Course (University of Florida, Department of Wildlife Ecology and Conservation):
Analysis and Management of Vertebrate Populations and Communities

Venue: Architecture Computer Lab (Arch 116), University of Florida main campus, Gainesville, FL

Dates: March 10, 12-17, Timing: 8.00 am – 5.00 pm with a one hour lunch break and 15 minute morning and afternoon breaks

Instructors:
James E. Hines (Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, MD)
William L. Kendall (Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, MD)
James D. Nichols (Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, MD)
John R. Sauer (Patuxent Wildlife Research Center, U.S. Geological Survey, Laurel, MD)

Course Coordination:
Madan Oli and H. Franklin Percival (University of Florida, Department of Wildlife Ecology and Conservation, Gainesville, FL)

Course Objective:
To present a unified and science-based approach to the conservation and management of natural animal populations, and to provide participants with information and resources for implementation of this approach. This approach involves three major methodological components: modeling, estimation and decision making.

Specific Objectives:
(1) To provide a conceptual framework for the use of models in the conduct of science and management.
(2) To briefly review frequently-used populations models, with emphasis on tailoring models to their intended use in conservation and/or science.
(3) To present a general conceptual framework for animal population/community estimation methods.
(4) To show how this framework can be used to develop estimation methods applicable to various sampling and logistic situations.
(5) To present the specific rationale and logic underlying the more commonly used approaches to estimating population and community-level attributes, with emphasis on tailoring these methods to meet objectives under logistical constraints.
(6) To present a general rationale and approach for the development of an animal
monitoring program, with emphasis on the use of resulting inferences for conservation and management.

(7) To present a logical framework for making management decisions and to identify the major components of uncertainty typically encountered in the management process.
(8) To outline the implementation of a formal adaptive management process for making informed management decisions in the face of uncertainty.

Outline:

Day 1:

1. Introductions
 1.1. Introduction to workshop (Nichols) (0.25 hr)
 1.2. Introduction of instructors/participants/students and their backgrounds and objectives
 (Group) (0.5 hr)

2. Overview Material
 2.1. Conceptual framework for population ecology & management (Nichols) (0.25 hr)
 Include roles of modeling, estimation and decision theory
 BIDE model

3. Statistical Inference
 3.1. Statistical distributions (e.g., normal, multinomial) (Kendall) (0.5 hr)
 3.2. Parameter estimation (Kendall) (0.5 hr)
 Estimator properties (bias, precision, accuracy)
 Estimation methods
 Confidence intervals
 3.3. Hypothesis testing (Kendall) (0.5 hr)
 Type I and II errors
 Power
 Likelihood ratio tests
 Goodness-of-fit tests
 3.4. Model selection (information theoretic approaches) (Kendall) (0.5 hr)
 3.5. Bayesian model updating (Kendall) (0.25 hr)

LUNCH

3.6. Hierarchical modeling: Bayesian approach (Sauer) (0.5 hr)

3. Statistical Inference (Continued) (Sauer) (1.00 hr)
 3.7. Survey sampling (sources of variation)
 3.8. Sampling design features
 Replication
 Randomization
 Control of variation
 3.9. Some designs
 Simple random sampling
 Stratified random sampling
4. Models

4.1. Role of models in science and management (Nichols) (0.5 hr)

BREAK

4.2. Population modeling review: basic principles (Sauer) (1.5 hr)
 Discrete time matrix modeling (age/stage)
 Projection matrix asymptotics (λ, sensitivity, reproductive value, stable stage distribution)
 Stochasticity (demographic, environmental), PVAs
 Models for management

4.3. Population modeling exercise (Sauer, Hines) (0.75 hr)

Day 2:

4.3. Population modeling exercise cont. (Sauer, Hines) (0.75 hr)

5. Estimation of Animal Abundance and Density

5.1. Overview (Nichols) (0.5 hr)
 Why estimate abundance? Role of monitoring in science and management.
 How to estimate abundance: a canonical estimator
 Indices

5.2. Observation-based methods: miscellaneous (Nichols) (0.5 hr)
 Marked subpopulation
 Temporal removal modeling

BREAK

5.2. Observation-based methods: miscellaneous cont. (Nichols) (0.75 hr)
 Sighting probability modeling
 Multiple independent observers
 Multiple dependent observers

5.3. Implementing observation-based methods
 Introduction to MARK (Hines) (0.5 hr)
 Computer exercises with DOBSERV and/or MARK (Hines) (0.5 hr)

LUNCH

5.4. Observation-based methods: distance sampling
 Introduction to Distance Sampling (Sauer) (0.5 hr)
 Introductory Concepts
 Assumptions Underlying the Sampling Technique
 Estimating the proportion of animals detected & counted (Sauer)(0.5 hr)
 Line Transects
 Point transect
 Contrasting Line Transect & Point Transect Sampling
 Survey Design & Field Protocol (Sauer) (0.5 hr)
 Precision
 Bias

BREAK

DISTANCE 4 Software (Sauer-Hines) (1.0 hr)
 Brief overview
 Automated Survey Design (Distance 4 exercises)
Distance Sampling Analysis (Sauer) (1.5 hr)
 Basic Analysis
 Analysis for Clustered Populations
 Introducing Covariates into the Analysis
 Distance 4 CDS/MCDS analysis exercise

Day 3:

 5.5. Capture-based methods: closed CR models
 2-sample model (Nichols) (0.50 hr)
 Data structure
 Models and estimators
 Study design
 2-sample model exercises (SURVIV, MARK) (Hines) (1.0 hr)
 K-sample closed models (Kendall) (0.5 hr)
 Data structure
 Models

BREAK

 K-sample closed models cont. (Kendall) (0.75 hr)
 Models
 Model testing and selection
 Confidence interval estimation
 Study design
 K-sample closed model exercises, CAPTURE, MARK (Hines) (1.0 hr)

LUNCH

 K-sample closed model exercises cont. (Hines) (0.5 hr)
 5.6. Density estimation with closed CR models (Nichols) (0.5 hr)
 Ad hoc boundary strip approach
 Nested grids
 Gradient designs (e.g., trapping webs)
 5.7. Other capture-based methods (Kendall 0.5 hr)
 Removal methods
 Change-in-ratio methods

 6.1. Introduction, relevance of detection probability (Nichols) (0.25 hr)

BREAK

 6.2. All marked animals detected (Sauer) (1.0 hr)
 Binomial survival model
 Nest success
 Radiotelemetry data
 Study design
 Computer exercises (SURVIV, MARK) (Hines) (1.0 hr)

Day 4:

 6.3. Tag recovery models (Sauer) (1.0 hr)
 6.4. Open population CR models
 Single-age models (Nichols) (0.5 hr)
 Data structure
 Modeling
Single-models continued (Nichols) (0.5 hr)
 - Time-specific covariates
 - Multiple groups
 - Capture history effects
 - Individual covariates
 - Model selection
 - Model assumptions
 - Estimator robustness

BREAK

MARK: PIMs and design matrices (Hines) (0.75 hr)
MARK exercises: Single-age models, band recovery models (Hines) (1.0 hr)

LUNCH

Single-age models (Nichols) (1.0 hr)
 - Estimation of abundance
 - Estimation of \(\beta \) and components of \(\beta \)

Multiple-age models (Nichols) (0.5 hr)
 - Data structure
 - Modeling

Multiple-age model exercise (Hines (0.5 hr)

BREAK

Multiple-age model exercise cont. (Hines (0.5 hr)

Multistate models (Kendall) (0.75 hr)
 - Data structure
 - Modeling

Multistate model exercise (Hines) (0.5 hr)

Day 5:

Multistate model exercise cont. (Hines) (0.5 hr)

Multistate models: special uses (Kendall) (1.0 hr)
 - Unobservable states
 - Band loss

Multistate models: state misclassification (Kendall 0.5 hr)

BREAK

Multiple-age multisdtate models: variable age at recruitment (Nichols) (0.5 hr)

6.5. Open models with extra information (Nichols 0.5 hr)
 - Capture-recapture + band recoveries
 - Capture-recapture + radio telemetry
 - Capture-recapture + auxiliary sightings (Barker models)

6.6 Pollock’s robust design
 - Introduction (Kendall) (1.0 hr)
 - Data structure
 - Ad hoc approach
 - Recruitment components
 - Model-based approach
LUNCH

Model extensions (Kendall) (1.0 hr)
Temporary emigration
Open robust design
Robust design with band recoveries
Multistate robust design
“Mother of all Models”
Robust design computer exercises (Hines) (1.0 hr)

BREAK

7. Estimation of species richness and community dynamics
 7.1. Population-community analogy (Sauer) (0.25 hr)
 7.2. Species richness estimation (Sauer) (0.5 hr)
 Data structure and designs
 Modeling and estimation
 7.3. Multiple-season community dynamics (Sauer) (0.5 hr)
 Data structure
 Modeling and estimation
 7.4. Community dynamics exercises with SPECRICH, COMDYN (Hines) (0.5 hr)

DAY 6:
 7.4. Community dynamics exercises cont. (Hines) (0.5 hr)

8. Estimation of site occupancy and occupancy dynamics
 8.1. Single-season, single species occupancy (Nichols) (0.5 hr)
 Data structure and designs
 Modeling
 Assumptions and their relaxation
 Computer exercise (PRESENCE) (Hines) (0.75)

BREAK
 8.2. Multiple-season occupancy dynamics (Nichols) (0.75 hr)
 Data structure
 Modeling
 Example(s)
 Computer exercise with PRESENCE (Hines) (0.5 hr)
 8.3 Occupancy extensions (Nichols) (0.5 hr)
 2-species occupancy
 Multi-state occupancy
 Joint occupancy-habitat modeling
 Community level occupancy

LUNCH

9. Conservation/Management in the face of uncertainty
 9.1. Elements of an informed decision (Kendall) (0.5 hr)
 Objectives
 Management alternatives
 Model(s) of system response to management
 Model weights (for multiple models)
 Monitoring program
9.2. Sources of uncertainty (Kendall) (0.25 hr)
 Environmental variation
 Partial controllability
 Structural uncertainty
 Partial observability
9.3. Decision analysis under uncertainty (Nichols 0.5 hr)
 General approach
 Example
9.4. Adaptive management (Kendall)
 The process (0.5 hr)

BREAK
 Examples (0.5 hr)

10. Exam review/questions (Hines-Kendall-Nichols-Sauer) (1.5 hr +)

Day 7:
11. Exam (4.0 hr)
LUNCH
12. Discussion/Evaluation/Consultation (Hines-Kendall-Nichols-Sauer) (4 hr)