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Introduction

The USGS-BRD team at Olympic National Park is helping the park build a long-term ecological monitoring program. Our goals are to create a conceptual structure for the design of monitoring, to explore sampling variation and determine attributes that can be sampled cost-effectively, and to develop an umbrella sampling plan including an integrative and feasible sample frame. Developing an umbrella sampling plan is an important initial step in developing a monitoring program to ensure spatial integration of individual monitoring components. Further, the evaluation of sampling variability is a critical step in selecting attributes of natural systems to monitor and to avoid investing in costly or fruitless monitoring ventures. Based on these premises, we recently completed three years of data collection to support recommendations we will make to the park.  We have data sets describing annual and spatial variation of several animal species, plant communities and populations, as well as data evaluating grid-based versus stratified random sampling schemes. 

In recent years we have become aware of changing perspectives of how best to determine the adequacy of a sample to detect change. Early on we planned to use regression-based methods to examine power of various sampling efforts to detect a specified effect. More recently, we have thought about detecting change from a repeated-measures ANOVA perspective. Most recently, be have become aware of paradigms not grounded in a hypothesis-testing framework.  For example, we might evaluate sampling sufficiency to detect extreme or unusual values in a data set over time.

Consequently, we decided to convene a small group primarily of biometricians and members of the park’s resource management staff to discuss theoretical and practical answers to the following questions:

What is the question? How do we frame the question of change detection?
How much sampling is enough? When is power analysis useful? What other means are there to determine ‘n’ a priori?

Where shall we sample? What is an effective sample frame for distributing plots on the landscape?

How often is enough? What temporal sampling frames might we consider given observed values of annual variation?

The workshop was characterized by a lively and productive discussion around all of these questions. Although focused on the particular circumstances at Olympic National Park, many of the answers have more general applicability. The answers to each emerged throughout the meeting so the meeting will be summarized by question rather than chronologically. A list of workshop participants is given in Appendix A.

What is the question?

Paul Geissler and Eric Rexstad addressed this question by each listing methods commonly used to detect change, then giving examples of power analyses based on a traditional hypothesis-testing framework (Geissler) and methods developed to identify extreme values in data time-series (Rexstad).

Standard Methods Used to Detect Change

· Compare period means – This approach is easily understood but cannot be used if sites or methods change among periods.  You judge that there has been a change using the sites as replications rather than using years.  That is, if you get the same answer (e.g., positive change) at several sites, then you conclude there is a change.

· Regression:  Linear, Exponential, Multinomial or Route – Linear regression rarely fits the data well, but it can be used when sites or methods change.  Exponential regression models may better detect growth or decline of populations with constant rates of change. However, if the rate of change is not constant during the time-series a curved line may be closely fit to the data, but the line doesn’t measure change.  Route regression can be used to pool samples from multiple locations that are sampled simultaneously to produce a more robust measure of slope.

· Rank-based (Non-parametric) Statistics – Enables analysis of data that does not meet the assumptions required by parametric statistics. This method was not examined.

· Permutation methods (Computer intensive) – This method involves repeated re-sampling of the original data, and has only been feasible since the advent of personal computers. This method was not discussed further.

Analysis of Channel Islands Exotic Plant Monitoring – Paul Geissler
Paul Geissler used a sample design called a split block, which includes attributes of both a split plot and block designs and is analogous to an agricultural split plot design because treatments are not randomly assigned to each cell (see Appendix B).  It includes repeated measures in time and space:
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The analysis is a paired-t test or ANOVA.

In the specific example of the Channel Islands data, change was evaluated between two time periods, early (pre-1996) and late (1996-2000), and each year was categorized as having low (< 13 in) or high (> 13 in) precipitation. The result was a split block in time with sites as blocks (or reps) and precipitation categories nested within periods.  The resulting ANOVA had Site, Year, and Period, Precipitation and Period x Precipitation within Year as sources of variation, and Site x Year as the error term. (See Appendix C for examples) The objective of the analysis was to test for change through time and illustrate the importance of precipitation.

Years at Channel Islands were divided into early and late periods simply by dividing the data from the site with the fewest years of observation into two equal periods.  That break point was then used for all sites even though some had a longer record, and therefore more years in the early category than the late. One could also (more meaningfully?) break time periods by, for example, occurrence of a management action, documented climate shift, or catastrophic event.

The original data were used to calculate least-square means (necessary because of unequal sample size) and power.  The data were transformed before calculating the ANOVA.

An important observation about the ANOVA approach used at Channel Islands is that it is a special case of the general linear model (regression, analysis of variance, analysis of covariance, etc.), the standard method for determining relationships among variables. Because the analysis assumed an underlying relationship of plant cover with time period and precipitation, the sample points were assumed to have equal probability of sampling, and the error terms met several necessary assumptions, it was appropriate for “model-based” analysis. Model-based regression is the traditional version taught in beginning statistics and used in statistics packages such as SAS and SPSS. The variance estimate is based on deviations of observations from the model, and inference can be made to universal model parameters that describe more than the sampled population.

However, complex survey data, whose sampling structure may include stratification, unequal probabilities, and clustering, do not unusually meet the assumptions needed for model-based regression. Often the probability of selection of a data point is related to the response. For example, the sample frame may target rare plant associations and sample them more heavily than they would be by a purely random sample of vegetation. In this case, “design-based” regression is appropriate. Design-based regression incorporates the selection probabilities of the design into the variance estimate. Consequently, complex survey data should be analyzed using specialized software (e.g., PC CARP, OSIRIS, SUDAAN) because model-based inferences about parameters and variance will most likely be wrong. Standard statistical packages such as SAS and SPSS can be used only if appropriate transformations and procedures are used to “trick” the packages into providing the correct answers. (See Lohr Chapter 11 for more information)

Identifying Extremes in Ecological Data – Ed Debevec and Eric Rexstad

The standard methods for change detection are effective for populations that undergo directional changes, but are not effective for eruptive, cyclic, or highly variable populations such as microtines. Yet microtines are thought to be potentially sensitive indicators of environmental change because their small home range, high metabolic rate and rapid population turnover might make them sensitive indicators for changes in climate or trophic dynamics. Consequently, it is important to find a solution to monitoring these challenging populations.

Instead of focusing on changes in the population mean through time, Debevec and Rexstad have developed methods to identify when an observation in a time-series of a monitored variable fails to conform to the previously measured range of natural variation. Debevec and Rexstad built on previous literature (cited below), which identifies and separates two components of variation in time-series data:  ‘process’ variation, or (, is a measure of inherent variability in the process of interest among years, whereas ‘sampling error’ describes measurement error independent of process.  Regarding microtines, we can think of their population numbers as a stable “system of chance causes” whose variability we want to quantify so we will know when an observation is out of the stable pattern.  In a more general sense, this approach to detecting changes in long-term data series has application whenever there is need to determine whether change measured for an attribute transgresses the normal bounds (or range) of ‘natural’ variation as determined from prior data. 

The universe of ecological monitoring includes:

· Measuring a single attribute at a single instant (= status)

· Measuring a single attribute repeatedly over a span of time at one location

· Measuring multiple attributes repeatedly at a location over time

· Measuring a single attribute over time at multiple locations

· Measure multiple attributes over time at multiple locations

Rexstad began by considering a single attribute measured over time in one location.  The data include observations y1, y2, y3 … yn with associated standard errors se1, se2, se3 … sen. The standard error for each year also has inherent variability over time. So solving iteratively for sigma of the standard errors ((hat) will describe process variability. If the system stays within this sigma of sigmas (or variance of the variance estimate), then the system is considered stable. Otherwise the system has changed and we need at statistic that will compare the next observation with the previously established distribution of observations (having mean (hat) based on (hat to let us put a probability on that change. 

A t statistic could work but it must be corrected for the fact that the variance of observation n+1 includes process variation and measurement error.  So the appropriate statistic is:




t =
yn+1 – (hat

      




(((hat2 + se2n+1) 

Then the Probability of Conformity (PC) that the latest observation is from the previously described distribution is:

PC = 2P[tn ( | tn+1|]  where tn+1 is one-tailed 

See Appendix D for a numeric example.

This method requires at least three years of baseline data before the variance of the variance can be described, and the more baseline years, the more accurate the description.  The method also assumes that process variation is normally distributed.

Rexstad presented the results from 100-year simulations illustrating that the metric responded appropriately and dramatically to the following situations:

· Various scenarios

1. When no change occurs the PC shows no response

2. Change point perturbation (e.g., Nile River before and after dam)

3. Trend – incremental creep, PC detects trend even though it learns from previous behavior

· Test with different levels of process (P) and sampling (S as set by CV) variation (all combinations of P = 5, 10, 15 and S = 0.05, 0.10, 0.15)

· Changes to ( and (
1. Increase/decrease (/(
2. Apply perturbation in various years

3. Apply multiple perturbations in different years

4. Vary recovery time

· Autocorrelation

Rexstad also showed that this method works for the other monitoring scenarios described above: multiple attributes measured at multiple places or any other combination.  As long as test statistics are independent of one another they can be pooled.  Then the PC is distributed Chi-squared with degrees of freedom equal to twice the number of data sets. The metric successfully detected a change in one of four data sets, and changes in two of four data sets when the changes occurred at different times. The metric is also robust to violation of the assumption of independence, either a positive or negative correlation among data sets.

Several summary comments were made about using the PC metric:

· It is best to use it with annual data.  

· It can be used for periodic data but it will take longer to show a response to change

· No false positives have occurred in any tests.

· The metric needs some minimum “warm-up” period: 3-5+ years.

· PC is a cousin of cusums. This measure determines that probability that a manufacturing process is operating outside acceptable bounds. It falls within the area of statistics known as quality control.

· Circumstances when it should not be used probably exist but they haven’t been identified yet.

· The metric assumes no knowledge of the system that might suggest when action might be taken – if this knowledge exists, it can help determine when to take action.

So, what is the question? Well, analytical methods exist that allow you to frame whatever question you like, depending on your objectives and the inherent properties of the attribute! The two classes of analyses described above pertain to two fundamental types of questions that could be asked. The classic scenario of power analysis is appropriate to answer questions about sampling requirements to detect changes of various magnitudes and probabilities of error given an underlying variance structure. This approach may work best with populations where biologically significant change is expected to be feasibly detectable despite annual variation and when measurements are not necessarily made annually. The analysis of probability of conformance applies to questions about whether a measurement deviates from the normal range of variation. Although useful for any time-series, it is especially effective when the normal range of variation is eruptive or cyclical and annual measurements are made. These two types of questions broaden the conceptual basis of selecting and evaluating potentially useful indicators for monitoring to include those with high annual variability.

How much sampling is enough?
Because monitoring is all about detecting change, we want to design our sampling to especially avoid making Type II errors, or missing a change when one has actually occurred. If we know the variance of the attribute we are monitoring and the amount of change considered important to detect (i.e., effect size), we can determine the power of a test to detect change (the probability of not making a Type II error). Because variance is related to sample size, and power is inextricably linked to effect size, variance and alpha (the probability of a Type I error or detecting a change what none has occurred), one can examine relationships among power and sample size, specified effect sizes, or alpha.

Using power analysis to determine ‘n’ based on the variance observed during pilot studies has become an important tool for designing sampling strategies for monitoring or for adjusting sampling effort in long-term studies. Several canned programs and statistical software packages are available to examine power of virtually any statistical test used to detect change over time. The reference by Cohen (1988) is a ‘bible’ of sorts for those wishing to examine power of many complex analysis of variance designs or two sample comparisons (for example comparing two time periods). The programs TRENDS (Gerrodette 1987) and MONITOR (Gibbs et al. 1998) are commonly used to examine the power to detect linear or exponential trends in time-series data.

Paul Geissler demonstrated the use of power analysis in the context of comparing means of vegetation measurements between two periods of time in the Channel Islands (Appendix C). Geissler presented a ‘power curve’ that relates power of the test to discriminate a true difference to the magnitude of true difference between period means. The graph in Appendix C demonstrates that the replication of sample plots was sufficient to detect a 10% difference in mean cover of exotic plants with 80% certainty. 

Kurt Jenkins presented a data set on bats, which he had analyzed using MONITOR, as a basis for initiating a discussion of linear trend detection. In the example, Jenkins had monitored bat activity levels in 6 old-growth Douglas-fir stands over 3 years in each of 2 watersheds. The analysis of power indicated that about 14 such stands would have to monitored to detect a 5% per annum change in bat activity over 6 years at the watershed level. A discussion of the analysis ensued. Program MONITOR evaluates whether the mean slope of the trend lines fit to each plot’s data (either linear or exponential) differs from zero. The program requires several restrictive assumptions about the data. It does not use the data to their full potential because it does not differentiate among annual, spatial, and measurement error although they mean different things. Also, there is a debate in the literature as to the appropriate measurement of within-plot sampling variation. Program MONITOR requires input on the coefficient of variation of slopes measured in independent study plots, although such data is generally poorly understood and difficult to obtain from short-term studies. If slopes of some plots were positive and others negative, MONITOR would see no overall trend and would indicate that additional samples are needed, when in fact, interpretation of the spatial patterns may lead to a different conclusion.

The positive aspects of power analysis are that is gets you into the ballpark of an adequate sample size and it is useful for evaluating the effectiveness of on-going monitoring. So it is a valuable tool for helping you collect sensible amounts of data and to think about the analysis before you collect the data. It also facilitates mid-course corrections, a process that is absolutely critical to a monitoring program. 

It is important to realize the power analysis is grounded in the hypothesis-testing realm: how many samples are needed to reliably test the hypothesis of change? If relative sampling requirements (based on sampling variability) are used as a criterion to select attributes of natural systems to monitor, attributes with high process variation may fare poorly in a comparison of power (e.g., microtines or other cyclic or stochastically variable data). It is useful to keep in mind that it may still be possible to measure attributes with high process variation, but it may be necessary to frame the monitoring question in terms of recognizing when process variation exceeds normal ranges.

In summary, it is often useful to consider sampling requirements when designing a monitoring program and for periodic evaluation. Because power analysis is grounded in hypothesis testing, it may have particular relevance for monitoring designed to detect specific effects associated with experimentally conducted management activities (‘adaptive’ monitoring). Retrospective monitoring of general ecosystem integrity often involves monitoring suites of environmental variables co-located at monitoring sites. While it may be possible to optimize sampling effort (e.g., number of independent sampling sites) for each variable independently based on the sampling variation of each, it will be very difficult to optimize sampling sufficiency for several variables simultaneously. Remember that anything determined a priori is a guess, and that no matter what your power analysis indicates, it is no more than general guidance, and ‘n’ should be at least six. So use power analysis together with other approaches, including common sense, and have confidence in your answer if you arrive at it in several different ways.

Where shall we put monitoring plots?

We have been wrestling with the issue of choosing a sample frame. Intuitively, most biologists and ecologists gravitate toward a stratified random sample to distribute plots on the landscape and to be able to draw inferences to biologically meaningful categories (e.g., vegetation types). Statisticians often now encourage a systematic sample. Given the terrain and remoteness of some areas of the park, we also have to consider constraints due to accessibility. Finally, some monitoring attributes require more intensive measurements than others, and therefore must be done in fewer and/or more accessible places. Our discussion took all of these issues into consideration.

The properties of analysis results and true statistical properties of different types of samples were described by Paul Geissler and can be summarized this way (see Appendix E for examples):

	Sample Type:
	Bias of Estimate of Mean
	Expected Variance1
	True Variance of Estimated Means2

	Simple Random
	Unbiased
	Unbiased
	= Simple Random

	Compact Cluster
	Unbiased
	Underestimates
	> Simple Random

	Systematic Cluster
	Unbiased
	Overestimates
	< Simple Random


1Expected variance = mean of variances from all possible samples of a finite population

2True variance = variance of estimated means drawn form all possible samples of a finite population

Comparing the different types of sample, one important point is that systematic samples are desirable because they have lower variance than random samples. Cluster samples, (e.g., five plots are measured at one site) are attractive because you can collect more data for a given amount of travel. However, the five plots are not independent of one another and their variance must be applied to the one site. You must use the cluster means for analysis instead of the individual plots within the cluster. Consequently, the estimate of a population parameter is less precise than with the same number of independent samples. 

We also established the trade-offs between a stratified random sample and a systematic (grid-based) sample:

	
	Stratified Random
	Grid-based

	Pros
	· You can easily add more points

· If strata are immutable (e.g., elev., drainage) sample will be satisfactory most of the time
	· Points are evenly spread

· You can stratify a grid and vary sampling intensity by stratum (see Appendix F)

· You can divide points into domains that differ from strata (e.g., veg. categories) and these can vary among projects and with time

	Cons
	· Points tend to cluster

· Strata are fixed so they must work for all projects to be useful

· Access is still a problem so nothing is gained in this area over a grid-based sample
	· It is more complicated to add additional points than with a random sample (and therefore make mid-course corrections)

· The analysis is more complicated (flexibility ( complexity)

· Careful data management is crucial for keeping track of selection probabilities


Andrea Woodward presented the results of a pilot study evaluating systematic and stratified random sampling frames in a selected watershed of Olympic National Park. Kurt Jenkins presented a ‘straw-man’ sampling frame for consideration as a means of integrating extensive monitoring projects with intensive monitoring projects while incorporating accessibility strata. After considerable discussion, a consensus began to emerge on key features of a sampling frame that would meet the many considerations working in a large wilderness park with limited access:

· Stratify the park by accessibility and black out those parts of the park that cannot be sampled for whatever reason. The blacked-out areas may vary with project. Kurt Jenkins suggested (and showed maps of) accessibility zones: high = within 1.5 km of a road, moderate = within 1.5 km of a trail, low or inaccessible = everything else and everything with >35o slope. The key feature is to explicitly identify the sampling universe for each project and the area for inference. Extrapolation to blacked-out areas can accomplished using professional judgment with the caveat that while adequate for some purposes, professional judgment will be a weak link in controversial decisions, particularly those involving legal challenges.

· Keep track of the probability of a point occurring in a blacked-out area. If some points should become accessible due to changes in technology or location of boats, you can sample them, keeping them separate from the rest of the sample until you are sure they represent the same thing.

· Overlay the park with a dense grid of points, say “5000 points of light”. This grid can be sampled differently for different purposes. Measurements that can be done extensively (e.g., aerial photography, presence/absence) might be done over the entire grid. More intensive projects might be done only within the easily accessible zone, or if necessary, on a probabilistic sample of grid points. Effects monitoring for management actions should occur on a targeted sample. Hence blacked-out areas will differ among projects.

· Other useful grid strata in addition to accessibility might be east-west regions (to reflect the precipitation gradient) and elevation bands. Never stratify on the variable you are measuring.

· Samples can be allocated on the grid using strata, and domains can be created later for analysis. For example, vegetation categories may occur across strata. However, points for each vegetation category can be combined into a domain by weighting them according to the probability associated with the stratum they come from. (see Appendix F)

· Samples can be added to grid strata by re-sampling the grid. The sampling must be with replacement and the probability associated with the new points will be determined by the intensity of the second round of sampling.

· Co-locate projects as much as possible to maximize ease of interpretation.

· Integrate terrestrial and aquatic sampling. We discussed using hydrologic unit categories (HUC’s) as used in the Aquatic/Riparian Effectiveness Monitoring component of the Northwest Forest Plan for sampling watersheds. However, it was concluded that although HUC’s form a logical sampling unit for riparian areas, they may not be as useful for terrestrial monitoring. While it is important to draw linkages between aquatic and terrestrial monitoring, it may be more informative to monitor terrestrial components associated with streams in transects away from those streams selected in aquatic monitoring. 

· There is no flexibility in sampling a grid – all samples must come from the point where they were intended to be, no matter what the characteristics of that site.

Several other insightful comments were made regarding sampling design that will help us conduct effective monitoring:

· Permanent plots are preferred over temporary ones because they are better able to detect change. However, a plan must exist for rotating plots out of the sample because plots will inevitably wear out.

· It is desirable to have both extensive and intensive measurements for each component of monitoring. For example, population indices might be measured extensively while population estimates can only be measured intensively and is often used for model development. Intensive studies are subject to sampling bias because they only represent a small area; extensive studies are subject to measurement bias because with indices you don’t know exactly what you are measuring. Intensive, extensive and manipulative studies are all essential to a good monitoring program.

· We need to have enough climate data so that we can extrapolate across the entire park.

· Avoid bias by visiting sites randomly in time instead of, for example, always doing the easy sites first then running out of time for the harder ones.

· Consider picking indicators that can be “cross-dated”, meaning choose indicators from different disciplines that one predicts to detect the same perturbations to the system. For example, an increase in temperature = reduced numbers of bats = reduced cover of Astragulus, etc. This will create integration in the monitoring system.

· Sampling efficiency could be increased by designing ‘ad hoc’ sampling that could be done while traveling to the grid sites. These data would be anecdotal, but they could add some important information.

How often is enough?

Andrea Woodward presented three years of data from permanent vegetation plots to discuss how best to distribute samples through time. Because vegetation has high annual variability primarily due to changes in weather, her approach was to average the results over three years to estimate the average condition for period one.  At some time interval later, possibly ten years, she would collect another three years of data to characterize period two. A difference between period one and period two would be detected using a paired-t test of period means by plots within vegetation categories. Her strategy was inspired by Lessica and Steele (1996).

This approach seemed to meet with approval and many helpful comments were made during the discussion. It was noted that the most powerful way to detect change over a long period of time is to put all of the sampling effort at the end points rather than collecting data in the middle. The number of years collected at each end should be determined relative to underlying dynamics. For example, climate exhibits a bi-annual pattern in precipitation so it would be ideal to collect a multiple of two years of initial data and then again at some time interval later.  It might also be productive to use weather as a covariate, as demonstrated in the Channel Islands analysis. Additionally, this method will detect a change even if there is high variability in abundance of a taxon among sites, assuming that taxa behave similarly regardless of initial cover.

Periodic sampling may be effective for organisms such as plants that are expected to show directional changes. It may not be effective for organisms such as microtines, which have eruptive, cyclical population dynamics. In this case, annual data and the technique for detecting extreme values described by Eric Rexstad might be more appropriate.

We did not address the question of how to sample the entire frame over time.  For example, how might we allocate our annual effort across plots when they are grouped by stratum or domain and have to be sampled for three consecutive years and when we cannot do all of them at once? Also, how do we rotate plots out of the sample so they do not “wear out”? These questions will have to wait for another time.
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Appendix B Illustration of Spit-Block Design – Paul Geissler

The design is like an agricultural field with row and column treatments in strips. The treatments are not randomly assigned to each cell as illustrated below, instead of something like:
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Appendix C   Example of Channel Islands Data Analysis – Paul Geissler

Here are results and analysis for cover of exotic vegetation from plots on San Miguel Island in the Channel Islands, California.

Least-square means:

	Precipitation
	Period 1 (’84-’95)
	Period 2 (’96-’00)
	Mean

	High (>13 in.)
	106
	102
	104

	Low (< 13 in.)
	81
	84
	83

	Mean
	94
	93
	94


The analysis is for a split-block (a.k.a. split-plot in time) design (Steel and Torrie 1980:390-393)

Analysis of Variance

Source










df


Mean Square




F





P___     

Site












16


118.780







48.208

0.000

Year











13
  


23.532

 





 9.551

0.000


Period










1
    


0.149

  






0.060

0.806


Precipitation






1
  


61.423







24.929

0.000


Per. x Precip.






1
   


 2.168

  





0.880

0.349

Error (= Site x Yr)

180
   


 2.464

At San Miguel, cover of exotics varied significantly among sites, years and precipitation categories but not with period. Therefore, we conclude that there is no significant trend in exotic cover with time. Results from Santa Rosa Island (not shown here), however, showed a significant response to precipitation, period and precipitation x per, indicating a change in time that depended on precipitation. 

Here is a power curve for San Miguel data showing power as a function of differences between means. This curve was generated from the ANOVA using tables from Cohen 1988, Chapter 8.  It can also be generated from SYSTAT and the code was provided.

 

Appendix D  Numeric Example of Calculating Probability of Conformity – Eric Rexstad

Let’s say that after 9 years of measuring a population you estimate:

(hat9 =  4.059

(hat9 = 0.192

In year 10 you observe:


y10 = 3.674
(population estimate in year 10)


se10 = 0.150  
(standard error of population estimate in year 10)

and you want to know the probability that y10 comes from the distribution described by years 1-9. 

Calculate t10 =


  yn+1 – (hat  =  


3.674 - 4.059  =  

-1.584

(((hat2 + sen+12) 


((0.1922 + 0.1502)

The probability that the value of y observed in year 10 belongs to the same distribution as those from years 1-9, named the Probability of Conformity (PC), is:

PCn+1 = 2p(tn ( |tn+1|)  = 2p(t9 ( |t10|) = 2 x 0.074 = 0.148 = PC10

This means that there is a 15% chance that the observation of y in year 10 came from the same distribution as years 1-9.

Note: In this example, p was read from a one-tailed t table.  If you use a two-tailed table you do not need to multiply by 2.

If y10 = 3.5 and se10 = 0.15, there is only a 5% probability that the observed y came from the same distribution as years 1 to 9.

Appendix E   Comparison of Sample Types—Paul Giessler

Imagine a sample coming from a gradient with population values of 1 to 9. The true mean is 5. Now take a sample of 3 numbers in three different ways:

Simple Random Sample

If you drew all 84 possible samples, you would calculate an unbiased estimate for the mean (5) and an unbiased estimate of the variance (1.67)

Compact Cluster Sample (bird samples are often taken this way)

Cluster the numbers into threes and take the mean of each cluster:


1 2 3    4 5 6    7 8 9


  2
   


5
   


8



You would estimate the mean to be 5 and it is unbiased. However, the variance is much larger than for a simple random sample because the groups are autocorrelated. The variance estimate would be 0.22 and underestimates the true variance of 6.00. In an ANOVA, you usually find that the clusters are different. It is possible to calculate a design effect to correct the variance estimate.

Systematic Cluster Sample

1 2 3 4 5 6 7 8 9

A systematic sample of this population would be 1, 4, 7 or 2, 5, 8 or 3, 6, 9. In any case you would have an unbiased estimate of a mean of 5. The variance estimate of 2.00 overestimates the true variance of 0.67. There is no effective technique for correcting the variance. The advantage of this sample scheme is that the true variance is smaller than the variance of a simple random sample.
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		Exotic Vegetation				Anacapa										SYSTAT input

		source		ss		df		ms		f		p				ISLAND$      = AN

		site		1141.701		15		76.113		18.057		0.000				SITE$				1141.701		15		76.113		18.057		0

		year		1027.296		12		85.608		20.310		0.000				YEAR				1027.296		12		85.608		20.31		0

		period		17.336		1		17.336		4.113		0.044

		precip		130.098		1		130.098		30.865		0.000				Error				598.543		142		4.215

		per*prec		6.736		1		6.736		1.598		0.208				SITE$				1145.386		15		76.359		8.698		0

		error		598.543		142		4.215								PERIOD				17.336		1		17.336		1.975		0.162

																PRECIPG$				130.098		1		130.098		14.819		0

		Expected marginal (least square) means														PERIOD*PRE		CIPG$		6.736		1		6.736		0.767		0.382

						Periods

		precip		1(84-95)		2(96-00)		mean								Error				1325.618		151		8.779

		H(high)		117		124		120								Error				228225.109		142		1607.219						1		94.823

		L(low)		72		87		80								PERIOD		1				94.823		5.249		129				2		105.447

		mean		95		105		100								PERIOD		2				105.447		9.411		41

																PRECIPG$		0				120.418		6.982		70				H		120.418

																PRECIPG$		0				79.852		8.158		100				L		79.852

																PERIOD		1

																PRECIPG$		0				117.201		8.467		42				H1		117.201

																PERIOD		1												H2		123.635

																PRECIPG$		0				72.446		5.855		87				L1		72.446

																PERIOD		2												L2		87.259

																PRECIPG$		0				123.635		10.563		28

																PERIOD		2

																PRECIPG$		0				87.259		14.999		13

																Power for periods or low/high precip - a=0.10, u=1, n=		72

																effect size		0.05		0.10		0.15		0.20		0.25		0.30		0.35

																power		0.16		0.34		0.58		0.78		0.92		0.98		0.99

																difference		4.0		8.0		12.0		16.0		20.0		24.1		28.1

		Exotic Vegetation				Santa Barbara										SYSTAT input

		source		ss		df		ms		f		p				ISLAND$      = SB

		site		2141.051		23		93.089		27.774		0.000				SITE$				2141.051		23		93.089		27.774		0

		year		781.402		13		60.108		17.933		0.000				YEAR				781.402		13		60.108		17.933		0

		period		33.290		1		33.290		9.932		0.002

		precip		66.765		1		66.765		19.920		0.000				Error				801.061		239		3.352

		per*prec		23.531		1		23.531		7.021		0.009				SITE$				2146.981		23		93.347		16.098		0

		error		801.061		239		3.352								PERIOD				33.29		1		33.29		5.741		0.017

																PRECIPG$				66.765		1		66.765		11.514		0.001

		Expected marginal (least square) means														PERIOD*PRE		CIPG$		23.531		1		23.531		4.058		0.045

						Periods

		precip		1(84-95)		2(96-00)		mean								Error				1443.884		249		5.799

		H(high)		129		93		111								Error				360657.278		239		1509.026						1		110.652

		L(low)		93		83		88								PERIOD		1				110.652		4.223		188				2		88.327

		mean		111		88		99								PERIOD		2				88.327		5.964		88

																PRECIPG$		0				111.083		5.072		113				H		111.083

																PRECIPG$		0				87.897		5.199		163				L		87.897

																PERIOD		1

																PRECIPG$		0				128.743		6.353		61				H1		128.743

																PERIOD		1												H2		93.422

																PRECIPG$		0				92.562		4.847		127				L1		92.562

																PERIOD		2												L2		83.232

																PRECIPG$		0				93.422		7.255		52

																PERIOD		2

																PRECIPG$		0				83.232		8.492		36

																Power for periods or low/high precip - a=0.10, u=1, n=		121

																effect size		0.05		0.10		0.15		0.20		0.25

																power		0.20		0.48		0.76		0.93		0.99

																difference		3.9		7.8		11.7		15.5		19.4

		Exotic Vegetation				San Miguel										SYSTAT input

		source		ss		df		ms		f		p				ISLAND$      = SM

		site		1900.477		16		118.780		48.208		0.000				SITE$				1900.477		16		118.78		48.208		0

		year		305.914		13		23.532		9.551		0.000				YEAR				305.914		13		23.532		9.551		0

		period		0.149		1		0.149		0.060		0.806

		precip		61.423		1		61.423		24.929		0.000				Error				443.507		180		2.464

		per*prec		2.168		1		2.168		0.880		0.349				SITE$				1906.626		16		119.164		33.606		0

		error		443.507		180		2.464								PERIOD				0.149		1		0.149		0.042		0.838

																PRECIPG$				61.423		1		61.423		17.322		0

		Expected marginal (least square) means														PERIOD*PRE		CIPG$		2.168		1		2.168		0.611		0.435

						Periods

		precip		1(84-95)		2(96-00)		mean								Error				673.723		190		3.546

		H(high)		106		102		104								Error				150601.317		180		836.674						1		93.896

		L(low)		81		84		83								PERIOD		1				93.896		3.388		132				2		93.37

		mean		94		93		94								PERIOD		2				93.37		3.929		78

																PRECIPG$		0				104.31		3.785		83				H		104.31

																PRECIPG$		0				82.955		3.5		127				L		82.955

																PERIOD		1

																PRECIPG$		0				106.345		5.681		36				H1		106.345

																PERIOD		1												H2		102.276

																PRECIPG$		0				81.447		3.495		96				L1		81.447

																PERIOD		2												L2		84.463

																PRECIPG$		0				102.276		4.914		47

																PERIOD		2

																PRECIPG$		0				84.463		6.064		31

																Power for perids or low/high precip - a=0.10, u=1, n=		91

																effect size		0.05		0.10		0.15		0.20		0.25		0.30

																power		0.18		0.40		0.67		0.86		0.96		0.99

																difference		2.9		5.8		8.7		11.6		14.5		17.4

		Exotic Vegetation				Santa Rosa										SYSTAT input

		source		ss		df		ms		f		p				ISLAND$      = SR

		site		11584.547		85		136.289		38.127		0.000				SITE$				11584.547		85		136.289		38.127		0

		year		1961.193		8		245.149		68.581		0.000				YEAR				1961.193		8		245.149		68.581		0

		period		95.289		1		95.289		26.657		0.000

		precip		151.725		1		151.725		42.446		0.000				Error				1980.317		554		3.575

		per*prec		104.144		1		104.144		29.135		0.000				SITE$				11575.348		85		136.181		20.632		0

		error		1980.317		554		3.575								PERIOD				95.289		1		95.289		14.437		0

																PRECIPG$				151.725		1		151.725		22.987		0

		Expected marginal (least square) means														PERIOD*PRE		CIPG$		104.144		1		104.144		15.778		0

						Periods

		precip		1(90-95)		2(96-00)		mean								Error				3689.72		559		6.601

		H(high)		127		92		109								Error				934707.578		554		1687.198						1		110.683

		L(low)		94		87		91								PERIOD		1				110.683		3.519		265				2		89.474

		mean		111		89		100								PERIOD		2				89.474		2.861		383

																PRECIPG$		0				109.427		3.361		334				H		109.427

																PRECIPG$		0				90.73		3.047		314				L		90.73

																PERIOD		1

																PRECIPG$		0				127.34		5.714		95				H1		127.34

																PERIOD		1												H2		91.515

																PRECIPG$		0				94.026		4.1		170				L1		94.026

																PERIOD		2												L2		87.434

																PRECIPG$		0				91.515		3.481		239

																PERIOD		2

																PRECIPG$		0				87.434		4.511		144

																Power for periods or low/high precip - a=0.10, u=1, n=		278

																effect size		0.05		0.10		0.15		0.20

																power		0.31		0.74		0.96		1.00

																difference		4.1		8.2		12.3		16.4
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