In general, every capture-
recapture model can be analyzed using data augmentation. And, distance sampling can be regarded as

8.5 BAYESIAN HDS 445



FIGURE 8.9

Visualization produced when the function simHDS is run for line transects. Histogram shows observed distances.
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just another capture-recapture model with an individual covariate “distance,” which affects p (also
without the “recapture”). To apply DA to distance sampling, we augment a data set of captured in-
dividuals (y ¼ 1) with a large number of uncaptured individuals (i.e., y ¼ 0), and we recognize that the
resulting “augmented data set” is a zero-inflated version of the known-N data set (similar to the rela-
tionship between an occupancy model and a logistic regression of detections at sites that are known to be
occupied). That is, some of the added zeros are sampling zeros and some of them are structural zeros
(fixed zeros that are not missed individuals). We can express this zero-inflated Bernoulli model directly
in BUGS. It essentially recasts the capture-recapture (here distance sampling) model as a site occupancy
model (see Chapter 10). In distance sampling, the only nuance is that pi depends on distance and
the distance “data” must be input as missing values for the augmented individuals, i.e., we have a site-
occupancy model with a partially missing, site-level covariate, which are estimated as part of the model.

Now for site-structured data, i.e., HDS, where we have distance sampling data from a number S of
sites, we have to consider how to get the multisite structure integrated into this DA formulation of the
model. Such a framework for accomplishing this was described in Converse and Royle (2012), Royle
et al. (2012), and Royle and Converse (2014). The main idea is simply to pool the data into one big data

FIGURE 8.10

Visualization produced when the function simHDS is run for point transects. Colors in the top-left panel denote

different sites. Histogram shows observed distances.
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set having rows i ¼ 1,2,.,M, which includes the n observed individuals (from among all sites) and a
large number,M � n, of unobserved individuals. In addition, we add an additional individual covariate,
which is the site membership of each individual, say sitei. The observed site membership of individuals is
treated as a categorical individual covariate, which, for the augmented individuals, is missing data that
can be estimated. In this formulation of the model we have both sites and individuals (as in Section 7.8.4)
and so we need to be careful with our indexing, which will be slightly different from other places in the
book. As in Chapter 7, wewill use the index i for individual and s ¼ 1,2,.,S for sites. We require a prior
distribution for the categorical individual covariate, which we specify as follows in the BUGS language:

site[i] ~ dcat( site.probs[]),

where site.probs is a vector of length S defined as

site.probs[s]¼ lsP
s

ls
.

Here, ls is the expected abundance at site s, which may of course depend on site-specific covariates.
This model is implied by the assumption that

Ns w PoissonðlsÞ
with

logðlsÞ ¼ b0 þ b1xs:

The data augmentation part of the model includes a set of latent variables zi which are Bernoulli
trials taking on the value zi ¼ 1 when an individual observation corresponds to a real individual and
zi ¼ 0 when it corresponds to a structural zero. As before, we assume zi w Bernoulli(j), where j is the
data augmentation parameter.One extremely important caveat is that in this use of DA for such site-
structured or stratified models, the intercept parameter b0 of the abundance model is confounded with
the DA parameter j (Royle and Converse 2014). They are equivalent parameters, and the model must
be fitted by imposing a constraint, either by setting b0 ¼ 0 or setting j ¼PS

s¼1ls=M, where M is the
total number of individuals in the augmented data set (see Royle et al., 2014, p. 314).

To summarize, we can do hierarchical distance sampling by: (1) including individual “site
membership” as a categorical covariate; (2) specifying the site membership covariate as a categorical
random variable with cell probabilities proportional to the Poisson mean parameter ls; and (3)
specifying covariate effects directly on ls as in our usual binomial and multinomial N-mixture models.

For illustration, we also show how covariates can be introduced into the detection model, which we
typically do by specifying a linear model for log(s). We assume that we had measured a covariate wind
speed, which affects detection probability via its effect on the detection function. Having measured
wind speed at the time of our survey at every site, it is a site covariate (if we had temporal replicate
measurements at a site, it would be an observational covariate). Thus, the observation part of our HDS
model for every individual i in the augmented data set is this (note that sites are now indexed s and the
scale parameter s varies by site according to the log-linear model on wind speed):

yiwBernoulliðpiÞ
pi ¼ exp

�
� di � di

.�
2 � s2sðiÞ

��
logðssÞ ¼ a0 þ a1 � winds

Note that the first line specifies a relationship for individuals, the second one between individuals
and an individual-specific covariate (di) and a site-specific parameter ss, and the third line a rela-
tionship purely at the site level. In line two, we emphasize the relationship between individual and site
by use of the double subscript in ss(i), which specifies membership of individual i to site s.
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We now demonstrate using our simulated data from 100 line transect surveys.

# Recreate line transect data set
set.seed(1234)
tmp <- simHDS() # Line transect (default)
attach(tmp)

# Data augmentation: add a bunch of "pseudo-individuals"
nz <- 500 # Augment by 500
nind <- nrow(data)
y <- c(data[,2], rep(0, nz)) # Augmented detection indicator y
site <- c(data[,1], rep(NA, nz)) # Augmented site indicator,

# unknown (i.e., NA) for augmented inds.
d <- c(data[,5], rep(NA,nz)) # Augmented distance data (with NAs)

# Bundle and summarize data set
str( win.data <- list(nsites=nsites, habitat=habitat, wind=wind, B=B, nind=nind, nz=nz,
y=y, d=d, site=site) )
win.data$site # Unknown site cov. for augmented inds.

# BUGS model for line transect HDS (NOT point transects!)
cat("
model{
# Prior distributions
beta0 ~ dunif(-10,10) # Intercept of lambda-habitat regression
beta1 ~ dunif(-10,10) # Slope of log(lambda) on habitat
alpha0 ~ dunif(-10,10) # Intercept of log(sigma) (half-normal scale)
alpha1 ~ dunif(-10,10) # Slope of log(sigma) on wind

# psi is a derived parameter under DA for stratified populations
psi <- sum(lambda[]) / (nind+nz)

# 'Likelihood' (sort of.)
for(i in 1:(nind+nz)){ # i is index for individuals

z[i] ~ dbern(psi) # Data augmentation variables
d[i] ~ dunif(0, B) # Distance uniformly distributed
p[i] <- exp(-d[i]*d[i]/(2*sigma[site[i]]*sigma[site[i]])) # Det. function
mu[i] <- z[i]* p[i] # 'straw man' for WinBUGS
y[i] ~ dbern(mu[i]) # Bernoulli random variable
site[i] ~ dcat(site.probs[1:nsites]) # Population distribution among sites

}

# Linear models for abundance and for detection
for(s in 1:nsites){ # s is index for sites

# Model for abundance
# next line not necessary, but allows to make predictions
N[s] ~ dpois(lambda[s]) # Realized abundance at site s
log(lambda[s]) <- beta0 + beta1*habitat[s] # Linear model abundance
site.probs[s] <- lambda[s] / sum(lambda[])

# Linear model for detection
log(sigma[s]) <- alpha0 + alpha1*wind[s]

}

8.5 BAYESIAN HDS 449



# Derived parameters: total population size and average density across all sites
Ntotal <- sum(z[])
area <- nsites*1*2*B # Unit length == 1, half-width = B
D <- Ntotal/area
}
",fill=TRUE , file = "model1.txt")

# Inits
zst <- c(rep(1, sum(y)), rep(0, nz)) # . and for DA variables
inits <- function(){list(beta0=0, beta1=0, alpha0=0, alpha1=0, z=zst)}

# Parameters to save
params <- c("alpha0", "alpha1", "beta0", "beta1", "psi", "Ntotal", "D")

# MCMC settings
ni <- 12000 ; nb <- 2000 ; nt <- 2 ; nc <- 3

# Call BUGS (ART 33 min) .

bd <- "c:/Program Files/WinBUGS14/" # Never forget this for WinBUGS
out1 <- bugs(win.data, inits, params, "model1.txt", n.thin=nt,
n.chains=nc, n.burnin=nb, n.iter=ni, debug=TRUE, bugs.dir = bd)

# . or try JAGS for a change (ART 6 min)
library(jagsUI) # never forget to load jagsUI
out1 <- jags(win.data, inits, params, "model1.txt", n.thin=nt,

n.chains=nc, n.burnin=nb, n.iter=ni)

We note that JAGS completes the analysis about five times faster than WinBUGS (and would be
faster still with argument parallel = TRUE). This is a good example of why testing things out in both
BUGS engines can be helpful and efficient (you might also want to try out OpenBUGS).

# Summarize posterior output
print(out1, 2)

mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff
alpha0 0.02 0.11 -0.17 0.02 0.28 TRUE 0.56 1 14232
alpha1 -0.66 0.10 -0.88 -0.65 -0.48 FALSE 1.00 1 4213
beta0 0.58 0.15 0.29 0.58 0.85 FALSE 1.00 1 1818
beta1 0.94 0.08 0.79 0.94 1.10 FALSE 1.00 1 1077
psi 0.41 0.04 0.33 0.40 0.50 FALSE 1.00 1 9092
Ntotal 259.11 24.40 215.00 258.00 310.00 FALSE 1.00 1 15000
D 0.43 0.04 0.36 0.43 0.52 FALSE 1.00 1 15000

# Truth in data simulation (note alpha0 and beta0 are log transformed)
$ mean.lambda: num 2 # exp(beta0) above
$ beta.lam : num 1 # beta1
$ mean.sigma : num 1 # exp(alpha0)
$ beta.sig : num -0.5 # alpha1

The posterior means of all parameters are not too far from their data-generating values. In addition,
the posterior mean of Ntotal is 259.11 (CRI 215–310), which agrees quite well with the true total
population size obtained by summing Ns over all S sites (note: only 136 individuals were detected).
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sum(tmp$N.true)
[1] 305

Next, we consider the same analysis, but as if we had binned distance data. For this model we use
the categorical distribution in BUGS. While there is nothing technically novel here, note that when we
have the covariate on s (wind) we must define a large matrix of site and distance-class specific
detection probabilities, and this will slow things down substantially. This takes a few extra lines of
code to make use of categorical data. We use the same simulated data set from earlier in this Section
(which you may have to re-create in case you wrote over things in your R workspace). We first convert
the distance data into categorical distance classes as we’ve done before, and then write out the BUGS
model into a file and set things up for a BUGS run.

# Prepare data
delta <- 0.1 # width of distance bins for approx.
midpt <- seq(delta/2, B, delta) # make mid-points and chop up data
dclass <- d %/% delta + 1 # convert distances to cat. distances
nD <- length(midpt) # Number of distance intervals

# Bundle and summarize data set
str( win.data <- list (y=y, dclass=dclass, site=site, midpt=midpt, delta=delta, B=B,
nind=nind, nz=nz, nsites=nsites, nD=nD, habitat=habitat, wind=wind) )

# BUGS model specification for line-transect HDS (NOT point transects!)
cat("
model{
# Prior distributions
alpha0 ~ dunif(-10,10)
alpha1 ~ dunif(-10,10)
beta0 ~ dunif(-10,10)
beta1 ~ dunif(-10,10)

psi <- sum(lambda[])/(nind+nz) # psi is a derived parameter

for(i in 1:(nind+nz)){ # Loop over individuals
z[i] ~ dbern(psi) # DA variables
dclass[i] ~ dcat(pi[site[i],]) # Population distribution of dist class
mu[i] <- z[i] * p[site[i],dclass[i]] # p depends on site AND dist class
y[i] ~ dbern(mu[i]) # Basic Bernoulli response in DS model
site[i] ~ dcat(site.probs[1:nsites]) # Site membership of inds

}

for(s in 1:nsites){ # Loop over sites
# Construct cell probabilities for nD cells
for(g in 1:nD){ # midpt = mid point of each cell
log(p[s,g]) <- -midpt[g]*midpt[g]/(2*sigma[s]*sigma[s])
pi[s,g] <- delta/B # Probability of x per interval
f[s,g] <- p[s,g]*pi[s,g] # pdf of observed distances

}

# not necessary N[s]~dpois(lambda[s]) except for prediction
N[s] ~ dpois(lambda[s]) # Predict abundance at each site
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log(lambda[s]) <- beta0 + beta1 * habitat[s] # Linear model for N
site.probs[s] <- lambda[s]/sum(lambda[])
log(sigma[s]) <- alpha0 + alpha1*wind[s] # Linear model for sigma

}

# Derived parameters: total abundance and mean density across all sites
Ntotal <- sum(z[]) # Also sum(N[]) which is size of a new population
area <- nsites*1*2*B # Unit length == 1, half-width = B
D <- Ntotal/area
}
",fill=TRUE, file = "model2.txt")

# Inits
zst <- c(rep(1, sum(y)), rep(0, nz))
inits <- function(){list (alpha0=0, alpha1=0, beta0=0, beta1=0, z=zst) }

# Params to save
params <- c("alpha0", "alpha1", "beta0", "beta1", "psi", "Ntotal","D")

# MCMC settings
ni <- 12000 ; nb <- 2000 ; nt <- 2 ; nc <- 3

# Run JAGS with parallel processing (ART 1 min)
library(jagsUI)
out2 <- jags(win.data, inits, params, "model2.txt", n.thin=nt,

n.chains=nc, n.burnin=nb, n.iter=ni, parallel = FALSE)

We summarize the posterior samples for each parameter (output truncated), the means of which, as
before, are similar to the data-generating values.

print(out2,2)
mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff

alpha0 0.02 0.11 -0.17 0.01 0.26 TRUE 0.55 1.00 838
alpha1 -0.66 0.10 -0.88 -0.65 -0.48 FALSE 1.00 1.00 6469
beta0 0.57 0.14 0.29 0.58 0.85 FALSE 1.00 1.01 266
beta1 0.94 0.08 0.79 0.94 1.11 FALSE 1.00 1.01 224
psi 0.41 0.04 0.33 0.40 0.49 FALSE 1.00 1.00 959
Ntotal 258.89 23.45 217.00 258.00 309.00 FALSE 1.00 1.00 834
D 0.43 0.04 0.36 0.43 0.52 FALSE 1.00 1.00 834

The results are, not surprisingly, numerically very similar to the analysis based on data augmen-
tation of the previous section.

8.5.3 BAYESIAN HDS USING THE THREE-PART CONDITIONAL MULTINOMIAL
MODEL

It is possible to specify HDS models in BUGS without using data augmentation. In Section 7.6 we
discussed a specific formulation of multinomial models for implementation in BUGS to get around our
inability to specify a random variable as a multinomial index. We will use that same formulation here.
The basic idea is that we deconstruct the multinomial observation model by first conditioning on ns for
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each site s, so that instead of having a multinomial/Poisson mixture model, we have the three-part
multinomial/binomial/Poisson mixture model as follows:

ysrns w Multinomialðns;pc
sÞ ð1Þ

where pc
k ¼ pk=ð1� p0Þ, the index k here representing the kth element of the vector pc

s,

nsjNs w BinomialðNs; 1� p0Þ ð2Þ
Ns w PoissonðlsÞ ð3Þ

The first component is the model for distance class of the observed ns individuals, the second
describes imperfect detection of the Ns individuals leading to count ns, and the third is our usual model
for spatial variation in local abundance Ns. The key thing is that the multinomial of the first component
has index ns, which is observed, and so we’re conditioning on observed data, not on the latent variable
Ns. This three-part hierarchical model is easily implemented in BUGS. Chelgren et al. (2011b) may
have been the first to do this, but they also formulated the model for continuous distance point count
data using the “zeros trick” in BUGS. We prefer to use a fine binning if a nearly-continuous model is
desired. In practice, we also usually specify the first stage in BUGS using a categorical observation
model for individual observations, instead of the multinomial model for the distance class frequencies
(as described above). This is a much more versatile formulation, which allows considerable flexibility
to expand the model (see Chapter 9).

We simulate another data set using the same function as before, but this time do not discard the data
from the sites where no animals were detected (discard0=F) so that those sites are carried as observed
zeros in the data set and we can analyze the zero-filled data.

# Simulate line transect data set
set.seed(1234)
tmp <- simHDS(type="line", discard0=FALSE)
attach(tmp)

# Get number of individuals detected per site
# ncap [ 1 plus number of detected individuals per site
ncap <- table(data[,1]) # ncap = 1 if no individuals captured
sites0 <- data[is.na(data[,2]),][,1] # sites where nothing detected
ncap[as.character(sites0)] <- 0 # Fill in 0 for sites with no detections
ncap <- as.vector(ncap)

# Prepare other data
site <- data[!is.na(data[,2]),1] # site ID of each observation
delta <- 0.1 # distance bin width for rect. approx.
midpt <- seq(delta/2, B, delta) # make mid-points and chop up data
dclass <- data[,5] %/% delta + 1 # convert distances to cat. distances
nD <- length(midpt) # Number of distance intervals
dclass <- dclass[!is.na(data[,2])] # Observed categorical observations
nind <- length(dclass) # Total number of individuals detected

# Bundle and summarize data set
str( win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt, delta=delta,
ncap=ncap, habitat=habitat, wind=wind, dclass=dclass, site=site) )
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# BUGS model specification for line-transect HDS (NOT point transects!)
cat("
model{
# Priors
alpha0 ~ dunif(-10,10)
alpha1 ~ dunif(-10,10)
beta0 ~ dunif(-10,10)
beta1 ~ dunif(-10,10)

for(i in 1:nind){
dclass[i] ~ dcat(fc[site[i],]) # Part 1 of HM

}

for(s in 1:nsites){
# Construct cell probabilities for nD multinomial cells
for(g in 1:nD){ # midpt = mid-point of each cell

log(p[s,g]) <- -midpt[g] * midpt[g] / (2*sigma[s]*sigma[s])
pi[s,g] <- delta / B # Probability per interval
f[s,g] <- p[s,g] * pi[s,g]
fc[s,g] <- f[s,g] / pcap[s]

}
pcap[s] <- sum(f[s,]) # Pr(capture): sum of rectangular areas
ncap[s] ~ dbin(pcap[s], N[s]) # Part 2 of HM
N[s] ~ dpois(lambda[s]) # Part 3 of HM
log(lambda[s]) <- beta0 + beta1 * habitat[s] # Linear model abundance
log(sigma[s])<- alpha0 + alpha1*wind[s] # Linear model detection

}
# Derived parameters
Ntotal <- sum(N[])
area <- nsites*1*2*B # Unit length == 1, half-width = B
D <- Ntotal/area
}
",fill=TRUE, file = "model3.txt")

# Inits
Nst <- ncap + 1
inits <- function(){list(alpha0=0, alpha1=0, beta0=0, beta1=0, N=Nst)}

# Params to save
params <- c("alpha0", "alpha1", "beta0", "beta1", "Ntotal","D")

# MCMC settings
ni <- 12000 ; nb <- 2000 ; nt <- 1 ; nc <- 3

# Run JAGS (ART 1 min) and summarize posteriors
library(jagsUI)
out3 <- jags(win.data, inits, params, "model3.txt", n.thin=nt,

n.chains=nc, n.burnin=nb, n.iter=ni)
print(out3, 2)
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mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff
alpha0 0.00 0.11 -0.19 -0.01 0.23 TRUE 0.54 1 11116
alpha1 -0.66 0.10 -0.87 -0.66 -0.49 FALSE 1.00 1 4359
beta0 0.64 0.14 0.35 0.64 0.90 FALSE 1.00 1 4330
beta1 0.91 0.08 0.76 0.91 1.07 FALSE 1.00 1 10802
Ntotal 266.98 24.52 223.00 266.00 318.00 FALSE 1.00 1 3085
D 0.44 0.04 0.37 0.44 0.53 FALSE 1.00 1 3085

This is not too bad (true N ¼ 305) and the chains seem to be mixing well, so we’re satisfied that this
formulation of the model is viable. We could work up the three-part model for continuous distance
data, but, as in Chelgren et al. (2011b) and Shirk et al. (2014), we would have to use the ones or zeros
trick to implement this (but see Section 9.8.1 for an alternative formulation that avoids having to use
the ones or zeros trick). However, there would be no practical difference between doing that and just
using a large number of relatively narrow distance intervals (remember our treatise on integration in
Section 8.3.2).

8.5.4 POINT TRANSECT HDS USING THE CONDITIONAL MULTINOMIAL
FORMULATION

We now show how to apply the three-part conditional multinomial model to point transect data. As
before, we simulate a data set but now keep the nondetection sites in the data set so that when we
process the data we have a record of sites with n ¼ 0 (where no individual was detected), and be sure to
specify type = "point".

# Simulate a point count data set using our simHDS function
set.seed(1234)
tmp <- simHDS(type="point", discard0=FALSE)
attach(tmp)

# Prepare data
# Number of individuals detected per site
ncap <- table(data[,1]) # ncap = 1 if no individuals captured
sites0 <- data[is.na(data[,2]),][,1] # Sites where nothing was seen
ncap[as.character(sites0)] <- 0 # Fill in 0 for sites with no detections
ncap <- as.vector(ncap) # Number of individuals detected per site

# Other data
site <- data[!is.na(data[,2]),1] # Site ID of each observation
delta <- 0.1 # Distance bin width for rect. approx.
midpt <- seq(delta/2, B, delta) # Make mid-points and chop up data
dclass <- data[,5] %/% delta + 1 # Convert distance to distance category
nD <- length(midpt) # Number of distance intervals
dclass <- dclass[!is.na(data[,2])] # Observed categorical observations
nind <- length(dclass) # Total number of individuals detected

# Bundle and summarize data set
str( win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt,
delta=delta, ncap=ncap, habitat=habitat, wind=wind, dclass=dclass,site=site) )
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# BUGS model specification for point transect data
cat("
model{
# Priors
alpha0 ~ dunif(-10,10)
alpha1 ~ dunif(-10,10)
beta0 ~ dunif(-10,10)
beta1 ~ dunif(-10,10)

for(i in 1:nind){
dclass[i] ~ dcat(fc[site[i],]) # Part 1 of HM

}
for(s in 1:nsites){

# Construct cell probabilities for nD distance bands
for(g in 1:nD){ # midpt = mid-point of each band

log(p[s,g]) <- -midpt[g] * midpt[g] / (2 * sigma[s] * sigma[s])
pi[s,g] <- ((2 * midpt[g] ) / (B * B)) * delta # prob. per interval
f[s,g] <- p[s,g] * pi[s,g]
fc[s,g] <- f[s,g] / pcap[s]

}
pcap[s] <- sum(f[s,]) # Pr(capture): sum of rectangular areas

ncap[s] ~ dbin(pcap[s], N[s]) # Part 2 of HM
N[s] ~ dpois(lambda[s]) # Part 3 of HM
log(lambda[s]) <- beta0 + beta1 * habitat[s] # Linear model abundance
log(sigma[s]) <- alpha0 + alpha1*wind[s] # Linear model detection

}

# Derived parameters
Ntotal <- sum(N[])
area <- nsites*3.141*B*B
D <- Ntotal/area
}
",fill=TRUE, file="model4.txt")

# Inits
Nst <- ncap + 1
inits <- function(){list(alpha0=0, alpha1=0, beta0=0, beta1=0, N=Nst)}

# Params to save
params <- c("alpha0", "alpha1", "beta0", "beta1", "Ntotal","D")

# MCMC settings
ni <- 12000 ; nb <- 2000 ; nt <- 1 ; nc <- 3

# Run BUGS (ART 2.3 min) and summarize posteriors
out4 <- bugs(win.data, inits, params, "model4.txt", n.thin=nt,

n.chains=nc, n.burnin=nb, n.iter=ni, debug=TRUE, bugs.dir = bd)

print(out4, 2)
Inference for Bugs model at "model4.txt", fit using WinBUGS,
3 chains, each with 12000 iterations (first 2000 discarded)
n.sims = 30000 iterations saved
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mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha0 -0.06 0.11 -0.26 -0.13 -0.06 0.01 0.18 1 7500
alpha1 -0.56 0.11 -0.80 -0.62 -0.55 -0.49 -0.38 1 30000
beta0 0.41 0.24 -0.09 0.24 0.41 0.57 0.87 1 3100
beta1 0.97 0.11 0.76 0.90 0.97 1.05 1.19 1 4800
Ntotal 227.92 40.85 159.00 198.00 224.00 253.00 317.00 1 4900
D 0.08 0.01 0.06 0.07 0.08 0.09 0.11 1 4900

Once again we obtain results very similar to the data generating values – we have only one in-
dividual difference between the posterior mean and the actual realized population size (and note that
only 76 individuals were detected, so this estimation problem was not trivial). Of course density is
estimated much lower in this case because the sample units are circles of radius B ¼ 3 and not rect-
angles as before, and therefore the total area is much larger.

sum(tmp$N.true) # True realized population size
[1] 227
sum(!is.na(tmp$data[,"y"])) # Observed index for population size (Johnson, 2008)
[1] 76

8.5.5 BAYESIAN HDS ANALYSIS OF THE ISSJ DATA
Finally, we illustrate an application of HDS using the ISSJ data. We could use either the data
augmentation or the three-part model formulations of HDS for the ISSJ data. We’ll use the three-part
model formulation here and leave as an exercise for you to figure out how to implement the DAversion
of the model. From Section 8.4.3 we found that a negative binomial abundance model with quadratic
effect of chaparral and linear effect of elevation on mean abundance, and a linear effect of chaparral on
the distance function parameter swas our preferred model, and provided a reasonable fit to the data. So
we fit a model that is similar here, but minus the chaparral effect on s (we have you do this as an
exercise). And, instead of a negative binomial abundance model, we will illustrate the fitting of a
Poisson lognormal model of overdispersion, where we add a site effect with standard deviation ssite to
the linear predictor of the expected abundance. First, we have to convert the vector of frequencies for
each site to individual distance class observations.

# Load the ISSJ data
library(unmarked)
data(issj)

# Prepare some data
nD <- 3 # Number of intervals
delta <- 100 # Interval width
B <- 300 # Upper bound (max. distance)
midpt <- c(50, 150, 250) # mid points

# Convert vector frequencies to individual distance class
H <- as.matrix(issj[,1:3])
nsites <- nrow(H)
ncap <- apply(H, 1, sum) # Number of individuals detected per site
dclass <- rep(col(H), H) # Distance class of each individual
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nind <- length(dclass) # Number of individuals detected
elevation <- as.vector(scale(issj[,c("elevation")])) # Prepare covariates
forest <- as.vector(scale(issj[,"forest"]))
chaparral <- as.vector(scale(issj[,"chaparral"]))

# Bundle and summarize data set
str( win.data <- list(nsites=nsites, nind=nind, B=B, nD=nD, midpt=midpt,delta=delta,
ncap=ncap, chaparral=chaparral, elevation=elevation, dclass=dclass) )

# BUGS model specification
cat("
model{
# Priors
sigma ~ dunif(0,1000)
beta0 ~ dunif(-10,10)
beta1 ~ dunif(-10,10)
beta2 ~ dunif(-10,10)
beta3 ~ dunif(-10,10)
sigma.site ~ dunif(0,10)
tau <- 1/(sigma.site*sigma.site)
# Specify hierarchical model
for(i in 1:nind){

dclass[i] ~ dcat(fc[]) # Part 1 of HM
}

# Construct cell probabilities for nD cells
for(g in 1:nD){ # midpt = mid-point of each cell

log(p[g]) <- -midpt[g] * midpt[g] / (2 * sigma * sigma)
pi[g] <- ((2 * midpt[g]) / (B * B)) * delta # prob. per interval
f[g] <- p[g] * pi[g]
fc[g] <- f[g] / pcap

}
pcap <- sum(f[]) # Pr(capture): sum of rectangular areas
for(s in 1:nsites){

ncap[s] ~ dbin(pcap, N[s]) # Part 2 of HM
N[s] ~ dpois(lambda[s]) # Part 3 of HM
log(lambda[s]) <- beta0 + beta1*elevation[s] + beta2*chaparral[s] +
beta3*chaparral[s]*chaparral[s] + site.eff[s]

# Linear model for abundance
site.eff[s] ~ dnorm(0, tau) # Site log normal 'residuals'

}
# Derived params
Ntotal <- sum(N[])
area <- nsites*3.141*300*300/10000 # Total area sampled, ha
D <- Ntotal/area
}
",fill=TRUE, file="model5.txt")

# Inits
Nst <- ncap + 1
inits <- function(){list (sigma = runif(1, 30, 100), beta0 = 0, beta1 = 0, beta2 = 0,
beta3 = 0, N = Nst, sigma.site = 0.2)}
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# Params to save
params <- c("sigma", "beta0", "beta1", "beta2", "beta3", "sigma.site", "Ntotal","D")

# MCMC settings
ni <- 52000 ; nb <- 2000 ; nt <- 2 ; nc <- 3

When we runWinBUGS, we may sometimes get an undefined real result error, which appears to be
related to a bad choice of initial values for sigma. Simply try again until the algorithm works (also
remember to define the object bd, which gives the WinBUGS Windows address)....

# Run BUGS (ART 0.9 min) and summarize posteriors
out5 <- bugs(win.data, inits, params, "model5.txt", n.thin=nt,

n.chains=nc, n.burnin=nb, n.iter=ni, debug=TRUE, bugs.dir = bd)

. or else you can run JAGS, which we never observed to crash for numerical over/underflow.
However, you may get the 'Observed node inconsistent with unobserved parent' error if you use a
prior for sigma that is too far away from the bulk of the posterior mass.

out5 <- jags(win.data, inits, params, "model5.txt", n.thin=nt,
n.chains=nc, n.burnin=nb, n.iter=ni)

# Run JAGS (ART 0.5 min) and summarize posteriors
print(out5, 3)

mean sd 2.5% 50% 97.5% overlap0 f Rhat n.eff
sigma 102.31 4.69 93.75 102.08 112.13 FALSE 1.00 1 9031
beta0 -0.10 0.25 -0.62 -0.09 0.36 TRUE 0.65 1 6307
beta1 -0.24 0.16 -0.56 -0.24 0.07 TRUE 0.94 1 1405
beta2 1.20 0.23 0.77 1.20 1.67 FALSE 1.00 1 3031
beta3 -0.52 0.15 -0.83 -0.52 -0.24 FALSE 1.00 1 1224
sigma.site 1.53 0.18 1.20 1.52 1.92 FALSE 1.00 1 2859
Ntotal 664.84 71.48 535.00 661.00 814.00 FALSE 1.00 1 4885
D 0.08 0.01 0.06 0.08 0.09 FALSE 1.00 1 4885

This is only one model, not exactly the best model from our analysis with unmarked, but the
estimated effects are reasonably consistent. Under our Poisson lognormal (PLN) model for abundance
we obtain an estimated Ntotal which is a bit less than the BUP (of about 827) from unmarked. Since
we fitted the negative binomial model in the latter, which is similar but not identical to the PLN, some
difference might be expected there.

8.6 SUMMARY
Distance sampling is an extremely important methodology in wildlife ecology and management. There
is a very well worked-out theory and a truly huge body of literature (e.g., Buckland et al., 2001, 2004a),
along with comprehensive software (Distance), R packages, user groups etc.; see, e.g., Thomas et al.
(2010) and distancesampling.org. In this chapter, we did of course not aim to summarize all of
distance sampling, but rather, we gave an introductory view of how distance sampling fits into the
concept of hierarchical models, as we present them in this book. We gave a broad overview of various
formulations of the distance sampling model, including conditional and full likelihood, point and line
transects, and likelihood and Bayesian analysis. There are many formulations of distance sampling!
We showed this vast scope of distance sampling implementations in BUGS because each one may be
advantageous in a given situation.
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Almost all studies that employ distance sampling collect data on multiple spatial sample units,
either line transects or point counts (sometimes called point transects in the distance sampling liter-
ature). We call models that formally account for the variation in abundance N or in density among
sample units hierarchical distance sampling (HDS) models, and we discussed analysis of HDS models
in unmarked and in the BUGS language.

The R package unmarked implements models for data that are recorded or summarized into discrete
distance intervals so that the resulting models are a variation of the multinomial N-mixture models of
Chapter 7. We have argued in this chapter that there is no practical reason to favor continuous distance
data and models over distance interval (i.e., binned) data models in principle, since a discrete distance
model is no more or less an approximation to truth than is a continuous distance model. Both are just
alternative approximations to the true but unknown detection function. And, they may or may not be
close approximations to each other depending on the continuous model being approximated and the
discreteness of the distance bins. If you really must have a continuous model, you can achieve this
without any appreciable loss of precision simply by using many narrow distance bins.

We have introduced two general formulations of HDS in BUGS that can be useful: the conditional
multinomial or “three-part” hierarchical formulation of the model, and the formulation based on data
augmentation. The use of DA gives us an individual formulation of the model, and so this formulation
should be advantageous for situations where we need to model individual covariates such as sex or
other characteristics or when the observation unit is a group or cluster of individuals. We discuss some
more advanced HDS models in the next chapter and then in chapters 14 and 24 in volume 2. One
challenge to implementing point transect HDS models in BUGS is that nonstandard distributions are
involved. In this case, we use binned data and approximate the cell probabilities using rectangular
approximations to the area under the curve. An alternative would be to use the zeros or ones trick in
BUGS (Chelgren et al., 2011b; Shirk et al., 2014).

Hierarchical distance sampling is a relatively recent advance that shows great promise to addressing
fundamental problems related to the modeling of spatial variation in abundance or density. The HDS
framework is not only flexible but, because it is so easy to implement in the BUGS language, ecologists
can easily extend the ideas we have provided here to solve their own problems. Moreover, unmarked
contains novel HDS modeling capabilities in a user-friendly and standardized analysis framework
and will likely contain additional capabilities in the future. Given the accessibility of HDS models and
the importance of modeling spatial variation in ecology, we think HDS models will become the de
facto standard for the analysis of distance sampling data in the near future. HDS models are so
important that we address several additional extensions in the next chapter (and more in volume 2!).

EXERCISES

1. The estimator of density as a function of the conditional MLE of p is: bD ¼ n=ðbp � L � 2 � BÞ.
Using basic statistical arguments, what is the variance of this estimator?

2. “Prove” by simulation that if individuals are randomly distributed on a rectangle then the
distance to the center line has a uniform distribution. “Prove” by simulation that if individuals
are randomly distributed about a point in space then the distance to the point has a triangular
distribution. We put quotes around the verb ‘to prove’ because of course this does not represent a
mathematical proof which you may also be able to derive.

460 CHAPTER 8 MODELING ABUNDANCE USING HIERARCHICAL DISTANCE SAMPLING



3. Play around with the data simulation function (i.e., vary N and sigma) for line transects (this is
function sim.ldata in Section 8.2.3) to train your intuition about line transect distance
sampling.

4. Play around with the data simulation function for point transects (function sim.pdata in Section
8.2.5) to train your intuition about point transect distance sampling.

5. In Section 8.3.4, run a simulation study to “prove” that the two estimators (conditional
likelihood and full likelihood) are about unbiased in the frequentist sense of the word.

6. In Section 8.4.3 (the ISSJ analysis using unmarked) see by how much the density estimate would
be biased if the habitat effect of chaparral on p had NOT been taken account of. And by how
much would we have erred in our global population estimate (assuming that the model in the
section is the correct one of course) by assuming that chaparral does not affect the measurement
error of density?

7. Play around with the data simulation function for hierarchical line and point transect sampling
(function simHDS in Section 8.5.1) to train your intuition about HDS. Vary everything you can,
especially, type, number of sites, average abundance, average half-normal scale parameter, and
also strip half width (B).

8. Implement the HDS model using data augmentation for the ISSJ data (we used the three-part
hierarchical model in Section 8.5.5).

9. For the ISSJ data in BUGS using the three-part model (Section 8.5.5), figure out how to model
an effect of chaparral on the detection scale parameter s.

10. For the analysis developed in question (9), modify the model to have a negative binomial
abundance model instead of a Poisson-lognormal abundance model, and compare the inferences
under the two alternatives of “overdispersed Poisson” models.
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Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information

Theoretic Approach. Springer, New York.
Burnham, K.P., Anderson, D.R., Laake, J.L., 1980. Estimation of density from line transect sampling of biological

populations. Wildl. Monogr. 72, 3e202.
Burton, A., Sam, M., Balangtaa, C., Brashares, J., 2012. Hierarchical multi-species modeling of carnivore re-

sponses to hunting, habitat and prey in a West African protected area. PLoS ONE 7 (5), e38007.
Cam, E., Link, W.A., Cooch, E.G., Monnat, J.Y., Danchin, E., 2002a. Individual covariation in life-history traits:

seeing the trees despite the forest. Am. Nat. 159, 96e105.
Cam, E., Nichols, J.D., Hines, J.E., Sauer, J.R., Alpizar-Jara, R., Flather, C.H., 2002b. Disentangling sampling and

ecological explanations underlying species-area relationships. Ecology 83, 1118e1130.
Cam, E., Nichols, J.D., Sauer, J.R., Hines, J.E., 2002c. On the estimation of species richness based on the

accumulation of previously unrecorded species. Ecography 25, 102e108.
Carlin, B.P., Chib, S., 1995. Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc. Series

B (Methodol.) 57, 473e484.
Carlin, B.P., Louis, T.A., 2009. Bayesian Methods for Data Analysis. CRC Press/Taylor & Francis Group, Boca

Raton.
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Kéry, M., 2011a. Species richness and community dynamics e a conceptual framework. In: O’Connell, A.F.,

Nichols, J.D., Karanth, K.U. (Eds.), Camera Traps in Animal Ecology: Methods and Analyses. Springer,
Tokyo, pp. 207e231.
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Kéry, M., Royle, J.A., 2010. Hierarchical modeling and estimation of abundance in metapopulation designs.
J. Anim. Ecol. 79, 453e461.

748 REFERENCES

http://CRAN.R-project.org/package%3djagsUI
http://CRAN.R-project.org/package%3djagsUI
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non-independent detection when estimating abundance of organisms with a Bayesian approach. Methods
Ecol. Evol. 2, 595e601.

Mata, L., Goula, M., Hahs, A.K., 2014. Conserving insect assemblages in urban landscapes: accounting for
species-specific responses and imperfect detection. J. Insect Conserv. 18, 885e894.

Matechou, E., Dennis, E.B., Freeman, S.N., Brereton, T., 2014. Monitoring abundance and phenology in
(multivoltine) butterfly species: a novel mixture model. J. Appl. Ecol. 51, 766e775.

Mattsson, B.J., Zipkin, E.F., Gardner, B., Blank, P.J., Sauer, J.R., Royle, J.A., 2013. Explaining local-scale species
distributions: relative contributions of spatial autocorrelation and landscape heterogeneity for an avian
assemblage. PLoS ONE 8, e55097.

Mazerolle, M.J., 2015. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package
version 2.0-3. http://CRAN.R-project.org/package¼AICcmodavg.

McCarthy, M.A., 2007. Bayesian Methods for Ecology. Cambridge University Press, Cambridge.
McCarthy, M.A., Masters, P., 2005. Profiting from prior information in Bayesian analyses of ecological data.

J. Appl. Ecol. 42, 1012e1019.

REFERENCES 751

http://CRAN.R-project.org/package%3dAICcmodavg
http://CRAN.R-project.org/package%3dAICcmodavg


McCarthy, M.A., Moore, J.L., Morris, W.K., Parris, K.M., Garrard, G.E., Vesk, P.A., Rumpff, L., Giljohann, K.M.,
Camac, J.S., Bau, S.S., Friend, T., Harrison, B., Yue, B., 2013. The influence of abundance on detectabiliy.
Oikos 122, 717e726.

McClintock, B.T., Bailey, L.L., Pollock, K.H., Simons, T.R., 2010a. Unmodeled observation error induces
bias when inferring patterns and dynamics of species occurrence via aural detections. Ecology 91,
2446e2454.

McClintock, B.T., Nichols, J.D., Bailey, L.L., MacKenzie, D.I., Kendall, W.L., Franklin, A.B., 2010b. Seeking a
second opinion: uncertainty in disease ecology. Ecol. Lett. 13, 659e674.

McCoy, E.D., Heck Jr., K.L., 1987. Some observations on the use of taxonomic similarity in large-scale
biogeography. J. Biogeogr. 14, 79e87.

McCrea, R.S., Morgan, B.J.T., 2014. Analysis of Capture-recapture Data. Chapman & Hall/CRC Press, Boca
Raton, FL, USA.

McCullagh, P., Nelder, J.A., 1989. Generalized Linear Models. Chapman & Hall, London.
McCulloch, C.E., Searle, S.R., 2001. Generalized, Linear, and Mixed Models. Wiley, New York.
McIntyre, A.P., Jones, J.E., Lund, E.M., Waterstrat, F.T., Giovanini, J.N., Duke, S.D., Hayes, M.P., Quinn, T.,

Kroll, A.J., 2012. Empirical and simulation evaluations of an abundance estimator using unmarked individuals
of cryptic forest-dwelling taxa. For. Ecol. Manage. 286, 129e136.

McKann, P.C., Gray, B.R., Thogmartin, W.E., 2013. Small sample bias in dynamic occupancy models. J. Wildl.
Manage. 77, 172e180.

McKenny, H.C., Keeton, W.S., Donovan, T.M., 2006. Effects of structural complexity enhancement on eastern
red-backed salamander (Plethodon cinereus) populations in northern hardwood forests. For. Ecol. Manage.
230, 186e196.

McManamay, R.A., Orth, D.J., Jager, H.I., 2014. Accounting for variation in species detection in fish community
monitoring. Fish. Manage. Ecol. 21, 96e112.

McNew, L.B., Handel, C.M., 2015. Evaluating species richness: biased ecological inference results from spatial
heterogeneity in detection probabilities. Ecol. Appl. 25, 1669e1680.

Mead, R., 1988. The Design of Experiments: Statistical Principles for Practical Applications. Cambridge
University Press, Cambridge UK.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equation of state calculations
by fast computing machines. J. Chem. Phys. 21, 1087e1092.

Mihaljevic, J.R., Joseph, M.B., Johnson, P.T.J., 2015. Using multispecies occupancy models to improve the
characterization and understanding of metacommunity structure. Ecology 96, 1783e1792.

Millar, R.B., 2009. Comparison of hierarchical Bayesian models for overdispersed count data using DIC and
Bayes’ factors. Biometrics 65, 962e969.

Miller, A., 2002. Subset Selection in Regression. Chapman & Hall/CRC.
Miller, D.A., Bailey, L.L., Grant, E.H.C., McClintock, B.T., Weir, L., Simons, T.R., 2015. Performance of species

occurrence estimators when basic assumptions are not met: a test using field data where true occupancy status
is known. Methods Ecol. Evol. 6, 557e565.

Miller, D.A., Nichols, J.D., McClintock, B.T., Grant, E.H.C., Bailey, L.L., Weir, L., 2011. Improving occupancy
estimation when two types of observational errors occur: non-detection and species misidentification. Ecology
92, 1422e1428.

Miller, D.A.W., Nichols, J.D., Gude, J.A., Rich, L.N., Podruzny, K.M., Hines, J.E., Mitchell, M.S., 2013b.
Determining occurrence dynamics when false positives occur: estimating the range dynamics of wolves from
public survey data. PLoS ONE 8, e65808.

Miller, D.L., Burt, M.L., Rexstad, E.A., Thomas, L., 2013a. Spatial models for distance sampling data: recent
developments and future directions. Methods Ecol. Evol. 4, 1001e1010.

Miller, D.L., Thomas, L., 2015. Mixture models for distance sampling detection functions. PLoS ONE 10,
e0118726. http://dx.doi.org/10.1371/journal.pone.0118726.

752 REFERENCES

http://dx.doi.org/10.1371/journal.pone.0118726


Moore, J.E., Barlow, J., 2011. Bayesian state-space model of fin whale abundance trends from a 1991e2008 time
series of line-transect surveys in the California Current. J. Appl. Ecol. 48, 1195e1205.

Morales, J.M., Haydon, D.T., Frair, J., Holsinger, K.E., Fryxell, J.M., 2004. Extracting more out of relocation data:
Building movement models as mixtures of random walks. Ecology 85, 2436e2445.

Mordecai, R.S., Mattsson, B.J., Tzilkowski, C.J., Cooper, R.J., 2011. Addressing challenges when studying mobile
or episodic species: hierarchical Bayes estimation of occupancy and use. J. Appl. Ecol. 48, 56e66.

Murtaugh, P.A., 2007. Simplicity and complexity in ecological data analysis. Ecology 88, 56e62.
Nelder, J.A., 1965a. The analysis of randomized experiments with orthogonal block structure. I. Block structure

and the null analysis of variance. Proc. R. Soc. Series A 283, 147e162.
Nelder, J.A., 1965b. The analysis of randomized experiments with orthogonal block structure. II. Treatment

structure and the general analysis of variance. Proc. R. Soc. Series A 283, 163e178.
Newman, K.B., Buckland, S.T., Lindley, S.T., Thomas, L., Fernandez, C., 2006. Hidden process models for animal

population dynamics. Ecol. Appl. 16, 74e86.
Newman, K., Buckland, S.T., Morgan, B., King, R., Borchers, D.L., Cole, D., Besbeas, P., Gimenez, O.,

Thomas, L., 2014. Modelling Population Dynamics, Model Formulation, Fitting and Assessment Using
State-space Methods. Springer.

Nichols, J.D., Bailey, L.L., O’Connell, A.F., Talancy, N.W., Grant, E.H.C., Gilbert, A.T., Annand, E.M.,
Husband, T.P., Hines, J.E., 2008. Multi-scale occupancy estimation and modelling using multiple detection
methods. J. Appl. Ecol. 45, 1321e1329.

Nichols, J.D., Boulinier, T., Hines, J.E., Pollock, K.H., Sauer, J.R., 1998a. Estimating rates of local species
extinction, colonization, and turnover in animal communities. Ecol. Appl. 8, 1213e1225.

Nichols, J.D., Boulinier, T., Hines, J.E., Pollock, K.H., Sauer, J.R., 1998b. Inference methods for spatial variation in
species richness and community composition when not all species are detected. Conserv. Biol. 12, 1390e1398.

Nichols, J.D., Hines, J.E., MacKenzie, D.I., Seamans, M.E., Gutierrez, R.J., 2007. Occupancy estimation and
modeling with multiple states and state uncertainty. Ecology 88, 1395e1400.

Nichols, J.D., Hines, J.E., Sauer, J.R., Fallon, F.W., Fallon, J.E., Heglund, P.J., 2000. A double-observer approach
for estimating detection probability and abundance from point counts. Auk 117, 393e408.

Nichols, J.D., Thomas, L., Conn, P.B., 2009. Inferences about landbird abundance from count data: recent ad-
vances and future directions. In: Thomson, D.L., Cooch, E.G., Conroy, M.J. (Eds.), Modeling Demographic
Processes in Marked Populations. Springer, New York, pp. 201e235.

Nichols, J.D., McIntyre, C.L., Ferraz, G., Hines, J.E., 2009. Perturbation analysis for patch occupancy dynamics.
Ecology 90, 10e16.

Niemi, A., Fernandez, C., 2010. Bayesian spatial point processmodeling of line transect data. J. Agric. Biol.
Environ. Stat. 15, 327e345.

NIMBLE Development Team, 2015. NIMBLE: An R Package for Programming with BUGS Models, Version 0.4.
http://r-nimble.org.

Norris III, J.L., Pollock, K.H., 1996. Nonparametric MLE under two closed capture-recapture models with
heterogeneity. Biometrics 639e649.

Ntzoufras, I., 2009. Bayesian Modeling Using WinBUGS. Wiley, Hoboken, New Jersey.
O’Brien, T.G., Baillie, J.E.M., Krueger, L., Cuke, M., 2010. The Wildlife Picture Index: monitoring top trophic

levels. Anim. Conserv. 13, 335e343.
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Royle, J.A., Kéry, M., Gauthier, R., Schmid, H., 2007b. Hierarchical spatial models of abundance and occurrence
from imperfect survey data. Ecol. Monogr. 77, 465e481.
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