
Modeling static occurrence and species distributions using site-occupancy models

This is a draft chapter from a book project:
Kéry, M., & Royle, J.A.
Hierarchical modeling of distribution,
abundance and communities.

Handout

PWRC workshop
12–14 Nov 2013

v. 8-11-2013

[bookmark: _Toc296678235][bookmark: _Toc308638301][bookmark: _Toc261944329][bookmark: _Toc275788397][bookmark: _Toc252875016][bookmark: _Toc252876116][bookmark: _Toc252876433][bookmark: _Toc252876982][bookmark: _Toc252877318][bookmark: _Toc261944318][bookmark: _Toc275788386][bookmark: _Toc252875010][bookmark: _Toc252876105][bookmark: _Toc252876422][bookmark: _Toc252876971][bookmark: _Toc252877307]

8.1. Introduction to the modeling of occurrence and species distributions
Occurrence is a state variable defined as “the occurrence of one or more individuals at some place and time”. This definition makes it clear that occurrence is simply a summary of abundance with reduced information content; instead of distinguishing between abundance states 0, 1, 2, … we only distinguish between two abundance states: 0 and more than 0. If we denote occurrence as z, we can write z=1 for an occupied site, or a presence, and z=0 for an unoccupied site or an absence. The probability of occupancy, P(z=1), is equal to P(N>0). (Note that we will call occupancy the probability that a site is occupied and occurrence the actual state of the site; occupied or unoccupied.) Hence, it appears illogical to separate the modeling of occupancy from that of abundance, given occurrence, from a single data set, in the way that some authors try to do sometimes.
Thus, occurrence is simply a derived quantity of abundance as is probability of occupancy for the full abundance distribution (such as a Poisson with its parameter(s)). Nevertheless, occurrence is a very important state variable in ecology and its applications, such as wildlife management and conservation biology. Reasons include the following:
· Though occurrence (z) is a reduced-information content version of abundance (N), it is typically related to abundance. For instance, one of the strongest patterns in ecology is the relationship between probability of occupancy and abundance (see He & Gaston 200x).
· If abundance cannot be reliably assessed for methodological or logistical reasons, occurrence may be the only viable alternative for characterizing the state of a (meta)population.
· Similarly, the parametric assumptions needed for modeling abundance (e.g., Poisson, NegBin) may not be warranted, but those for modeling occurrence appear much less strong.
· Sometimes abundance may not matter, only occurrence, e.g., for parasite infections where we may not worry about whether there are 105 or 106 parasites in a host.
· Occurrence is identical to abundance when assessed at a scale where a sample unit can be occupied by at most one individual, breeding pair or family group. Examples include sites defined as territories of raptors or owls (MacKenzie et al. 2003; Martin et al. Golden Eagle). Clearly, the number of occupied sites then corresponds to the number of breeding pairs, i.e., to a widely used measure of abundance of a population.
· Occurrence is the basis for the most widely used biodiversity measure, species richness (Purvis & Hector xxxx; see chapter 12).
Thus, occurrence is a very widely used state variable in ecology and some subfields focus almost exclusively on it, such as metapopulation ecology (Hanski 1998) or species distribution modeling (some citation for that).
As for abundance, occurrence can rarely ever be assessed without error in wild populations (or even in laboratories; add some references; e.g., Ferraz …). Instead, measurements of occurrence may often yield an observation y=0 at occupied sites where z=1, leading to biased inferences about occupancy probability and its determinants, such the strength of the relationships with environmental covariates. Thus, it is prudent to accommodate imperfect detection in any framework for modeling occurrence. One of the only, and probably the most advanced, inference frameworks for modeling jointly occurrence and imperfect detection has the odd name ‘site-occupancy model’. This chapter is mostly about this very powerful modeling framework.

The statistical modeling of occurrence data is analogous to the modeling of coin flips of a loaded coin. We observe a series of binary outcomes, z=1 or z=0, and want to describe the tendency of the coin to yield a heads (or tails). Thus, we model the probability that z=1, typically as a function of covariates, for instance those describing the habitat of a species. The typical statistical model for occurrence is a Bernoulli distribution, which is the statisticians’ analogue to the flipping of a loaded coin, where Pr(heads) can be any value between 0 and 1. The essence of most models of occurrence consists of the following relation: , where and .
It is important to realize that the meaning of occupancy probability depends entirely on the choice of the spatial temporal unit at which occurrence is assessed. For instance, for each bird species occurring in Switzerland, we can obtain any value of occupancy probability we wish by varying the plot size. A plot the size of the entire country will produce a value of occupancy equal to 1, while plots the size of a stamp will produce a value of occupancy equal to about 0. Thus, the spatial scale of an occurrence study should be adapted to the biology of the studied species or to the questions asked (more about this later).

8.2. A classification of occurrence data
There are at least four types of data on which the modeling of occurrence and species distributions can be based: 1. presence-only; 2. presence/absence; 3. presence/absence replicated in time; and 4. counts, possibly replicated in time. The information content about occurrence increases from 1 to 4. Here we briefly summarize them, because they are relevant for the kind of modeling framework which can be chosen for inference about occurrence.
We note here that the term, presence/absence, is misleading and actually wrong when there is imperfect detection; detection/nondetection data is a better term (Kéry et al. 2010). Nevertheless, we sometimes use presence/absence because it is so widely used in ecology, recognizing, however, that an “absence” may in fact represent an overlooked presence.

1. Presence-only data: This kind of data is represented by museum collections or other collections of sites where a species was identified, collected or otherwise recorded. Without auxiliary information, there is no way in which we can estimate the Bernoulli parameter characterising occupancy probability. However, if data is available on the environmental conditions at a sample or all of the background sites from which the sites with recorded presences are a sample, then the Bernoulli parameter becomes identifiable. In the age of geographic information systems, such background data are indeed often available. This kind of data should more appropriately be called "presence/background data" (Lahoz-Monfort et al., GEB, 2014)
Historically, presence-only data were often analysed using ad hoc methods, for instance, by inventing so-called pseudo-zeroes (add some references). A very common modeling framework for presence-only data augmented with background data is maximum entropy modeling using a popular mega-blackbox software called MaxEnt (Phillips et al. XXXX). Apart from the disadvantage that MaxEnt is probably understood by only a small minority of its users, program MaxEnt fails to estimate the probability of occupancy; rather it only returns some nonlinear index to probability of occupancy (Royle et al. MEE 2012).
Only recently have statistical methods been developed (by the way, repeatedly and independently) that can rigorously estimate probability of occupancy from presence-only data that are augmented by data from a background sample (Lele and Keim 2006; Royle et al. MEE 2012; Dorazio 2012.) Two of these methods have been implemented in R packages: package ResourceSelection for the model by Lele and Keim (2006) and package Maxlike for that by Royle et al. (2012). The choice of the name of the latter emphasizes that it uses simple maximum likelihood instead of machine learning methods to do what the MaxEnt blackbox fails to achieve: estimate and model probability of occupancy.
It has long been claimed that in the modeling of presence-only data the occupancy intercept cannot be estimated (e.g., Kéry et al. 2010; Kéry 2011 and many others). This claim is wrong. Interestingly, the maximum likelihood methods of analyzing presence-only plus background data allow one to estimate the full logistic regressionn equation for occupancy probability, even in the presence of imperfect detection (Royle et al. MEE 2012).

2. Presence/absence data: This kind of data is the classical input for logistic regression, or binomial generalized models (GLMs) and their extensions, such as generalized additive models (GAMs) or generalized linear mixed models (GLMMs). This data type contains more information about the logistic regression of probability of occupancy, but does not allow one to separately estimate detection probability (except under very restrictive parametric assumptions; e.g., Lele-Keim-Solymos work, and DM occupancy model).

3. Presence/absence data replicated in time: This data type contains the most information among the previously listed and is the type of data that we consider most in this chapter. As we will see, under the closure assumption, this data type allows one to jointly model probability of occupancy and of detection using the powerful site-occupancy modeling framework.

4. Count data: We have seen that presence/absence data are simply a summary of count data. Hence, it is clear that count data can also be used to model species distributions. Unreplicated counts may be modeled as a Poisson GLM, as shown in chapter XX, and the probability of occupancy obtained as the probability that a count is greater than zero. Count data that are not replicated in time do not enable one to model abundance or occurrence jointly with detection probability except under very restrictive assumptions (see work by Lele, Keim, Solymos). In contrast, count data that are replicated in time over a short time span, so that the closure assumption likely holds, may be modelled under the N-mixture model (chapter 5); which is also a species distribution model (Royle et al. Oikos 2005; Dorazio 2007).

[bookmark: _Toc296678236][bookmark: _Toc308638302]8.3. Derivation of the site-occupancy model from first principles: an exercise in hierarchical modeling
As for the N-mixture model, we here derive the basic site-occupancy model from first principles by reflecting on the processes that generate the observed detection/nondetection data. We ask again two questions:
1. Assume that each of 100 sites was inhabited by a certain number individuals of a certain species, i.e., had some value of abundance (N), such as 0, 0, 1, 3, 1, 4, 2, 3, …. However, perhaps we cannot assess N reliably, only a summary of it, I(N>0), where I(x) is the indicator function that evaluates to 1 if condition x is true. Alternatively, we may not care about whether there are 1 or more individuals at a site. Thus, the true state of interest would then be the occurrence states (z) 0, 0, 1, 1, 1, 1, 1, 1, …. What is the customary statistical description of these occurrence states ?
2. Next, let’s acknowledge the ugly truth that we may overlook a species at a site where it occurs. Thus, at site 3, which is occupied, our measurement of occurrence may well result in an observation of y=0 in the presence of imperfect detection. What is a plausible statistical model for this measurement error ?
For both questions, the natural answer would be to emply a Bernoulli distribution to describe the randomness in the binary outcomes of the state and the observation processes underlying the observed detection/nondetection data. When we make the second Bernoulli distribution conditional on the outcome of the first, such that we can only observe an presence when a site is occupied, but not when it is not occupied (thus, there are no false positive errors), we have the basic site-occupancy model, which was independently developed by at least two groups (MacKenzie et al. 2002; Tyre et al. 2003).
Thus, we have re-invented the site-occupancy model from first principles by thinking about the processes that produce the observed data. This ability, to sequentially incorporate into a statistical model multiple, linked processes underlying an observed outcome, is one of the principal benefits of hierarchical models (Royle and Dorazio 2008). Related to this is the benefit that hierarchical modeling almost enforces on us a more mechanistic thinking about the multiple processes that produce an observe data set (Kéry and Schaub 2012).
As a summary, here is the simplest site-occupancy model written in algebra:

1. State process: 		

2. Observation process:	

The latent variable zi is the true state of occurrence at site i (i = 1…M) and the Bernoulli parameter (pronounced ‘psi’) is the expected value of z, which is the probability of occupancy. is the observed value of occurrence at site i during survey j (j = 1…T) and is the detection probability of the study species at site i during survey j. Importantly, the detection probability here refers to all individuals inhabiting a site together, not to each individual singly, as in the N-mixture model (chapter 5). The outcome of the observation process is conditional on the outcome of the state process, because the parameter of the second Bernoulli distribution is the product of and . Thus, at unoccupied sites, this product becomes equal to zero and only zero observations can be made. It is here that we implicitly make the assumption that there are no false positive observations, i.e., that a species can only be overlooked where it occurs, but not erroneously recorded where it does not.
The site-occupancy model is thus a hierarchical extension to a Bernoulli GLM or logistic regression. Logistic regression is the natural building block for models of occurrence (Royle and Dorazio 2008). However, logistic regression is also the most widely used model for false-negative observation errors (imperfect detection; Kéry and Schaub 2012). The site-occupancy model combines the canonical model for species occurrence with the canonical model for imperfect detection. It is also a Bernoulli/Bernoulli mixture model. When p is constant for replicated observations at a site, then the binary observations can be aggregated to detection frequencies and the observation model becomes a binomial with success parameter pi and index equal to the number of surveys at each site; see chapter 12.

Exactly analogous to the Nmix model, this hierarchical model can also be described as consisting of two linked generalized linear models (GLMs); a Bernoulli regression for the spatial variation in occurrence and another Bernoulli regression for the variation of the observed detection/nondetection data at specific sites. We can again start doing things that we often do to GLMs, such as modeling structure in the parameters and , by expressing them as linear or other functions of covariates via a logit link function, or the introduction of random effects to model hidden structure and correlations.
As for the Nmix model (chapter 5), we need repeated measurements of occurrence for at least some of the sites for the parameters of the two components of the model to be jointly estimable. Importanly, it is not required that we have replicate observations for all sites ! Many applications of site-occupancy species distribution modeling will have replicate observations for only a minority of the sites; e.g., Kéry et al. (2010). Nevertheless, the more replication, the better, except if we risk violating the closure assumption; see below. If we do not have a balanced design with the same number of temporal replicates at each site, it is best if the number of surveys per site is randomly allocated to a site. If it depends instead on some site characteristics, biased estimates may (perhaps ?) result.
The main assumptions of the site-occupancy model are these:
1. Closure assumption: We require that the occurrence state zi of site i does not change over the course of the study. This typically means that we will only use for occupancy modeling detection/nondetection data from a time period that is short relative to the dynamics of the distributiotion of the study species. Certain violations of the closure assumption, corresponding to random temporary emigration, are not disastrous; they simply require one to interpret the occupancy parameter as probability of use sometimes during the study period, rather than the probability of permanent occurrence.
2. No false positive errors: This is an important assumption, whose violation can lead to great bias in the occupancy estimator (Royle and Link 2006, McClintock et al. 2010?). See the important new work by Miller et al. (Ecology 2011) for a way forward in the presence of false positives. A common way to avoid false positives is to discard any observation where the species ID is doubtful, or rather to treat it as a zero.
3. Independence of detection: more on that
4. Homogeneity of detection at the M sites: Detection heterogeneity among sites will lead to underestimates of the occupancy parameter, if it is not accommodated in the model; see Royle (Biometrics, 2006; Dorazio 2007). This can be achieved by covariate modeling, by adopting the Royle-Nichols (Ecology, 2003) model (also see Yamaura et al. 2011), by use of the Nmixture model if counts are available (Dorazio 2007) or by modeling latent structure via finite or continuous mixture distributions (Royle 2006). The latter can easily be achieved in a Bayesian MCMC analysis.
5. Parametric assumptions: Assume that the two Bernoullis are reasonable abstraction of reality in order to meet the objectives of the modeling.

8.4. Simulation of data and first analysis using unmarked and BUGS
We simulate detection/nondetection data that are replicated in space and in time over such a short period that we can assume closure. We assume again that a site covariate (vegetation height) positively affects occupancy probability

set.seed(24) # so that we all get the same data

Create a covariate called vegHt
R <- 100
vegHt <- sort(runif(R, 1, 3)) # sort for convenience

Suppose that occupancy probability increases with vegHt
The relationship is described by an intercept of -3 and
a slope parameter of 2 on the logit scale
psi <- plogis(-3 + 2*vegHt)

Now we go to 100 sites and observe their occurrence strate (perfectly)
z <- rbinom(R, 1, psi)

We can fit a logistic regression to the occurrence state, under the assumption that we observe it without error (i.e., that our data were strictly presence/absence data).

We can fit a model that relates abundance to vegHt using the glm() function
with "family=binomial"
summary(fm.glm <- glm(z ~ vegHt, family=binomial))

Call:
glm(formula = z ~ vegHt, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.5599 -0.9805 0.4585 0.8266 1.3694

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.7186 0.9888 -2.749 0.005970 **
vegHt 2.0835 0.5742 3.629 0.000285 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 116.652 on 99 degrees of freedom
Residual deviance: 98.887 on 98 degrees of freedom
AIC: 102.89

Number of Fisher Scoring iterations: 5

Do some analysis of the results
plot(vegHt, z, xlab="Vegetation height", ylab="Occurrence (z)")
glm.est <- coef(fm.glm)
plot(function(x) plogis(-3 + 2*x), 1, 3, add=TRUE, lwd=3)
plot(function(x) plogis(glm.est[1] + glm.est[2]*x), 1, 3, add=TRUE,
 lwd=3, col="blue")
legend(2.4, 0.2, c("Truth", "Estimate"),col=c("black","blue"),lty=1, lwd=3)
[image:]

Fig. 8–1: The relationship between occurrence and vegetation height in the simulated example. The black line represents the true , i.e., the expected probability of occupancy. The circles represent the realized occurrence states at 100 sites. The difference between the expected and the realized occurrence is due to the discrete nature of binary data. The blue line indicates the maximum likelihood estimate of , or of the parameters describing its relationship to vegetation height.
Whenever we model observed detection/nondetection data in a model that does not also model detection probability, we make the implicit assumption that detection probability is perfect or perhaps that we model an index of occupancy probability. Let us now not rely on these doubtful assumptions but model the measurement error that is so typical in studies of occurrence. Occurrence z then becomes a latent state, that is, it will be only partially observable. We imagine that detection probability is related to the covariate wind via a logit-linear regression with intercept 1 and slope -2.

T <- 3
wind <- array(rnorm(R * T), dim = c(R, T))
p <- plogis(1 - 2*wind)
plot(p ~ wind)
y <- matrix(NA, R, T)
for(i in 1:R) {
 y[i,] <- rbinom(T, z[i], p[i,])
}

Look at the data
cbind(psi=round(psi,2), z=z, y1=y[,1], y2=y[,2], y3=y[,3])
 psi z y1 y2 y3
 [1,] 0.27 0 0 0 0
 [2,] 0.30 0 0 0 0
 [3,] 0.30 0 0 0 0
 [...]
 [98,] 0.95 1 0 1 1
 [99,] 0.95 1 0 1 1
 [100,] 0.95 1 1 1 1

Next, we use the site-occupancy model to analyse these data using program unmarked and software WinBUGS and JAGS. We start with unmarked.

It is important to be able to fit factors (categorical explanatory variables), hence we will illustrate this for two factors that are unrelated to the data (because the response was not generated with inbuilt effects of them): "season" will index the first through the third survey, while "hab" will contrast three imaginary habitat types.

Create factors
time <- matrix(rep(as.character(1:T), R), ncol = T, byrow = TRUE)
hab <- c(rep("A", 33), rep("B", 33), rep("C", 34))

Load library, format data and summarize
library(unmarked)
umf <- unmarkedFrameOccu(
 y = y,
 siteCovs = data.frame(vegHt = vegHt, hab = hab),
 obsCovs = list(wind = wind, time = time))
summary(umf)
unmarkedFrame Object

100 sites
Maximum number of observations per site: 3
Mean number of observations per site: 3
Sites with at least one detection: 70

Tabulation of y observations:
 0 1 <NA>
 149 151 0

Site-level covariates:
 vegHt hab
 Min. :1.000 A:33
 1st Qu.:1.471 B:33
 Median :1.862 C:34
 Mean :1.916
 3rd Qu.:2.353
 Max. :2.998

Observation-level covariates:
 wind time
 Min. :-2.8561 1:100
 1st Qu.:-0.7481 2:100
 Median :-0.0209 3:100
 Mean :-0.0874
 3rd Qu.: 0.6589
 Max. : 2.7849

Fit a model and extract estimates
Detection covariates follow first tilde, then come occupancy covariates
We don’t time run: occupancy models much faster than Nmix models !
summary(fm.occ1 <- occu(~wind ~vegHt, data=umf))

Call:
occu(formula = ~wind ~ vegHt, data = umf)

Occupancy (logit-scale):
 Estimate SE z P(>|z|)
(Intercept) -2.68 1.041 -2.57 0.010070
vegHt 2.05 0.611 3.36 0.000782

Detection (logit-scale):
 Estimate SE z P(>|z|)
(Intercept) 1.09 0.211 5.16 2.52e-07
wind -1.80 0.281 -6.43 1.30e-10

AIC: 291.2218
Number of sites: 100
optim convergence code: 0
optim iterations: 34
Bootstrap iterations: 0

Predict occupancy and detection as function of covs (with 95% CIs)
newdat <- data.frame(vegHt=seq(1,3, 0.01))
pred.occ <- predict(fm.occ1, type="state", newdata=newdat)
newdat <- data.frame(wind=seq(-3,3, 0.1))
pred.det <- predict(fm.occ1, type="det", newdata=newdat)
par(mfrow = c(1,2))
plot(seq(1,3, 0.01), pred.occ[,1], xlab="Vegetation height", ylab="Occupancy probability", ylim = c(0, 1), ty = "l", col = "blue", lwd = 2)
matlines(seq(1,3, 0.01), pred.occ[,3:4], col = "grey", lty = 1)
plot(seq(-3,3, 0.1), pred.det[,1], xlab="Wind", ylab="Detection probability", ylim = c(0, 1), ty = "l", col = "blue", lwd = 2)
matlines(seq(-3,3, 0.1), pred.det[,3:4], col = "grey", lty = 1)

[image:]

Or predictions for specified values of vegHt, say 1.2 and 3.1
newdat <- data.frame(vegHt=c(1.2, 3.1))
predict(fm.occ1, type="state", newdata=newdat)
 Predicted SE lower upper
1 0.4323397 0.10027209 0.2548152 0.6291264
2 0.9774367 0.02124937 0.8676305 0.9965194

Or for values of wind of -2, -1, 0, 1 and 2
newdat <- data.frame(wind=-2:2)
predict(fm.occ1, type="det", newdata=newdat)
 Predicted SE lower upper
1 0.99095469 0.006137467 0.9662486 0.9976204
2 0.94742667 0.021001596 0.8874688 0.9762918
3 0.74775206 0.039751162 0.6623087 0.8175325
4 0.32778449 0.057771740 0.2258126 0.4490928
5 0.07425427 0.034423041 0.0291819 0.1763002

Thus, most of the data formatting in an unmarked frame, the model fitting and the processing of the results in an occupancy analysis using occu() is very similar to what we did for the Nmix model with pcount() in chapter 5. Similarly, estimation of the random effects, zi, binary this time, is again achieved using the function ranef().

ranef(fm.occ1)
 Mean Mode 2.5% 97.5%
 [1,] 0.025117983019 0 0 1
 [2,] 0.023258442653 0 0 0
 [3,] 0.141211409275 0 0 1
 [4,] 0.060159686553 0 0 1
 [5,] 1.000000000000 1 1 1
 [...]
 [98,] 1.000000000000 1 1 1
 [99,] 1.000000000000 1 1 1
[100,] 1.000000000000 1 1 1

	These random effects are also called conditional occupancy probability, where conditional means given the observed data at a site (MacKenzie et al., 2006, p. 97-98). When the species has been detected at least once at a site, then under the usual assumption of no false-positives, the site is occupied with certainty. This is why in the example, for site 5, for instance, the conditional occupancy probabability is equal to 1 with zero uncertainty. The case is more interesting for sites where a species failed to be detected during the T surveys (i.e.,). In this case, the probability that it is occupied depends on three things: the expected occupancy probility for the site (), detection probability and the number of surveys T:

This makes sense intuitively: everything else equal, given that the species was not observed at a site, we have higher confidence in its presence despite the negative survey results when (1) when the species is widespread overall (i.e., when occupancy probability is high), (2) when it is elusive (i.e., when detection probability is small) and (3) when the number of trials is small. When is site- and site- and survey-specific this equation changes to:

Let's double check this for site 1, where during 3 surveys the species was never detected. The probabilities of occupancy (1 value) and detection (1 value for each survey) for this site can be obtained from unmarked as

(psi1 <- predict(fm.occ1, type="state")[1,1])
[1] 0.3480168
(p1 <- predict(fm.occ1, type="det")[c(1:3),1])
 [1] 0.7184112 0.7547108 0.3011641
Note that the predictions of detection at the 3 surveys made at site 1 are in rows 1-3 (and not in rows 1, 101 and 201, as one might perhaps think). We can then calcute the conditional occupancy probability for site 1, given that all three surveys resulted in a negative result, as follows:

(z1 <- (psi1 * prod(1-p1)) / ((1 - psi1) + psi1 * prod(1-p1)))
[1] 0.02511798

This matches up the solution for site 1 obtained from the ranef function.

One quantity that is frequently of interest is the finite-sample occupancy, i.e., the number of sites occupied in the sample of sites actually studied. In unmarked, this can be obtained by summing over the estimates of the random effects zi. We can then use a parametric bootstrap to obtain a confidence interval around the point estimate. We will define a function to obtain the finite-sample estimate of the number of sites occupied. This can then be used for a (large) number of bootstrap samples to obtain uncertainty intervals around that estimate.

Nocc <- function(fm) {
 N <- sum(ranef(fm)@post[,2,])
 N
}
estimate.of.Nocc <- Nocc(fm.occ1)
#(pb.N <- parboot(fm.occ1, Nocc, nsim=1000, report=2)) # Takes a while
system.time(pb.N <- parboot(fm.occ1, Nocc, nsim=100, report=10))) # Takes less time
plot(pb.N)
summary(pb.N@t.star)
quantile(pb.N@t.star, prob = c(0.025, 0.975))
[image:]

 2.5% 97.5%
64.97802 81.62623

Next, we quickly look into the fitting of factors, since they often pose problems in statistical modeling to practitioners. We first fit what could be called a main-effects ANCOVA in both model components: i.e., we have additive effects of a discrete and of a continuous covariate for both occurrence and detection. Linear models in unmarked are specified in exactly the same way as, say, in the R functions lm() or glm(). So let’s fit a model in the “means parameterisations”, i.e., where the parameters for the factors directly have the meaning of the means for each factor level. We can write model 2 in algebra as :

summary(fm2.occ <- occu(~wind+time-1 ~vegHt+hab-1, data=umf))
Call:
occu(formula = ~wind + time - 1 ~ vegHt + hab - 1, data = umf)

Occupancy (logit-scale):
 Estimate SE z P(>|z|)
vegHt 4.76 1.70 2.81 0.00503
habA -6.21 2.29 -2.72 0.00662
habB -7.41 3.05 -2.43 0.01519
habC -9.81 4.10 -2.39 0.01667

Detection (logit-scale):
 Estimate SE z P(>|z|)
wind -1.849 0.287 -6.43 1.25e-10
time1 0.832 0.323 2.57 1.01e-02
time2 1.337 0.343 3.89 9.85e-05
time3 1.157 0.329 3.51 4.42e-04

AIC: 294.1155
Number of sites: 100
optim convergence code: 0
optim iterations: 30
Bootstrap iterations: 0

Get predictions for factor levels at average values of covariates
newdat <- data.frame(vegHt=2, hab = c("A", "B", "C"))
predict(fm2.occ, type="state", newdata = newdat, appendData = TRUE)
 Predicted SE lower upper vegHt hab
1 0.9651800 0.04047858 0.7234111 0.9966075 2 A
2 0.8926054 0.05850982 0.7153169 0.9649033 2 B
3 0.4305050 0.21486953 0.1194635 0.8081352 2 C

newdat <- data.frame(wind=0, time = c("1", "2", "3"))
predict(fm2.occ, type="det", newdata=newdat, appendData = TRUE)
 Predicted SE lower upper wind time
1 0.6967673 0.06830986 0.5494068 0.8123919 0 1
2 0.7920061 0.05655817 0.6601895 0.8818411 0 2
3 0.7608708 0.05993228 0.6252417 0.8585213 0 3

For the sake of exercise we can also fit a model with interaction effects in both the occupancy and the detection model and then use a likelihood ratio test to decide which is better supported by the data. In algebra, model 3 can be written as this:

The difference to model 2 is that now the beta paramaters are no longer a single number, but they are indexed and hence vary by the levels of the two factors. Hence, they are now vectors of length 3 (corresponding to the three levels of the factors hab and time).

summary(fm3.occ <- occu(~wind*time-1 ~vegHt*hab-1, data=umf))
LRT(fm2.occ, fm3.occ)
 Chisq DF Pr(>Chisq)
1 10.96162 4 0.02699881

Although we know that neither factor has an effect, the test claims that interactive effects with the two continuous explanatory variables (i.e., model 3) are preferred over additive effects (model 2).

In summary, unmarked with the function occu() provides much flexibility to fit static site-occupancy models rapidly, flexibly and reliably.
Next, we look at the Bayesian analysis of the model using WinBUGS and JAGS. We choose the same layout of the analysis as before and first fit model 1:

As so often we see that a model written in algebra gets us very close to the BUGS model description.

Bundle data
win.data <- list(y = y, vegHt = vegHt, wind = wind, R = nrow(y), T = ncol(y))

Specify model in BUGS language
sink("model.txt")
cat("
model {

Priors
alpha.occ ~ dunif(-10, 10)
beta.occ ~ dunif(-10, 10)
alpha.p ~ dunif(-10, 10)
beta.p ~ dunif(-10, 10)

Likelihood
for (i in 1:R) {
 # True state model for the partially observed true state
 z[i] ~ dbern(psi[i]) # True occupancy z at site i
 logit(psi[i]) <- alpha.occ + beta.occ * vegHt[i]

 for (j in 1:T) {
 # Observation model for the actual observations
 y[i,j] ~ dbern(p.eff[i,j]) # Detection-nondetection at i and j
 p.eff[i,j] <- z[i] * p[i,j]
 logit(p[i,j]) <- alpha.p + beta.p * wind[i,j]
 } #j
 } #i

Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites among those studied
}
",fill = TRUE)
sink()

Initial values
zst <- apply(y, 1, max)
inits <- function(){list(z = zst, alpha.occ = runif(1, -3, 3), beta.occ = runif(1, -3, 3), alpha.p = runif(1, -3, 3), beta.p = runif(1, -3, 3))}

Parameters monitored
params <- c("alpha.occ", "beta.occ", "alpha.p", "beta.p", "occ.fs")
params <- c("alpha.occ", "beta.occ", "alpha.p", "beta.p", "occ.fs", "z")
add "z" for estimates of the random effects (= "conditional occ. prob.")

MCMC settings
ni <- 1200 ; nt <- 1 ; nb <- 200 ; nc <- 3

Call WinBUGS from R (ART 0.28 min)
out1B <- bugs(win.data, inits, params, "model.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out1B, dig = 3)
Inference for Bugs model at "model.txt", fit using WinBUGS,
 3 chains, each with 1200 iterations (first 200 discarded)
 n.sims = 3000 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha.occ -2.986 1.034 -5.061 -3.691 -2.949 -2.247 -1.077 1.053 44
beta.occ 2.258 0.619 1.164 1.810 2.225 2.677 3.543 1.048 48
alpha.p 1.096 0.216 0.692 0.945 1.095 1.238 1.535 1.002 1700
beta.p -1.826 0.287 -2.418 -2.017 -1.819 -1.629 -1.282 1.003 900
occ.fs 72.964 1.521 70.000 72.000 73.000 74.000 76.000 1.002 1400
deviance 198.087 8.501 185.100 192.000 196.900 203.000 218.200 1.002 1400

Call JAGS from R (ART 0.26 min)
library("R2jags")		# requires rjags
system.time(out1J <- jags(win.data, inits, params, "model.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(out1J)

Summarize posteriors
print(out1J, dig = 3)
Inference for Bugs model at "model.txt", fit using jags,
 3 chains, each with 1200 iterations (first 200 discarded)
 n.sims = 3000 iterations saved
 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha.occ -2.984 1.106 -5.109 -3.800 -3.009 -2.160 -0.927 1.009 290
alpha.p 1.099 0.214 0.695 0.950 1.091 1.236 1.536 1.003 870
beta.occ 2.259 0.655 1.091 1.766 2.252 2.730 3.560 1.011 250
beta.p -1.836 0.284 -2.415 -2.028 -1.828 -1.640 -1.304 1.002 1500
occ.fs 72.985 1.490 70.000 72.000 73.000 74.000 76.000 1.002 2000
deviance 198.053 8.080 185.616 192.210 196.817 202.579 216.566 1.001 3000

Graphical comparison between truth and estimates
par(mfrow = c(1,2), mar = c(5,4,4,4), cex.lab = 1.2, cex.main = 1.2)
predHt <- seq(1,3,,100)
predW <- seq(-3,3,,100)
mle <- coef(fm.occ1)
bayesB <- out1B$summary[1:4,1]
bayesJ <- out1J$BUGSoutput$summary[1:4,1]
plot(vegHt, z, xlab="Vegetation height", ylab="", main="Occupancy probability", las = 1, lty = 1)
lines(vegHt, psi, lwd=3, col="black")
lines(predHt, plogis(mle[1] + mle[2]*predHt), lwd = 3, col="blue", lty = 1)
lines(predHt, plogis(bayesB[1] + bayesB[2]*predHt), lwd = 3, col="green", lty = 2)
lines(predHt, plogis(bayesJ[1] + bayesJ[3]*predHt), lwd = 3, col="red", lty = 3)

plot(wind, y, xlab="Wind", ylab="", main="Detection probability", las = 1, lty = 1)
lines(sort(wind), p[order(wind)], lwd=3, col="black")
lines(predW, plogis(mle[3] + mle[4]*predW), lwd = 3, col="blue", lty = 1)
lines(predW, plogis(bayesB[3] + bayesB[4]*predW), lwd = 3, col="green", lty = 2)
lines(predW, plogis(bayesJ[2] + bayesJ[4]*predW), lwd = 3, col="red", lty = 3)
legend(-2.5, 0.3, c("Truth", "unmarked", "WinBUGS", "JAGS"), col=c("black", "blue", "green", "red"), lty=c(1, 1, 2, 3), lwd=3)

[image:]

Fig. 8–2: Comparison between the truth (in the simulated data) and the frequentist estimates of occupancy and detection from unmarked and the Bayesian estimates from WinBUGS and JAGS.
In the Bayesian analysis, we directly estimate the quantity called “occ.fs”. This is the number of occupied sites among the sample of sites studied and is a quantity that is often interesting to practitioners. It is the sample occupancy, while the occupancy probability shown above is the population quantity. The former is a function of the latent occurrence states. As always, calculations on latent variables in a Bayesian analysis are trivial and are conducted with a full propagation of all the involved uncertainties. Note that the estimate of the sample occupancy is asymptotically equal to that of population occupancy. However, the uncertainty in the former is smaller, because one component of variation, the binomial sampling of sites from among a statistical population of sites, is lacking. The only component of uncertainty in the variance estimate of the finite sample occupancy is due to the uncertainty in the estimate of detection probability (and occupancy probability also ?).

We quickly look into the fitting of factors in the BUGS language. For this, we usually use "double indexing". We illustrate with a model that in the R formula description language could be written as psi(vegHt + hab) p(wind + time). We don't need to provide values for the factor "time", because we can specify such time effects by using the column dimensions of the 2-way array of data. In contrast, we have to change the factor levels of "hab" from the letters "A", "B" and "C" into the numbers 1, 2 and 3, since that is how BUGS expects factor levels.

We quickly look into the fitting of factors in the BUGS language. For this, we usually use "double indexing". We illustrate with a model that in the R formula description language could be written as psi(vegHt + hab) p(wind + time). We don't need to provide values for the factor "time", because we can specify such time effects by using the column dimensions of the 2-way array of data. In contrast, we have to change the factor levels of "hab" from the letters "A", "B" and "C" into the numbers 1, 2 and 3, since that is how BUGS expects factor levels.

Bundle data
bhab <- hab
bhab[hab == "A"] <- 1
bhab[hab == "B"] <- 2
bhab[hab == "C"] <- 3
bhab <- as.numeric(bhab)
win.data <- list(y = y, vegHt = vegHt, hab = bhab, wind = wind, R = nrow(y), T = ncol(y))

Specify model in BUGS language
sink("ANCOVA1.occ.txt")
cat("
model {

Priors
for(j in 1:3){
 alpha.occ[j] ~ dnorm(0, 0.001) # Habitat effects in occupancy
 alpha.p[j] ~ dnorm(0, 0.001) # time effects in detection
}
beta.occ ~ dnorm(0, 0.001) # vegHt effect in occupancy
beta.p ~ dnorm(0, 0.001) # wind effect in detection

Likelihood
for (i in 1:R) {
 # True state model for the partially observed true state
 z[i] ~ dbern(psi[i]) # True occupancy z at site i
 logit(psi[i]) <- alpha.occ[hab[i]] + beta.occ * vegHt[i]

 for (j in 1:T) {
 # Observation model for the actual observations
 y[i,j] ~ dbern(p.eff[i,j]) # Detection-nondetection at i and j
 p.eff[i,j] <- z[i] * p[i,j]
 logit(p[i,j]) <- alpha.p[j] + beta.p * wind[i,j]
 } #j
 } #i

Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites among those studied
}
",fill = TRUE)
sink()

Initial values
note 3 inits for alpha.occ and alpha.p now
zst <- apply(y, 1, max)
inits <- function(){list(z = zst, alpha.occ = runif(3, -3, 3), beta.occ = runif(1, -3, 3), alpha.p = runif(3, -3, 3), beta.p = runif(1, -3, 3))}

Parameters monitored
params <- c("alpha.occ", "beta.occ", "alpha.p", "beta.p", "occ.fs")

MCMC settings
ni <- 15000 ; nt <- 10 ; nb <- 5000 ; nc <- 3

Call WinBUGS from R (ART 0.28 min) and summarize posteriors
out2B <- bugs(win.data, inits, params, "ANCOVA1.occ.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())
print(out2B, dig = 3)

This yields the infamous Trap 66 error in WinBUGS. JAGS, on the other hand, produces a sample from the joint posterior. Or most of the times (sometimes convergence may not be reached for all parameters).

Call JAGS from R (ART 0.28 min), time run and summarize posteriors
system.time(
out2J <- jags(win.data, inits, params, "ANCOVA1.occ.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(out2J)
print(out2J, dig = 2)

Finally, we illustrate the fitting of a model 3 with interactions, which in R model language could be written in something like psi(vegHt*hab-1) p(wind*time-1). We recycle most R objects required in the analysis.

Specify model in BUGS language
sink("ANCOVA2.occ.txt")
cat("
model {

Priors
for(j in 1:3){
 alpha.occ[j] ~ dnorm(0, 0.01) # Habitat effects in occupancy
 alpha.p[j] ~ dnorm(0, 0.01) # time effects in detection
 beta.occ[j] ~ dnorm(0, 0.01) # vegHt effects in occupancy
 beta.p[j] ~ dnorm(0, 0.01) # wind effects in detection
}

Likelihood
for (i in 1:R) {
 # True state model for the partially observed true state
 z[i] ~ dbern(psi[i]) # True occupancy z at site i
 logit(psi[i]) <- alpha.occ[hab[i]] + beta.occ[hab[i]] * vegHt[i]

 for (j in 1:T) {
 # Observation model for the actual observations
 y[i,j] ~ dbern(p.eff[i,j]) # Detection-nondetection at i and j
 p.eff[i,j] <- z[i] * p[i,j]
 logit(p[i,j]) <- alpha.p[j] + beta.p[j] * wind[i,j]
 } #j
 } #i

Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites among those studied
}
",fill = TRUE)
sink()

Initial values
zst <- apply(y, 1, max)
inits <- function(){list(z = zst, alpha.occ = runif(3, -3, 3), beta.occ = runif(3, -3, 3), alpha.p = runif(3, -3, 3), beta.p = runif(3, -3, 3))}

WinBUGS issues its Trap 66 error message again, but JAGS works fine.

Call JAGS from R (ART 0.28 min), time run and summarize posteriors
system.time(
out3J <- jags(win.data, inits, params, "ANCOVA2.occ.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(out3J)
print(out3J, dig = 2)

Perhaps put next stuff at the end of chapter (where there is some), or else delete that material there and keep it here
Could also say that response could be aggregated and then modelled as a binomial instead of Bernoulli

Let's have a look once more at the fantastic abilities to test custom hypotheses in an MCMC based Bayesian analyses: we simply apply some function, which is represented by some hypothesis, to the MCMC sample to estimate the probability that, say, a parameter has a value of less than -8 (here illustrated for the case of the occupancy intercept in habitat type 2).

hist(out3J$BUGSoutput$sims.list$alpha.occ[,2], breaks = 100, col = "gold")
abline(v = -8, col = "red", lwd = 3)
mean((out3J$BUGSoutput$sims.list$alpha.occ[,2] < -8))
[image:]

[1] 0.3323333

To test the hypothesis that occupancy, corrected for differences in v egetation height, is different in habitat type B than in A, we can do the following. To see whether 0 is inside or outside of a 95% CRI of the difference between the two intercepts gives us a somewhat analogous procedure to a frequentist significance test for the difference of the two.

par(mfrow = c(3,1))
hist(out3J$BUGSoutput$sims.list$alpha.occ[,2], breaks = 100, col = "gold", xlim = c(-20, 30))
hist(out3J$BUGSoutput$sims.list$alpha.occ[,3], breaks = 100, col = "gold", xlim = c(-20, 30))
diff2_3 <- out3J$BUGSoutput$sims.list$alpha.occ[,2] - out3J$BUGSoutput$sims.list$alpha.occ[,3]
hist(diff2_3, breaks = 100, col = "gold", xlim = c(-20, 30))
abline(v = quantile(diff2_3, prob = c(0.025, 0.975)), col = "blue", lwd = 2)

[image:]

8.5. Bias and precision of site-occupancy estimator
It is important to note that while in principle, with decent data, the parameters of the site-occupancy model may be estimated, the quality of the estimates (i.e., bias and precision) depend a lot on the sample size (number of sites, number of reps) and the magnitude of the parameters (psi and p). For small sample sizes, the widely proclaimed unbiasedness of maximum likelihood estimators is often lost (Le Cam 19XX), also see Welsh et al. (PlosOne 2013). Here is a small simulation study that draws attention to this basic fact of statistical inference and shows how the quality of estimates for particular scenarios (sample sizes, parameter values) can easily be ascertained by simulation. In our example we do this for the Null/Null model without covariates, but such a simulation can easily be extended to more complex models.

Define simple site-occ data generation function
data.fn <- function(R = 120, T = 2, psi = 0.5, p.range = c(0.01, 0.99)){
y <- array(dim = c(R, T))
z <- rbinom(n = R, size = 1, prob = psi) # Simulate state
p <- runif(1, min = p.range[1], max = p.range[2])
for (j in 1:T){
 y[,j] <- rbinom(n = R, size = 1, prob = z*p) # Simulate observations
}
z.obs <- apply(y, 1, max)
return(list(R = R, T = T, psi = psi, p = p, z = z, y = y, z.obs = z.obs))
}

Do simulation with 1000 reps
simreps <- 1000
library(unmarked)

Arrays for simulation results
p <- sum.zobs <- array(dim = simreps)
estimates <- array(dim = c(2,2,simreps))

for(i in 648:simreps){
[bookmark: OLE_LINK1][bookmark: OLE_LINK2] cat("*** Simrep number", i, "***\n")
 # Execute function
 data <- data.fn(R = 267, T = 3)
 # Fit model
 umf <- unmarkedFrameOccu(y = data$y)
 fm <- occu(~1 ~1, umf)
 tmp <- summary(fm)
 TMP <- as.matrix(rbind(tmp$state[1:2], tmp$det[1:2]), ncol = 2)
 p[i] <- data$p
 sum.zobs[i] <- sum(apply(data$y,1,max))
 estimates[,,i] <- TMP
}

Figure XX was produced using this code by varying the R and T arguments of the data generation function. It shows that there can be quite some variation in the quality of the estimates under the site-occupancy model. In addition, for many simulated data sets, the analysis yielded singular Hessians, necessitating the simulation to be restarted at a new value of i by hand.
BTW, the red line shows the truth for psi and the blue line is a spline smoother.
[image:]

8.6. Evaluating goodness of fit (GOF)
As for the Nmix model, we can evaluate the goodness of fit of a model using the parametric bootstrap in an analysis using maximum likelihood and a Bayesian p-value in a Bayesian analysis. One important difference, though, to GOF assessment in models for counts is that when modeling species occurrence, the modelled response is usually binary, i.e., contains only 0's and 1's (except when we model detection frequencies: the number of times a species was detected at a site in a 'season'; see community model chapters for this; the same can easily be done for a Bayesian analysis with BUGS).
	The problem with binary data is that conventional measures for goodness of fit (deviance, Chisquare) are totally uninformative about fit unless the data are aggregated in som form first (McCullagh & Nelder, 1989, section XXXX; Royle et al., 2014, p. xx-xxx). For a static occupancy model, this means that the data need to be collapsed over rows (sites) or columns (replicate surveys) and a discrepancy measure must be applied to the resulting frequencies. We look at this here and also provide a function to do a parametric bootstrap with such aggregated data.
We start with defining a very general data simulation function, so that different data (with different effects of covariates) can be more easily generated. This function allows to build into a data set the following effects: one continuous covariate on occupancy and on detection the following effects: time effects (among survey variation), "individual heterogeneity" (unstructured heterogeneity among sites), a site covariate, a sampling covariate and "behavioural response" (BPA, chapter 6). The latter is also called trap-response in the capture-recapture literature and denotes a reduction or an increase in detection probability during the occasion following an observation. It can be negative (a detection during the previous occasion lowers detection probability) or positive (when detection probability is increased at a site during the occasion following a detection event).

data.fn <- function(R = 100, T = 3, mean.psi = 0.6, beta.Xpsi = 2, mean.p = 0.4, time.effects = c(-1, 1), sd.lp = 1, beta.Xp1 = -2, beta.Xp2 = 1, b = 2, seed = rnorm(1,0,10^6)){
General function to simulate static occupancy data with the
following effects:
- 3 continuous covariates (1 on psi, 2 on p)
- time effects on p (among-occasion variation in p)
- "individual heterogeneity" (unstructured site effects in p)
- "behavioural response" in p (p depends on y at preceding occasion)
#
Marc Kéry, 3 Nov 2013
#
set.seed(seed) # Set seed if one chosen
y <- p <- p0 <- p1 <- array(NA, dim = c(R,T)) # Create data structures

Generate state
Xpsi <- runif(R, -2, 2) # Site covariate for psi
psi <- plogis(logit(mean.psi) + beta.Xpsi * Xpsi)
z <- rbinom(R, 1, psi)

Generate observations, give state
Xp1 <- runif(R, -2, 2) # Site covariate for p
Xp2 <- array(runif(R*T, -2, 2), dim = c(R,T)) # Sampling cov. for p
te <- runif(T, time.effects[1], time.effects[2]) # time effects
eps <- rnorm(R, 0, sd.lp) # Individual effects

Generate two full detection probability arrays
(for no preceding capture, p0, and for preceding capture event, p1)
for(j in 1:T){
 p0[,j] <- plogis(logit(mean.p) + te[j] + eps + beta.Xp1 * Xp1 +
 beta.Xp2 * Xp2[,j]) # p when not captured at occasion j-1
 p1[,j] <- plogis(logit(mean.p) + te[j] + eps + beta.Xp1 * Xp1 +
 beta.Xp2 * Xp2[,j] + b) # p captured at occasion j-1
}

First capture occasion (no behavioural response possible)
p[,1] <- p0[,1]
y[,1] <- rbinom(n = R, size = z, prob = p0[,1])

Later capture occasions (potentially with contribution of b)
for (j in 2:T){
 for(i in 1:R){
 p[i,j] <- (1-y[i,(j-1)])*p0[i,j] + y[i,(j-1)] * p1[i,j]
 y[i,j] <- rbinom(n = 1, size = z[i], prob = p[i,j])
 }
}

- May have to remove by hand visualisation part for simulations !
Visualisations
par(mfrow = c(2,2), cex.main = 1.1)
plot(sort(Xpsi), psi[order(Xpsi)], xlab = "Covariate Xpsi", ylab = "Occupancy probability", ylim = c(0,1), main = "Occupancy and Xpsi")
curve(plogis(logit(mean.p) + beta.Xp1 * x), -2, 2, xlab = "Covariate Xp1", ylab = "Detection probability", main = "Site cov. and time effects", lwd = 3, col = "black", ylim = c(0,1))
for(j in 1:T){
 curve(plogis(logit(mean.p) + te[j] + beta.Xp1 * x), -2, 2, lwd = 1,
 col = "grey", add = TRUE)
}
curve(plogis(logit(mean.p) + beta.Xp1 * x), -2, 2, lwd = 2, col = "black", add = TRUE)
curve(plogis(logit(mean.p) + beta.Xp2 * x), -2, 2, xlab = "Covariate Xp2", ylab = "Detection probability", main = "Sampling cov. and 'individual' effects", lwd = 3, col = "black", ylim = c(0,1))
for(i in 1:R){
 curve(plogis(logit(mean.p) + eps[i] + beta.Xp2 * x), -2, 2, lwd = 1,
 col = "grey", add = TRUE)
}
curve(plogis(logit(mean.p) + beta.Xp2 * x), -2, 2, lwd = 2, col = "black", add = TRUE)
plot(p0, p1, xlab = "'Base' detection prob. p0", ylab = "Detection prob. after detection", main = "'Behavioural response'", col = "black", ylim = c(0,1))
abline(0,1)
------------------ End of visualisation ----------------

Output
return(list(R=R, T=T, mean.psi=mean.psi, beta.Xpsi= beta.Xpsi, mean.p=mean.p, time.effects = time.effects, sd.lp=sd.lp, beta.Xp1= beta.Xp1, beta.Xp2= beta.Xp2, b=b, Xpsi=Xpsi, Xp1=Xp1, Xp2=Xp2, psi=psi, z=z, te=te, eps=eps, p=p, y=y, seed=seed))
} # -------------- End function definition --------------

With this function you can generate occupancy data under a wide variety of scenarios, e.g., with up to three covariates (one on psi and two on p) and with the following possible effects in detection: time variation, individual variation among sites, and behavioural response. Models with a single one of the last three effects are called model Mt, Mh and Mb in the capture-recapture literature (Otis et al. 1978; chap. 6 in Kéry & Schaub 2012). Of course, the average magnitude of occupancy and detection can be selected. Thus, among other things, this function is useful to test the behaviour of Goddess of fit tests under a wide variety of assumption violations, e.g., if data are simulated with behavioural response or heterogeneity and they are analysed under a model does not include those effects.

Execute function with varying argument settings
data<- data.fn(R = 100, T = 3, mean.psi = 0.6, beta.Xpsi = 2, mean.p = 0.4, time.effects = c(-1, 1), sd.lp = 1, beta.Xp1 = -2, beta.Xp2 = 1, b = 2, seed = rnorm(1,0,10^6)) # Default settings
data <- data.fn() # ditto
data <- data.fn(beta.Xpsi = 0) # No covariate effect on psi
data <- data.fn(beta.Xp1 = 0) # No covariate effects on p
data <- data.fn(time.effects = c(0, 0)) # No time (occasion) effect
data <- data.fn(sd.lp = 0) # No individual heterogeneity
data <- data.fn(b = 0) # No behavioural response
data <- data.fn(b = -2) # Negative behavioural response

Generate one simple data set, fit a series of models and observe GOF test statistic from the MacKenzie and Bailey test. Note that model 8 is the data generating model.

data <- data.fn(R = 100, T = 3, mean.psi = 0.6, beta.Xpsi = 2, mean.p = 0.4, time.effects = c(-1, 1), sd.lp = 0, beta.Xp1 = -2, beta.Xp2 = 1, b = 0)
library(unmarked)
time <- matrix(rep(as.character(1:data$T), data$R), ncol= data$T, byrow=T)
umf <- unmarkedFrameOccu(y = data$y, siteCovs = data.frame(Xpsi = data$Xpsi, Xp1 = data$Xp1), obsCovs = list(Xp2 = data$Xp2, time = time))
summary(umf)
summary(fm1 <- occu(~1 ~1, data=umf, se = F))
summary(fm2 <- occu(~Xp1 ~1, data=umf, se = F))
summary(fm3 <- occu(~time-1 ~1, data=umf, se = F))
summary(fm4 <- occu(~Xp2 ~1, data=umf, se = F))
summary(fm5 <- occu(~1 ~Xpsi, data=umf, se = F))
summary(fm6 <- occu(~time-1 ~Xpsi, data=umf, se = F))
summary(fm7 <- occu(~time+Xp1-1 ~Xpsi, data=umf, se = F))
summary(fm8 <- occu(~time+Xp1+Xp2-1 ~Xpsi, data=umf, se = F))

Now apply the GOF test by MacKenzie and Bailey (2004) which compares observed and expected numbers of detection histories. The results will vary from one realisation of the stochastic data generation process to another, but overall we will see that the GOF test is well able to distinguish less fitting models from better fitting ones.

library(AICcmodavg)
(obs <- mb.chisq(fm1)) #compute observed chi-square

system.time(obs.boot <- mb.gof.test(fm1, nsim = 100))
more bootstrap samples recommended, e.g., 1000, 5000, or 10000
obs.boot
Chi-square statistic = 17.4491
P-value = 0.01
Estimate of c-hat = 3.33

(obs <- mb.chisq(fm2))
system.time(obs.boot <- mb.gof.test(fm2, nsim = 100))
obs.boot
Chi-square statistic = 11.4014
P-value = 0.06
Estimate of c-hat = 1.99

(obs <- mb.chisq(fm3))
system.time(obs.boot <- mb.gof.test(fm3, nsim = 100))
obs.boot
Chi-square statistic = 11.8403
P-value = 0
Estimate of c-hat = 3.89

(obs <- mb.chisq(fm4))
system.time(obs.boot <- mb.gof.test(fm4, nsim = 100))
obs.boot
Chi-square statistic = 18.875
P-value = 0
Estimate of c-hat = 3.95

(obs <- mb.chisq(fm5))
system.time(obs.boot <- mb.gof.test(fm5, nsim = 100))
obs.boot
Chi-square statistic = 17.2533
P-value = 0.01
Estimate of c-hat = 3.29

(obs <- mb.chisq(fm6))
system.time(obs.boot <- mb.gof.test(fm6, nsim = 100))
obs.boot
Chi-square statistic = 11.7281
P-value = 0.01
Estimate of c-hat = 3.68

(obs <- mb.chisq(fm7))
system.time(obs.boot <- mb.gof.test(fm7, nsim = 100))
obs.boot
Chi-square statistic = 3.9198
P-value = 0.36
Estimate of c-hat = 1.15

(obs <- mb.chisq(fm8))
system.time(obs.boot <- mb.gof.test(fm8, nsim = 100))
obs.boot
Chi-square statistic = 3.3361
P-value = 0.44
Estimate of c-hat = 1.04

8.7. Analysis of the distribution of red squirrels in Switzerland using unmarked
We have stressed at various places that any model for abundance or occurrence, that has spatially indexed covariates, can serve tp produce a map of species abundance or occurrence. In particular, site-occupancy models represent the most genuine species distribution model currently available, because the separate occupancy and detection probability (Kéry et al. 2010), unlike any other species distribution modeling framework. To emphasize the species distribution modeling role of site-occupancy models, we use unmarked to model the distribution of the European red squirrel (Fig. 8–2) in Switzerland. We base our analysis on data from the Swiss breeding bird survey MHB, where red squirrels are recorded as byecatch. Survey methods for the species are essentially identical to those for the birds; see Chapter 5. The data set crossbill.squirrel.txt contains detection/nondetection data for the European crossbill (see chapter 11) and the red squirrel in Switzerland for 2006 and 2007, along with a couple of covariates.
The goals of the analysis are threefold:
1. Identify environmental factors that affect the distribution of red squirrels in Switzerland
2. Produce a distribution map of the species
3. Estimate the size of the occupied area in Switzerland

[image: eichhoernchen02]
Fig. 8–2: European red squirrel (Sciurus vulgaris; borrowed from the web).

Read in data set
cs <- read.table("crossbill.squirrel.txt", header = TRUE)
str(cs)

Grab 2007 data for analysis
y <- as.matrix(cs[cs$spec.name == "Squirrel", 10:12])
str(y)
ele <- cs[cs$spec.name == "Squirrel", "ele"]
forest <- cs[cs$spec.name == "Squirrel", "forest"]
date <- as.matrix(cs[cs$spec.name == "Squirrel", 16:18])
dur <- as.matrix(cs[cs$spec.name == "Squirrel", 22:24])

Standardize covariates and mean-impute date
ele.mean <- mean(ele)
ele.sd <- sd(ele)
forest.mean <- mean(forest)
forest.sd <- sd(forest)
date.mean <- mean(c(date), na.rm = TRUE)
date.sd <- sd(c(date), na.rm = TRUE)
dur.mean <- mean(c(dur), na.rm = TRUE)
dur.sd <- sd(c(dur), na.rm = TRUE)
ele <- (ele - ele.mean)/ele.sd
forest <- (forest - forest.mean)/forest.sd
date <- (date - date.mean) / date.sd
date[is.na(date)] <- 0
dur <- (dur - dur.mean) / dur.sd
dur[is.na(dur)] <- 0

Load library, format data and summarize
library(unmarked)
umf <- unmarkedFrameOccu(y = y, siteCovs = data.frame(ele = ele, forest = forest), obsCovs = list(date = date, dur = dur))
summary(umf)
> summary(umf)
unmarkedFrame Object

267 sites
Maximum number of observations per site: 3
Mean number of observations per site: 2.8
Sites with at least one detection: 116

Tabulation of y observations:
 0 1 <NA>
 553 194 54

Site-level covariates:
 ele forest
 Min. :-1.46606 Min. :-1.25551
 1st Qu.:-0.99783 1st Qu.:-0.94836
 Median :-0.06138 Median :-0.06307
 Mean : 0.00000 Mean : 0.00000
 3rd Qu.: 1.03115 3rd Qu.: 0.78610
 Max. : 2.43583 Max. : 2.32182

Observation-level covariates:
 date dur
 Min. :-1.7473 Min. :-2.4301
 1st Qu.:-0.7875 1st Qu.:-0.6101
 Median : 0.0000 Median : 0.0000
 Mean : 0.0000 Mean : 0.0000
 3rd Qu.: 0.7480 3rd Qu.: 0.5481
 Max. : 3.2912 Max. : 5.5946

Fit a series of models for detection first and do model selection
summary(fm1 <- occu(~1 ~1, data=umf))
summary(fm2 <- occu(~date ~1, data=umf))
summary(fm3 <- occu(~date+I(date^2) ~1, data=umf))
summary(fm4 <- occu(~date+I(date^2)+I(date^3) ~1, data=umf))
summary(fm5 <- occu(~dur ~1, data=umf))
summary(fm6 <- occu(~date+dur ~1, data=umf))
summary(fm7 <- occu(~date+I(date^2)+dur ~1, data=umf))
summary(fm8 <- occu(~date+I(date^2)+I(date^3)+dur ~1, data=umf))
summary(fm9 <- occu(~dur+I(dur^2) ~1, data=umf))
summary(fm10 <- occu(~date+dur+I(dur^2) ~1, data=umf))
summary(fm11 <- occu(~date+I(date^2)+dur+I(dur^2) ~1, data=umf))
summary(fm12 <- occu(~date+I(date^2)+I(date^3)+dur+I(dur^2) ~1, data=umf))

Put the fitted models in a "fitList" and rank them by AIC
fms <- fitList("p(.)psi(.)" = fm1,
 "p(date)psi(.)" = fm2,
 "p(date+date2)psi(.)" = fm3,
 "p(date+date2+date3)psi(.)" = fm4,
 "p(dur)psi(.)" = fm5,
 "p(date+dur)psi(.)" = fm6,
 "p(date+date2+dur)psi(.)" = fm7,
 "p(date+date2+date3+dur)psi(.)" = fm8,
 "p(dur+dur2)psi(.)" = fm9,
 "p(date+dur+dur2)psi(.)" = fm10,
 "p(date+date2+dur+dur2)psi(.)" = fm11,
 "p(date+date2+date3+dur+dur2)psi(.)" = fm12)

(ms <- modSel(fms))
 nPars AIC delta AICwt cumltvWt
p(date+dur+dur2)psi(.) 5 789.09 0.00 0.4612 0.46
p(date+date2+dur+dur2)psi(.) 6 790.94 1.85 0.1825 0.64
p(date+date2+date3+dur+dur2)psi(.) 7 791.59 2.50 0.1321 0.78
p(date+dur)psi(.) 4 791.97 2.88 0.1091 0.88
p(date+date2+dur)psi(.) 5 793.74 4.65 0.0451 0.93
p(date+date2+date3+dur)psi(.) 6 794.11 5.03 0.0373 0.97
p(date)psi(.) 3 795.98 6.89 0.0147 0.98
p(date+date2+date3)psi(.) 5 797.62 8.54 0.0065 0.99
p(date+date2)psi(.) 4 797.67 8.58 0.0063 0.99
p(dur+dur2)psi(.) 4 798.52 9.43 0.0041 1.00
p(dur)psi(.) 3 801.29 12.20 0.0010 1.00
p(.)psi(.) 2 805.90 16.82 0.0001 1.00

Continue with model fitting for occupancy, guided by AIC as we go
Effects of elevation
summary(fm13 <- occu(~date+dur+I(dur^2) ~ele, data=umf))
summary(fm14 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2), data=umf))
summary(fm15 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2)+ I(ele^3), data=umf))
model 14 with ele2 best

Effects of forest and interactions
summary(fm16 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2)+forest, data=umf))
summary(fm17 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2)+forest+I(forest^2), data=umf))
summary(fm18 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2)+forest+I(forest^2)+ele:forest, data=umf))
summary(fm19 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2)+forest+I(forest^2)+ele:forest+ele:I(forest^2), data=umf))
summary(fm20 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2)+forest+I(forest^2)+ele:forest+ele:I(forest^2)+I(ele^2):forest, data=umf))
summary(fm21 <- occu(~date+dur+I(dur^2) ~ele+I(ele^2)+forest+I(forest^2)+ele:forest+ele:I(forest^2)+I(ele^2):forest+ I(ele^2):I(forest^2), data=umf))
fm20 best

Check for additional effects in detection
summary(fm22 <- occu(~date+dur+I(dur^2)+ele ~ele+I(ele^2)+forest+I(forest^2)+ele:forest+ele:I(forest^2)+I(ele^2):forest, data=umf))
summary(fm23 <- occu(~dur+I(dur^2)+date*(ele+I(ele^2)) ~ele+I(ele^2)+forest+I(forest^2)+ele:forest+ele:I(forest^2)+I(ele^2):forest, data=umf))
summary(fm23 <- occu(~dur+I(dur^2)+date*(ele+I(ele^2))+forest ~ele+I(ele^2)+forest+I(forest^2)+ele:forest+ele:I(forest^2)+I(ele^2):forest, data=umf))
none warranted by AIC, stay with model 20

Do the bootstrapped GOF test on detection history frequencies of MacKenzie & Bailey (2004).

library(AICcmodavg)
(obs <- mb.chisq(fm1))
MacKenzie and Bailey goodness-of-fit for single-season occupancy model

Pearson chi-square table:

 Cohort Observed Expected Chi-square
000 0 102 117.48 2.04
001 0 14 15.68 0.18
010 0 18 15.68 0.34
011 0 10 13.58 0.94
100 0 22 15.68 2.55
101 0 17 13.58 0.86
110 0 17 13.58 0.86
111 0 17 11.76 2.33
00NA 1 47 29.45 10.45
01NA 1 1 6.47 4.63

Chi-square statistic = 37.2711
Warnmeldungen:
1: 2 sites have been discarded because of missing data.
2: 2 sites have been discarded because of missing data.

system.time(obs.boot <- mb.gof.test(fm20, nsim = 1000)) ### 3000 secs
obs.boot

MacKenzie and Bailey goodness-of-fit for single-season occupancy model

Pearson chi-square table:

 Cohort Observed Expected Chi-square
000 0 102 103.26 0.02
001 0 14 13.66 0.01
010 0 18 16.55 0.13
011 0 10 12.85 0.63
100 0 22 20.30 0.14
101 0 17 15.65 0.12
110 0 17 19.07 0.22
111 0 17 15.66 0.11
00NA 1 47 46.57 0.00
01NA 1 1 0.43 0.74

Chi-square statistic = 3.1133
Number of bootstrap samples = 1000
P-value = 0.893

Quantiles of bootstrapped statistics:
 0% 25% 50% 75% 100%
 0.66 4.23 6.09 8.94 37.66

Estimate of c-hat = 0.45

Our stepwise model selection has identified model 20 as the best in terms of AIC. Moreover, the the model seems to fit the observed data adequately. Hence, we will use it for analysing the results (inspect covariate relationships and projecting the covariate relationships of occupancy onto Swiss space). First, we plot some one dimensional covariate relationships. We use the predict function for the unmarked occ object, which also uses the delta rule to compute SEs and 95% CIs; the latter we plot as well.

Create new covariates for prediction
orig.ele <- seq(200, 2500,,100) # New covs for prediction
orig.forest <- seq(0, 100,,100)
orig.date <- seq(15, 110,,100)
orig.duration <- seq(100, 550,,100)
ep <- (orig.ele - ele.mean) / ele.sd # Standardise them like real covs
fp <- (orig.forest - forest.mean) / forest.sd
dp <- (orig.date - date.mean) / date.sd
durp <- (orig.duration - dur.mean) / dur.sd

Do predictions
newData <- data.frame(ele=ep, forest=0)
pred.occ.ele <- predict(fm20, type="state", newdata=newData, appendData=TRUE)
newData <- data.frame(ele=0, forest=fp)
pred.occ.forest <- predict(fm20, type="state", newdata=newData, appendData=TRUE)
newData <- data.frame(date=dp, dur=0)
pred.det.date <- predict(fm20, type="det", newdata=newData, appendData=TRUE)
newData <- data.frame(date=0, dur=durp)
pred.det.dur <- predict(fm20, type="det", newdata=newData, appendData=TRUE)

Plot predictions against unstandardised covariates
par(mfrow = c(2,2), mar = c(5,5,2,3), cex.lab = 1.2)
plot(pred.occ.ele[[1]] ~ orig.ele, type = "l", lwd = 3, col = "blue", ylim = c(0,1), las = 1, ylab = "Pred. occupancy prob.", xlab = "Elevation (m)")
matlines(orig.ele, pred.occ.ele[,3:4], lty = 1, lwd = 1, col = "grey")
plot(pred.occ.forest[[1]] ~ orig.forest, type = "l", lwd = 3, col = "blue", ylim = c(0,1), las = 1, ylab = "Pred. occupancy prob.", xlab = "Forest cover (%)")
matlines(orig.forest, pred.occ.forest[,3:4], lty = 1, lwd = 1, col = "grey")
plot(pred.det.date[[1]] ~ orig.date, type = "l", lwd = 3, col = "blue", ylim = c(0,1), las = 1, ylab = "Pred. detection prob.", xlab = "Date (1 = 1 April)")
matlines(orig.date, pred.det.date[,3:4], lty = 1, lwd = 1, col = "grey")
plot(pred.det.dur[[1]] ~ orig.duration, type = "l", lwd = 3, col = "blue", ylim = c(0,1), las = 1, ylab = "Pred. detection prob.", xlab = "Survey duration (min)")
matlines(orig.duration, pred.det.dur[,3:4], lty = 1, lwd = 1, col = "grey")

[image:]
Fig. 8–3: Estimated covariate relationships in the site-occupancy model in Swiss red squirrels in 2007. The grey lines show the 95% CIs.

We can also produce predictions for two covariates that are varied simultaneously.

Predict abundance and detection along two separate covariate gradients
Expected abundance (lambda) for forest and elevation
Expected detection for survey duration and date
pred.matrix1 <- pred.matrix2 <- array(NA, dim = c(100, 100)) # Define arrays
for(i in 1:100){
 for(j in 1:100){
 newData1 <- data.frame(ele=ep[i], forest=fp[j]) # For abundance
 pred <- predict(fm20, type="state", newdata=newData1)
 pred.matrix1[i, j] <- pred$Predicted
 newData2 <- data.frame(dur=durp[i], date=dp[j]) # For detection
 pred <- predict(fm20, type="det", newdata=newData2)
 pred.matrix2[i, j] <- pred$Predicted
 }
}

par(mfrow = c(1,2), cex.lab = 1.2)
mapPalette <- colorRampPalette(c("grey", "yellow", "orange", "red"))
image(x=orig.ele, y=orig.forest, z=pred.matrix1, col = mapPalette(100), axes = FALSE, xlab = "Elevation [m]", ylab = "Forest cover [%]")
contour(x=orig.ele, y=orig.forest, z=pred.matrix1, add = TRUE, lwd = 1)
axis(1, at = seq(min(orig.ele), max(orig.ele), by = 250))
axis(2, at = seq(0, 100, by = 10))
box()
title(main = "Expected squirrel occurrence prob.", font.main = 1)
points(csele, csforest, pch="+", cex=0.8)

image(x=orig.duration, y=orig.date, z=pred.matrix2, col = mapPalette(100), axes = FALSE, xlab = "Survey duration [min]", ylab = "Date (1 = April 1)")
contour(x=orig.duration, y=orig.date, z=pred.matrix2, add = TRUE, lwd = 1)
axis(1, at = seq(min(orig.duration), max(orig.duration), by = 50))
axis(2, at = seq(0, 100, by = 10))
box()
title(main = "Expected squirrel detection prob.", font.main = 1)
matpoints(as.matrix(cs[cs$spec.name == "Squirrel", 22:24]), as.matrix(cs[cs$spec.name == "Squirrel", 16:18]), pch="+", cex=0.8)

[image:]

Next, we produce a Swiss distribution map for the red squirrel in 2007, along with a map of the uncertainty of these predictions at each km2 in Switzerland. This uncertainty map will illustrate the spatial pattern in the bias of occupancy estimates for species distribution modeling methods that ignore detection probability (see also Chen et al. 2012). As always, producing a map is simple if we have effects of spatially indexed covariates: we simply predict the response (occupancy or detection probability) for each quadrat in the area for which we want to produce the map and then we plot this. Note that we produce the predictions for the ~42,000 km pixels of Switzerland in 4 parts, because otherwise R stops working.
It is important to be able to gauge the uncertainty (SE, CI, etc.) in an estimate. For instance, we would never be able to publish the results of an analysis of variance (say, a histogram of group means) without indicating SEs. However, in the species distribution modeling world, presenting estimates without showing the associated uncertainty is the rule. Clearly, this is a state that can be improved. With a regression model as the site-occupancy model, it is easy to obtain uncertainty assessments for every estimate or, here, prediction. So here we produce map of the uncertainty in the preceding species distribution map, by plotting the SEs of these predictions.

Get the Swiss landscape data again
CH <- read.table("CH.txt", header = TRUE) # Elevation and forest cover for Switzerland

Get predictions of occupancy prob for each 1km2 quadrat of Switzerland
newData <- data.frame(ele = (CH$elev - ele.mean)/ele.sd, forest = (CH$forest - forest.mean)/forest.sd)
system.time(predCH1 <- predict(fm20, type="state", newdata=newData[1:10000,]))
system.time(predCH2 <- predict(fm20, type="state", newdata=newData[10001:20000,]))
system.time(predCH3 <- predict(fm20, type="state", newdata=newData[20001:30000,]))
system.time(predCH4 <- predict(fm20, type="state", newdata=newData[30001: length(newData[[1]]),]))
predCH <- rbind(predCH1, predCH2, predCH3, predCH4) # Stack all four

Prepare Swiss coordinates and produce map
library(raster)
library(rgdal)

Without elevation MASK -----
Define new data frame with coordinates and outcome to be plotted
PARAM <- data.frame(x = CH$x, y = CH$y, z = predCH$Predicted)
r <- rasterFromXYZ(PARAM) # convert data frame into a raster object

With elevation MASK --------
Create mask for elevation
elev <- rasterFromXYZ(cbind(CHx, CHy,CH$elevation))
elev[elev > 2250]<-NA
r <- mask(r, elev)
----- end with mask --------

Plot species distrbution map using custom color palette
par(mfrow = c(1,2), mar = c(2,2,2,5))
mapPalette <- colorRampPalette(c("grey", "yellow", "orange", "red"))
plot(r, col = mapPalette(100), axes = FALSE, box = FALSE, main = "Red squirrel distribution in 2007")
lakes <- readOGR(".", "seen")
rivers <- readOGR(".", "rivers")
border <- readOGR(".", "switzerland")
plot(rivers, col = "dodgerblue", add = TRUE)
plot(border, col = "transparent", lwd = 1.5, add = TRUE)
plot(lakes, col = "skyblue", border = "royalblue", add = TRUE)

Define new data frame with coordinates and outcome to be plotted
PARAM <- data.frame(x = CH$x, y = CH$y, z = predCH$SE)
r <- rasterFromXYZ(PARAM) # convert data frame into a raster object
elev <- rasterFromXYZ(cbind(CHx, CHy,CH$elevation))
elev[elev > 2250]<-NA
r <- mask(r, elev)

Plot uncertainty map using previous color palette
plot(r, col = mapPalette(100), axes = FALSE, box = FALSE, main = "Uncertainty map 2007")
lakes <- readOGR(".", "seen")
rivers <- readOGR(".", "rivers")
border <- readOGR(".", "switzerland")
plot(rivers, col = "dodgerblue", add = TRUE)
plot(border, col = "transparent", lwd = 1.5, add = TRUE)
plot(lakes, col = "skyblue", border = "royalblue", add = TRUE)
points((1000*cs$coordx)+500, (1000*cs$coordy)+500, pch = "+", cex = 0.6)
[image:]
Fig. 8–4: Species distribution map for red squirrels in Switzerland in 2007 under the best-fitting site-occupancy model (model 20). The map on the left shows the expected probability of occupancy and that on the right the standard errors of those predictions, along with the locations of the sample locations (crosses).

Next, let us compute the area of occurrence of red squirrels in Switzerland in 2007. For this, we simply add up the occupancy probability for each pixel of Switzerland. We do this with and without the mask.

Get extent of squirrel occurrence in 2007
pred.tmp <- predCH$Predicted
pred.tmp[CH$elevation > 2250] <- NA # Delete any predictions above 2250

sum(pred.tmp, na.rm = TRUE)
[1] 17354.52 # Without mask
[1] 17350.4 # With mask

Hence, if our species distribution model is to be believed, red squirrels occupied about 40% of the area of Switzerland in 2007.

We can get a bootstrapped CI around this estimate. This time, we do the prediction "by hand" rather than using the predict function, because the latter would take way too much time, plus we don't need the SEs.

Bootstrap the SE
note: not using predict() here but doing calculation by hand

pelev = (CH$elev - ele.mean)/ele.sd
pforest = (CH$forest - forest.mean)/forest.sd

Eocc <- function(fm) {
 betavec <- coef(fm)[1:8]
 DM <- cbind(rep(1,length(pelev)), pelev, pelev^2, pforest, pforest^2, pelev*pforest, pelev*pforest^2, pelev^2*pforest)
 pred <- plogis(DM%*%(betavec))
 Eocc<-sum(pred)
 Eocc
}

estimate.of.occurrence <- Eocc(fm20)
(pb.Eocc <- parboot(fm20, Eocc, nsim=1000, report=2))
plot(pb.Eocc)
bs.sample <- pb.Eocc@t.star
summary(bs.sample)
quantile(bs.sample, prob = c(0.025, 0.975))
> summary(bs.sample)
 t*1
 Min. :13199
 1st Qu.:16615
 Median :17568
 Mean :17568
 3rd Qu.:18437
 Max. :21621

> quantile(bs.sample, prob = c(0.025, 0.975))
 2.5% 97.5%
15140.57 20285.98

Why are we not not going to produce a map of the detection probability of Swiss red squirrels ?

8.7. Two-species occupancy models with asymmetric interaction in BUGS/JAGS
So what can you do with WinBUGS or JAGS that you can't with unmarked ? A recurrent theme in this book is the ease with which we can do computations on latent variables, such as the estimated occurrence state of ech site. We can even use them for modeling, as we will see next, where we give an illustration of an interesting model developed by Waddle et al. (2010) for the interactions between two species. In this model, we assume that the interactions between two species are entirely asymmetric, in the sense that the occurrence of one species affects the occurrence (and possibly also the detection probability) of the other species, but not vice versa. We illustrate this model with the red squirrels and European crossbills. The crossbill (Fig. 8–6) is a pine-seed eating finch, which is most widespread in coniferous forests, as is the red squirrel. Since the red squirrel is an egg predator of many song birds, it appears possible that crossbills avoid sites occupied by squirrels or that perhaps they behave less conspicuously when squirrels are present. We test these notions by a fitting Waddle et al.’s two-species occupancy model with interaction to the 2006 MHB data for the two species.

[image: Common-Crossbill]
Fig. 8–6: The European crossbill (Loxia curvirostra; photo borrowed from the web)
When writing the model note that we simply stack two single-species occupancy models and then use the latent variables for one species, the squirrel, as a covariate in the model for the other species, the crossbill. We could also add covariates, but we omit this here.

Grab and bundle data
sq <- as.matrix(cs[cs$spec.name == "Squirrel", 7:9])
cb <- as.matrix(cs[cs$spec.name == "Crossbill", 7:9])
win.data <- list(sq = sq, cb = cb, R = nrow(sq), T = ncol(sq))

Specify model in BUGS language
sink("model.txt")
cat("
model {

----------------- Model for squirrels ------------------
Priors
psi.sq ~ dunif(0,1)
p.sq ~ dunif(0,1)

Likelihood
for (i in 1:R) {
 z.sq[i] ~ dbern(psi.sq)
 for (j in 1:T) {
 sq[i,j] ~ dbern(p.eff.sq[i,j])
 p.eff.sq[i,j] <- z.sq[i] * p.sq
 }
}
occ.fs.sq <- sum(z.sq[])

----------------- Model for crossbills ------------------
Priors
psi.cb.with ~ dunif(0,1)
psi.cb.without ~ dunif(0,1)
p.cb.with ~ dunif(0,1)
p.cb.without ~ dunif(0,1)

Likelihood
for (i in 1:R) {
 z.cb[i] ~ dbern(psi.cb[i])
 psi.cb[i] <- z.sq[i] * psi.cb.with + (1 - z.sq[i]) * psi.cb.without
 p.cb[i] <- z.sq[i] * p.cb.with + (1 - z.sq[i]) * p.cb.without
 for (j in 1:T) {
 cb[i,j] ~ dbern(p.eff.cb[i,j])
 p.eff.cb[i,j] <- z.cb[i] * p.cb[i]
 }
}
occ.fs.cb <- sum(z.cb[])
}
",fill = TRUE)
sink()

Initial values
zst.sq <- apply(sq, 1, max, na.rm = TRUE)
zst.cb <- apply(cb, 1, max, na.rm = TRUE)
zst.sq[zst.sq == -Inf] <- 0
zst.cb[zst.cb == -Inf] <- 0
inits <- function(){list(z.sq = zst.sq, z.cb = zst.cb)}

Parameters monitored
params <- c("psi.sq", "p.sq", "psi.cb.with", "psi.cb.without", "p.cb.with", "p.cb.without", "occ.fs.sq", "occ.fs.cb")
add "z.sq" and "z.cb" for random effects estimates

MCMC settings
ni <- 3000 ; nt <- 2 ; nb <- 1000 ; nc <- 3

Call WinBUGS from R (ART 0.7 min)
out1 <- bugs(win.data, inits, params, "model.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out1, dig = 2)
Inference for Bugs model at "model.txt", fit using WinBUGS,
 3 chains, each with 3000 iterations (first 1000 discarded), n.thin = 2
 n.sims = 3000 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
psi.sq 0.53 0.06 0.42 0.49 0.53 0.57 0.66 1.01 470
p.sq 0.32 0.04 0.25 0.29 0.32 0.34 0.39 1.00 1300
psi.cb.with 0.52 0.07 0.40 0.47 0.52 0.57 0.67 1.00 700
psi.cb.without 0.31 0.23 0.03 0.15 0.24 0.42 0.90 1.04 58
p.cb.with 0.46 0.05 0.36 0.42 0.46 0.50 0.56 1.00 810
p.cb.without 0.19 0.15 0.02 0.07 0.16 0.29 0.56 1.06 47
occ.fs.sq 142.40 13.32 118.00 133.00 142.00 151.00 171.00 1.00 720
occ.fs.cb 112.52 27.42 81.00 93.00 103.00 126.00 184.02 1.07 42
deviance 870.45 34.34 804.49 846.90 870.85 892.72 940.21 1.01 150

Call JAGS from R (ART 0.3 min)
library("R2jags")
system.time(out2 <- jags(win.data, inits, params, "model.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(out2)

Summarize posteriors
print(out2, dig = 2)
 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
occ.fs.cb 108.51 26.59 80.98 90.00 99.00 120.00 180.00 1.05 58
occ.fs.sq 141.68 13.57 119.00 132.00 141.00 149.00 172.00 1.00 970
p.cb.with 0.46 0.05 0.36 0.43 0.46 0.50 0.56 1.01 220
p.cb.without 0.23 0.17 0.01 0.09 0.20 0.33 0.63 1.03 110
p.sq 0.32 0.04 0.25 0.29 0.32 0.34 0.39 1.00 1300
psi.cb.with 0.52 0.07 0.39 0.47 0.52 0.56 0.67 1.01 310
psi.cb.without 0.28 0.22 0.03 0.13 0.21 0.37 0.87 1.04 57
psi.sq 0.53 0.06 0.42 0.49 0.53 0.57 0.66 1.00 640
deviance 865.43 35.70 797.19 841.77 864.89 888.48 941.08 1.00 1000

So we clearly see evidence for a *statistical* interaction between the occurrence of the red squirrel and both the occurrence and detection probability of the crossbill. Is this strong evidence for an actual, direct biotic interaction between the two species ? Why ? Why not ?

8.8. Multilevel occupancy models in BUGS/JAGS
The classical occupancy model has two levels: one for the latent occurrence state and the other for the observations. This two-level hierarchy can be extended to more than two levels in a straightforward fashion. For instance, we may survey repeatedly multiple spatial subunits that are nested in larger units. Or, we may survey a spatial unit using multiple detection methods for multiple occasions each. In disease surveillance, there may be a multi-layered, nested sampling process, such as replicate PCRs within duck within pond within refuge, and this can be easily handled in a Bayesian hierarchical framework (MacClintock et al. 2012). And there are many other such situations. Actually, occupancy designs with more than 2 levels are surprisingly common, but this has not been recognized for a long time.
We illustrate such "multilevel occupancy designs" with a three-level occupancy model, which is essentially the model first developed by Nichols et al. (JAPPL, 2008) and then again in a Bayesian inference mode by Mordecai et al. (2011). We will illustrate with simulated data but give the quantities names that are inspired by the disease surveillance study of Schmidt et al. (2013); see below.
	The general form of a three-level hierarchical occupancy model for replicated surveys in subquadrats that are spatially nested in larger quadrats (without covariate effects or any other structure on the parameters) is this:

Large-scale occupancy at quadrat (unit) level (i):			

Small-scale occupancy at subquadrat (subunit) level (j):		

Detection model for replicated surveys (k):				

Thus, the hierarchical model consists of three nested Bernoulli random variables, of which two (z and x) are partly latent (owing to spatial sampling and detection failure). There are three parameters, which we denote by large-scale occupancy probability , small-scale occupancy probability and detection probability p.
Some more comments on basic model structure and on the fact that there are three random variables.
Actually, MANY more comments, since the cases falling under this kind of design are vast
Mention special case were a quadrat is exhaustively sampled with "no place to go". Also mention scaling-down endeavors, e.g., Keil et al.
Can model structure in parameters in the usual way and explain heterogeneity among quadrats in psi, among quadrats and/or subquadrats in theta and among quadrats, subquadrats and/or replicates in p. Below, we show two examples, where there will be a "time effect" in theta and p each.

	First, we introduce a general data simulation function, that allows you to simulate three-level occupancy data sets with covariates, time effects and unstructured random variability at almost every level.

------------- Start definition data simulation function ------------
data.fn <- function(nquad = 100, nsubquad = 5, nrep = 3, mean.psi = 0.8, beta.Xpsi = 1, sd.logit.psi = 1, mean.theta = 0.6, theta.time.range = c(-1, 1), beta.Xtheta = 1, sd.logit.theta = 1, mean.p = 0.4, p.time.range = c(-2,2), beta.Xp = -1, sd.logit.p = 1){
#
Function generates 3-level occupancy data
with "time effects" at the middle and the lower levels and
with effects of one separate covariate at every level
#
Function arguments:
nquad: Number of large quadrats (quads)
nsubquad: Number of subsamples (subquads) within
each large quad
nrep: Number of rep surveys in every subquad
mean.psi: Mean large-scale (quad) occupancy (psi)
beta.Xpsi: effect on psi of covariate A (at quadrat level)
sd.logit.psi: SD of logit(psi), unstructured site variation
mean.theta: Mean small-scale (sub-quad) occupancy (theta)
theta.time.range: range of theta 'intercepts' for subquad.
beta.Xtheta: effect on theta of covariate B (at subquad. level)
sd.logit.theta: SD of logit(theta)
mean.p: Mean per-survey detection probability
p.time.range: range of p 'intercepts' for reps
beta.Xp: effect on p of covariate C (quad by subquad by rep)
sd.logit.p: SD of logit(p) # This is perhaps superfluous ?

Create data structures
z <- psi <- array(NA, dim = nquad) # Quad occurrence
x <- theta <- array(NA, dim = c(nquad, nsubquad)) # Subquad
y <- p <- array(NA, dim=c(nquad, nsubquad, nrep)) # Rep

Create standardised covariate values
A <- array(runif(nquad, -2, 2), dim = nquad)
B <- array(runif(nquad*nsubquad, -2, 2),
 dim = c(nquad, nsubquad))
C <- array(runif(nquad*nsubquad*nrep, -2, 2),
 dim=c(nquad, nsubquad, nrep))

Simulate psi, theta and p and plot all
psi <- plogis(logit(mean.psi) + beta.Xpsi * A + rnorm(nquad, 0, sd.logit.psi))
theta.time.effect <- runif(nsubquad, theta.time.range[1], theta.time.range[2])
p.time.effect <- runif(nrep, p.time.range[1], p.time.range[2])

for(j in 1:nsubquad){
 theta[,j] <- plogis(logit(mean.theta) + theta.time.effect[j]+ (beta.Xtheta*B)[,j] + array(rnorm(nquad*nsubquad, 0, sd.logit.theta), dim = c(nquad, nsubquad))[,j])
 for(k in 1:nrep){
 p[,j,k] <- plogis(logit(mean.p) + p.time.effect[k] + (beta.Xp*C)[,j,k]+ array(rnorm(nquad*nsubquad*nrep, 0,sd.logit.p),dim =c(nquad, nsubquad, nrep))[,j,k])
 }
}

Visualisation
par(mfrow = c(1,3), cex.lab = 1.2)
plot(A, psi, xlab = "Quad covariate A", ylab = "psi", ylim = c(0,1), main = "Large-scale occupancy (psi)")
curve(plogis(logit(mean.psi) + beta.Xpsi * x), -2, 2, col = "darkgrey", lwd = 3, add = TRUE)
plot(B, theta, xlab = "Quad-subquad covariate B", ylab = "theta", ylim = c(0,1), main = "Small-scale occupancy (theta)")
curve(plogis(logit(mean.theta) + beta.Xtheta * x), -2, 2, col = "darkgrey", lwd = 3, add = TRUE)
for(j in 1:nsubquad){
 curve(plogis(logit(mean.theta) + theta.time.effect[j] +
 beta.Xtheta * x), -2, 2, lwd = 2, col = "red", add = T)
}
plot(C, p, xlab = "Quad-subquad-rep covariate C", ylab = "p", ylim = c(0,1), main = "Detection (p)")
curve(plogis(logit(mean.p) + beta.Xp * x), -2, 2, col = "darkgrey", lwd = 3, add = TRUE)
for(k in 1:nrep){
 curve(plogis(logit(mean.p) + p.time.effect[k] +
 beta.Xp * x), -2, 2, lwd = 2, col = "red", add = T)
}

Sample three nested Bernoulli distributions
with probabilities psi, z*theta and x * p
for (i in 1:nquad) {
 z[i] <- rbinom(n = 1, size = 1, prob = psi[i])
 for (j in 1:nsubquad) {
 x[i, j] <- rbinom(n = 1, size = 1, prob = z[i] * theta[i,j])
 for (k in 1:nrep) {
 y[i,j,k] <- rbinom(n=1, size = 1, prob = x[i,j]*p[i,j,k])
 } # survey
 } # subquad
} # quad

sum.z <- sum(z)
obs.sum.z <- sum(apply(apply(y, c(1,2), max), 1, max))
sum.z.x <- sum(apply(x, 1, sum)>0)
cat(" Number of occupied quadrats: ", sum.z, "\n",
 "Number of quadrats with sum(x)>0: ", sum.z.x, "\n",
 "Obs. Number of occu. quads: ", obs.sum.z, "\n",
 "\n")

Output
return(list(nquad = nquad, nsubquad = nsubquad, nrep = nrep, mean.psi = mean.psi, beta.Xpsi = beta.Xpsi, sd.logit.psi = sd.logit.psi, psi = psi, mean.theta = mean.theta, theta.time.range = theta.time.range, theta.time.effect = theta.time.effect, beta.Xtheta = beta.Xtheta, sd.logit.theta = sd.logit.theta, theta = theta, mean.p = mean.p, p.time.range = p.time.range, p.time.effect = p.time.effect, beta.Xp = beta.Xp, sd.logit.p = sd.logit.p, p = p, z = z, x = x, y = y, sum.z = sum.z, obs.sum.z = obs.sum.z, sum.z.x = sum.z.x, A = A, B = B, C = C))
} # ------------- End definition data simulation function ------------

str(data)
List of 28
 $ nquad : num 100
 $ nsubquad : num 5
 $ nrep : num 3
 $ mean.psi : num 0.8
 $ beta.Xpsi : num 1
 $ sd.logit.psi : num 1
 $ psi : num [1:100(1d)] 0.881 0.857 0.375 0.484 0.908 ...
 $ mean.theta : num 0.6
 $ theta.time.range : num [1:2] -1 1
 $ theta.time.effect: num [1:5] 0.874 0.182 -0.537 0.318 0.28
 $ beta.Xtheta : num 1
 $ sd.logit.theta : num 1
 $ theta : num [1:100, 1:5] 0.308 0.851 0.557 0.256 0.726 ...
 $ mean.p : num 0.4
 $ p.time.range : num [1:2] -2 2
 $ p.time.effect : num [1:3] -1.894 -0.439 -0.144
 $ beta.Xp : num -1
 $ sd.logit.p : num 1
 $ p : num [1:100, 1:5, 1:3] 0.4969 0.1933 0.0238 0.1985 ...
 $ z : int [1:100(1d)] 1 1 0 1 1 1 1 1 1 0 ...
 $ x : int [1:100, 1:5] 1 1 0 1 1 0 1 1 0 0 ...
 $ y : int [1:100, 1:5, 1:3] 1 0 0 1 0 0 0 0 0 0 ...
 $ sum.z : int 74
 $ obs.sum.z : int 68
 $ sum.z.x : int 74
 $ A : num [1:100(1d)] -0.87 -0.559 -1.478 -0.544 -1.261 ...
 $ B : num [1:100, 1:5] -0.49 -0.574 -1.555 0.278 -0.803 ...
 $ C : num [1:100, 1:5, 1:3] -1.837 -0.699 0.502 -0.711 -0.565

To explain this monster function, it may be easiest to show some of the data sets that can be generated. We start with the simplest and then increase the complexity (as so often). So at the very simplest, we can simulate data from a three-level occupancy process with constant parameters of large-scale occupancy (psi), small-scale occupancy (theta) and detection probability (p).
	The following settings generate a data set with constant psi, theta and p. We will below fit a model to this kind of data.

psi, theta and p constant (no variation and no covariate effects)
data <- data.fn(nquad = 100, nsubquad = 5, nrep = 3, mean.psi = 0.8, beta.Xpsi = 0, sd.logit.psi = 0, mean.theta = 0.6, theta.time.range = c(0, 0), beta.Xtheta = 0, sd.logit.theta = 0, mean.p = 0.4, p.time.range = c(0,0), beta.Xp = 0, sd.logit.p = 0)
[image:]

We can let theta and p vary by "time", to make theta different for the first, second, etc. subquadrat and to make p different for each replicate. Such a design might be sensible if "subquadrats" denote different samples that are taken in time, as in the example described below (and taken from Schmidt et al. 2013).
No covariate effects, no random variability
data <- data.fn(nquad = 100, nsubquad = 5, nrep = 3, mean.psi = 0.8, beta.Xpsi = 0, sd.logit.psi = 0, mean.theta = 0.6, theta.time.range = c(-1, 1), beta.Xtheta = 0, sd.logit.theta = 0, mean.p = 0.4, p.time.range = c(-2,2), beta.Xp = 0, sd.logit.p = 0)
[image:]
We can let psi, theta and p be affected by a linear-logistic covariate.
All covariate effects, but no random variability
data <- data.fn(nquad = 100, nsubquad = 5, nrep = 3, mean.psi = 0.8, beta.Xpsi = 1, sd.logit.psi = 0, mean.theta = 0.6, theta.time.range = c(-1, 1), beta.Xtheta = 1, sd.logit.theta = 0, mean.p = 0.4, p.time.range = c(-2,2), beta.Xp = -1, sd.logit.p = 0)
[image:]

We can have "time" effects in theta and p plus random unstructured noise at every level.
No covariate effects, but random variability
data <- data.fn(nquad = 100, nsubquad = 5, nrep = 3, mean.psi = 0.8, beta.Xpsi = 0, sd.logit.psi = 1, mean.theta = 0.6, theta.time.range = c(-1, 1), beta.Xtheta = 0, sd.logit.theta = 1, mean.p = 0.4, p.time.range = c(-2,2), beta.Xp = 0, sd.logit.p = 1)

[image:]

And we can combine all of that to have structure in psi due to a covariate plus noise, structure in theta due to "time", one covariate plus noise and structure in p due to time, a covariate and noise. This is the default setting of the data generation function.

data <- data.fn(nquad = 100, nsubquad = 5, nrep = 3, mean.psi = 0.8, beta.Xpsi = 1, sd.logit.psi = 1, mean.theta = 0.6, theta.time.range = c(-1, 1), beta.Xtheta = 1, sd.logit.theta = 1, mean.p = 0.4, p.time.range = c(-2,2), beta.Xp = -1, sd.logit.p = 1)
[image:]

Next, we fit models to data sets generated under the first two scenarios. First the model with three intercepts only. We generate one data set. We will tell the story using the scenario of disease sampling in Schmidt et al. (2013), where several water samples were taken in each of a number of ponds and then analysed with PCR for the presence of the fungus that kills amphibians (Batrachochytridium). Thus, we have PCR samples nested within water samples nested within ponds.

data <- data.fn(nquad = 100, nsubquad = 5, nrep = 3, mean.psi = 0.8, beta.Xpsi = 0, sd.logit.psi = 0, mean.theta = 0.6, theta.time.range = c(0, 0), beta.Xtheta = 0, sd.logit.theta = 0, mean.p = 0.4, p.time.range = c(0,0), beta.Xp = 0, sd.logit.p = 0)

 Number of occupied quadrats: 86
 Number of quadrats with sum(x)>0: 84
 Obs. Number of occu. quads: 80

In the data set, among 100 ponds, 86 turned out to be occupied, but the fungus actually occurred in only 84 of them within the 5 water samples. That is, it must have occurred elsewhere in two of the ponds. Due to imperfect detection, the fungus was only detected in 80 ponds.

Look at data
str(data$z) # True quadrat (pond) occurrence state
str(data$x) # True subquadrat (water sample) occurrence state
str(data$y) # Observed data
cbind("pond"=data$z, "sample 1"= data$x[,1], "sample 2"= data$x[,2], "sample 3"= data$x[,3], "sample 4"= data$x[,4], "sample 5"= data$x[,5])

Fungus present in pond, but not in examined samples
which(data$z - apply(data$x, 1, max)==1)

We fit the model in WinBUGS and JAGS.

Bundle data
y <- data$y
win.data <- list(y = y, n.pond = dim(y)[1], n.samples = dim(y)[2], n.pcr = dim(y)[3])

Define model in BUGS language
sink("model1.txt")
cat("
model {

Priors
psi ~ dunif(0,1) # Occupancy probability
theta ~ dunif(0,1) # Availability probability at occupied site
p ~ dunif(0,1) # Detection probability (1-PCR error)

Likelihood
for (i in 1:n.pond){
 # Occurrence in pond i
 z[i] ~ dbern(psi)
 for (j in 1:n.samples){
 # Occurrence in sample j
 p.eff.1[i,j] <- z[i] * theta
 x[i,j] ~ dbern(p.eff.1[i,j])
 for (k in 1:n.pcr){
 # PCR detection error process in sample k
 p.eff.2[i,j,k] <- x[i,j] * p
 y[i,j,k] ~ dbern(p.eff.2[i,j,k])
 } # n.pcr
 } # n.samples
 tmp1[i] <- step(sum(x[i,])-0.1)
} # n.pond

Derived quantities
sum.z <- sum(z[]) # Total # of occupied ponds in sample
sum.x <- sum(tmp1[]) # Total # of ponds with presence in 5 samples
} # end model
",fill=TRUE)
sink()

Initial values
zst = apply(y, 1, max)
inits <- function() list(z=zst)

Parameters monitored
params <- c("psi", "theta", "p", "sum.z", "sum.x")

MCMC setting
ni <- 1200 ; nt <- 2 ; nb <- 200 ; nc <- 3

Call WinBUGS (takes 0.9 min) and summarize posterior
out <- bugs(win.data, inits, params, "model1.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())
print(out, 3)
Inference for Bugs model at "model1.txt", fit using WinBUGS,
 3 chains, each with 1200 iterations (first 200 discarded), n.thin = 2
 n.sims = 1500 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
psi 0.838 0.044 0.747 0.811 0.840 0.867 0.920 1.009 300
theta 0.589 0.044 0.503 0.559 0.588 0.617 0.682 1.007 400
p 0.385 0.028 0.329 0.366 0.384 0.404 0.441 1.006 340
sum.z 84.419 2.446 81.000 83.000 84.000 86.000 90.000 1.004 770
sum.x 83.305 1.928 80.000 82.000 83.000 84.000 88.000 1.005 1500
deviance 990.948 39.832 919.547 963.700 988.150 1017.000 1073.525 1.007 290

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 788.9 and DIC = 1779.8
DIC is an estimate of expected predictive error (lower deviance is better).

Call JAGS, needs extra inits for x
inits <- function() list(z=rep(1, data$nquad), x = array(1, dim =c(nquad, nsubquad))) # Extra JAGS initial values

library(R2jags)
system.time(
 outJ <- jags(win.data, inits, params, "model1.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb)
)
print(outJ, 3)

We can compare the truth with our estimates.

tmp <- cbind(rbind("psi" = data$mean.psi, "theta" = data$mean.theta, "p" = data$mean.p, "sum.z" = data$sum.z, "sum.x" = data$sum.z.x), out$summary[1:5, c(1:3, 7)])
colnames(tmp) <- c("Truth", "Post.mean", "Post.sd", "LCRL", "UCRL")
print(tmp, 3)
 Truth Post.mean Post.sd LCRL UCRL
psi 0.8 0.838 0.0439 0.747 0.920
theta 0.6 0.589 0.0444 0.503 0.682
p 0.4 0.385 0.0277 0.329 0.441
sum.z 86.0 84.419 2.4464 81.000 90.000
sum.x 84.0 83.305 1.9276 80.000 88.000

In our second example, we assume we have sampled 500 ponds with 2 water samples, each of which was PCR analysed twice. We assume that theta varies by sample and p by PCR. Otherwise, the data generation function arguments are the same as before.

data <- data.fn(nquad = 500, nsubquad = 2, nrep = 2, mean.psi = 0.8, beta.Xpsi = 0, sd.logit.psi = 0, mean.theta = 0.6, theta.time.range = c(-2, 2), beta.Xtheta = 0, sd.logit.theta = 0, mean.p = 0.4, p.time.range = c(-1,1), beta.Xp = 0, sd.logit.p = 0)
[image:]

 Number of occupied quadrats: 396
 Number of quadrats with sum(x)>0: 198
 Obs. Number of occu. quads: 142

This time, 396 ponds contain the disease, but in only 198 of them do the samples take actually contain spores of the fungus. Using PCR analysis, the disease was detected in 142 ponds.

Look at data
str(data$z) # True quadrat (pond) occurrence state
str(data$x) # True subquadrat (water sample) occurrence state
str(data$y) # Observed data
cbind("pond"=data$z, "sample 1"= data$x[,1], "sample 2"= data$x[,2])

Fungus present in pond, but not in examined samples
which(data$z - apply(data$x, 1, max)==1) # Lots of them

We fit the model in WinBUGS and JAGS.

Bundle data
y <- data$y
win.data <- list(y = y, n.pond = dim(y)[1], n.samples = dim(y)[2], n.pcr = dim(y)[3])

Define model in BUGS language
sink("model2.txt")
cat("
model {

Priors
psi ~ dunif(0,1) # Occupancy probability
for(i in 1:2){
 theta[i] ~ dunif(0,1) # Availability probability at occupied site
 p[i] ~ dunif(0,1) # Detection probability (1-PCR error)
}

Likelihood
for (i in 1:n.pond){
 # Occurrence in pond i
 z[i] ~ dbern(psi)
 for (j in 1:n.samples){
 # Occurrence in sample j
 p.eff.1[i,j] <- z[i] * theta[j]
 x[i,j] ~ dbern(p.eff.1[i,j])
 for (k in 1:n.pcr){
 # PCR detection error process in sample k
 p.eff.2[i,j,k] <- x[i,j] * p[k]
 y[i,j,k] ~ dbern(p.eff.2[i,j,k])
 } # n.pcr
 } # n.samples
 tmp1[i] <- step(sum(x[i,])-0.1)
} # n.pond

Derived quantities
sum.z <- sum(z[]) # Total # of occupied ponds in sample
sum.x <- sum(tmp1[]) # Total # of ponds with presence in 5 samples
} # end model
",fill=TRUE)
sink()

Initial values
zst = apply(y, 1, max)
inits <- function() list(z=zst)

Parameters monitored
params <- c("psi", "theta", "p", "sum.z", "sum.x")

MCMC setting
ni <- 12000 ; nt <- 10 ; nb <- 2000 ; nc <- 3

Call WinBUGS (takes 0.9 min) and summarize posterior
out <- bugs(win.data, inits, params, "model2.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())
print(out, 3)
Inference for Bugs model at "model2.txt", fit using WinBUGS,
 3 chains, each with 12000 iterations (first 2000 discarded), n.thin = 10
 n.sims = 3000 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
psi 0.704 0.114 0.509 0.620 0.694 0.778 0.946 1.004 630
theta[1] 0.316 0.065 0.209 0.268 0.311 0.355 0.458 1.005 520
theta[2] 0.366 0.072 0.242 0.316 0.359 0.411 0.521 1.004 640
p[1] 0.512 0.052 0.411 0.476 0.513 0.547 0.615 1.001 2500
p[2] 0.367 0.043 0.286 0.338 0.367 0.396 0.456 1.001 3000
sum.z 352.651 56.315 259.000 310.000 347.000 390.000 474.025 1.004 530
sum.x 194.337 14.180 171.000 184.000 193.000 203.000 226.000 1.001 3000
deviance 629.889 45.350 548.077 598.400 626.400 660.400 723.605 1.001 3000

As usual, these estimates compares decently with the truth.
print(rbind("psi" = data$mean.psi, "theta1" = data$theta[1,1], "theta2" = data$theta[1,2], "p1" = data$p[1,1,1], "p2" = data$p[1,1,2], "sum.z" = data$sum.z, "sum.x" = data$sum.z.x), 3)
 [,1]
psi 0.800
theta1 0.293
theta2 0.328
p1 0.511
p2 0.340
sum.z 396.000
sum.x 198.000

Multilevel occupancy models are very powerful and occur surprisingly often. In BUGS, it is straightforward to extend the basic 2-level model to more levels.

8.9. Space-for-time occupancy models
Most of the times, the information to estimate the detection parameters separately from the parameters in the occupancy submodel comes from temporal replicates, or else, from simultaneous deployment of several observers or detection devices (e.g. camera traps plus hair snares). However, we can use spatial replicates as a surrogate, when a (larger) unit such as 40 km route in the North Ameran Breeding bird survey is divided up into (smaller) nested subunits, say, 5 8 km segments. Space-for-time was used in some of the earlier literature on the estimation of species richness (Nichols, Hines, Boulinier, Cam, Doherty) and is regularly also used in occupancy modeling (e.g., Royle and Kéry, 2007; Guillera-Arroita 2011; Sadoti et al. 2013).

One way of looking at this design in the context of a traditional occupancy model is that it's a restricted 3-level occupancy model, where the restriction means that there is no replication at the bottom level. Therefore, in the traditional 2-level occupancy model, two parameters are lumped and only their product can be estimated. Hence, our earlier 3-level model collapses to two levels:

Large-scale occupancy at quadrat (unit) level (i):		

Detection model for unreplicated subquadrat surveys (k):	
As before, psi is the proportion of occupied units among an often only vaguely defined larger "population" of such units; we could call it unit occupancy or large-scale occupancy probability. What we estimate as "detection probability" (p) in a traditional two-level model is then the product of small-scale occupancy (theta) and detection proper. (In structurally related contexts, the parameter theta would be called "availability", e.g., when estimating population size, see for instance, the paper by Chandler et al. (Ecology, 2011)). Finally, p in the above equation is the probability to detect a species in a subunit that is occupied.

As we have seen in the last section, with sufficient replication (i.e., at least some units have more than one subunit sampled and at least some subunits have more than a single survey), we can estimate all three parameters (psi, theta and p), or functions thereof, for instance, regression coefficients when we add covariates. However, when we only have a single observation per subunit (that is, no replication at the lowest level of the hierarchical design), what we estimate when we feed these data into a traditional 2-level occupancy model is psi as "occupancy" and theta*p as "detection". An exception is the unlikelely case in which we have measured covariates that exactly explain variability in theta and p. In this case, we can estimate all parameters also in a restricted 3-level design, i.e., without replication at the lowest level. This is shown below.

One important assumption of space for time is that the subunits must not exhaustively sample the area represented by the unit, because otherwise unit occupancy (psi) is no longer a random variable, but simply a deterministic function of the occurrence states x of the subunits in a unit. In strictly exhaustive sampling, z = max(x) and psi is for the subunits in a unit. Thus, in the case of the North American BBS (e.g., Royle and Kery, 2007, and many earlier species richness applications, e.g., Boulinier, Nichols, Cam, Doherty, ...), we can assume that a route samples the species occurrences in some larger area, while the point counts are very localised local probes into the occurrence of a species. A species can occur in the larger area without having to occur at the actual sample points (but it cannot occur at the sample points without also occurring in the larger area). So in this case, space for time seems OK.

We illustrate using data sets generated using our power function from the previous section. We first illustrate the unlikely case that we have no replication at the bottom level, but have measured covariates that perfectly explain detection. In this case, we can estimate all parameters of all 3 levels even in the absence of replication at the bottom level (but we need replication at the middle level). Afterwards, we will illustrate the typical case, where no such covariate is available.

(a) Magical covariate explains it all (no replication at bottom level)

data <- data.fn(nquad = 500, nsubquad = 5, nrep = 1, mean.psi = 0.8, beta.Xpsi = 1, sd.logit.psi = 0.5, mean.theta = 0.6, theta.time.range = c(0, 0), beta.Xtheta = 1, sd.logit.theta = 0.5, mean.p = 0.4, p.time.range = c(0,0), beta.Xp = -1, sd.logit.p = 0.5)
[image:]
 Number of occupied quadrats: 365
 Number of quadrats with sum(x)>0: 363
 Obs. Number of occu. quads: 265

We use JAGS to fit a full three-level model to these data, which even contain some site-specific noise in all three parameters.

library(R2jags)

Bundle data
win.data <- list(y = data$y, nquad = dim(data$y)[1], nsubquad = dim(data$y)[2], nrep = dim(data$y)[3], A = data$A, B = data$B, C = data$C)
str(win.data)
List of 7
 $ y : int [1:500, 1:5, 1] 0 0 1 0 0 0 0 0 0 0 ...
 $ nquad : int 500
 $ nsubquad: int 5
 $ nrep : int 1
 $ A : num [1:500(1d)] 1.247 -1.538 1.305 -0.727 1.544 ...
 $ B : num [1:500, 1:5] -1.567 -0.215 -1.187 0.592 1.958 ...
 $ C : num [1:500, 1:5, 1] 0.317 0.237 0.82 1.907 1.467 ...

Define model in BUGS langauge
sink("model.txt")
cat("
model {

Priors
mean.psi ~ dunif(0,1) # Occupancy probability
mean.theta ~ dunif(0,1) # Availability prob. at occupied site
mean.p ~ dunif(0,1) # Detection probability
alpha.psi <- logit(mean.psi)
alpha.theta <- logit(mean.theta)
alpha.p <- logit(mean.p)
beta.psi ~ dnorm(0, 0.001)
beta.theta ~ dnorm(0, 0.001)
beta.p ~ dnorm(0, 0.001)

Likelihood
for (i in 1:nquad){
 # Occupancy model for quad i
 z[i] ~ dbern(psi[i])
 logit(psi[i]) <- alpha.psi + beta.psi * A[i]
 for (j in 1:nsubquad){
 # Availability in subquad j
 p.eff.1[i,j] <- z[i] * theta[i,j]
 logit(theta[i,j]) <- alpha.theta + beta.theta * B[i,j]
 x[i,j] ~ dbern(p.eff.1[i,j])
 for (k in 1:nrep){
 # PCR detection error process in replicate k
 p.eff.2[i,j,k] <- x[i,j] * p[i,j]
 logit(p[i,j]) <- alpha.p + beta.p * C[i,j,1]
 y[i,j,k] ~ dbern(p.eff.2[i,j,k])
 } # replicate
 } # subquad
 tmp1[i] <- step(sum(x[i,])-0.1)
} # quad

Derived quantities
sum.z <- sum(z[]) # Total # of occupied quadrats
sum.x <- sum(tmp1[]) # Total # of quads with presence in samples
p.theta <- mean.p * mean.theta
} # end model
",fill=TRUE)
sink()

Initial values
inits <- function() list(z = array(1, dim = data$nquad), x = array(1, dim =c(data$nquad, data$nsubquad)))

Parameters monitored
params <- c("mean.psi", "mean.theta", "mean.p", "beta.psi", "beta.theta", "beta.p","p.theta", "sum.z", "sum.x")

MCMC settings
ni <- 6000 ; nt <- 4 ; nb <- 2000 ; nc <- 3

Call JAGS (ART 10 min) and summarize posterior
system.time(out <- jags(win.data, inits, params, "model.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
print(out, 3)
Inference for Bugs model at "model.txt", fit using jags,
 3 chains, each with 6000 iterations (first 2000 discarded), n.thin = 4
 n.sims = 3000 iterations saved
 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
beta.p -1.12 0.19 -1.52 -1.24 -1.10 -0.98 -0.82 1.01 560
beta.psi 0.94 0.18 0.61 0.82 0.93 1.04 1.32 1.00 1600
beta.theta 0.79 0.18 0.52 0.66 0.75 0.88 1.21 1.01 330
mean.p 0.44 0.08 0.30 0.38 0.43 0.49 0.60 1.02 370
mean.psi 0.75 0.04 0.67 0.73 0.75 0.79 0.84 1.01 530
mean.theta 0.54 0.09 0.40 0.47 0.53 0.60 0.74 1.01 460
p.theta 0.23 0.02 0.20 0.22 0.23 0.24 0.26 1.00 590
sum.x 350.17 13.19 325.00 341.00 350.00 359.00 376.00 1.03 250
sum.z 359.44 13.42 333.00 350.00 359.00 369.00 385.00 1.02 580
deviance 1009.72 182.36 688.33 869.74 1002.60 1138.91 1367.15 1.01 410

Comparison truth – estimate (Table)
tmp <- cbind(rbind(mean.psi = data$mean.psi, mean.theta = data$mean.theta, mean.p = data$mean.p, beta.psi = data$beta.Xpsi, beta.theta = data$beta.Xtheta, beta.p = data$beta.Xp, sum.z = data$sum.z), out$BUGSoutput$summary[c(6,7,5,2,3,1,10),1:2])
colnames(tmp) <- c("Truth", "Post.mean", "Post.sd")
print(tmp, 3)
 Truth Post.mean Post.sd
mean.psi 0.8 0.755 0.0433
mean.theta 0.6 0.541 0.0915
mean.p 0.4 0.436 0.0786
beta.psi 1.0 0.936 0.1804
beta.theta 1.0 0.785 0.1757
beta.p -1.0 -1.122 0.1861
sum.z 365.0 359.438 13.4172

Note that the species was observed at 265 quadrats.

Comparison truth – estimate (Figure)
sim <- out$BUGSoutput
par(mfrow = c(1,3))
plot(data$A, data$psi, xlab = "Quad covariate A", ylab = "Prob. of occupancy", ylim = c(0,1), main = "psi")
curve(plogis(logit(data$mean.psi) + data$beta.Xpsi * x), -2, 2, col = "red", lwd = 2, add = TRUE)
curve(plogis(logit(sim$mean$mean.psi) + sim$mean$beta.psi * x), -2, 2, col = "blue", lwd = 2, add = TRUE)

plot(data$B, data$theta, xlab = "Quad-subquad covariate B", ylab = "Prob. of small-scale occupancy", ylim = c(0,1), main = "theta")
curve(plogis(logit(data$mean.theta) + data$beta.Xtheta * x), -2, 2, col = "red", lwd = 2, add = TRUE)
curve(plogis(logit(sim$mean$mean.theta) + sim$mean$beta.theta * x), -2, 2, col = "blue", lwd = 2, add = TRUE)

plot(data$C, data$p, xlab = "Quad-subquad-rep covariate C", ylab = "Prob. of detection", ylim = c(0,1), main = "p")
curve(plogis(logit(data$mean.p) + data$beta.Xp * x), -2, 2, col = "red", lwd = 2, add = TRUE)
curve(plogis(logit(sim$mean$mean.p) + sim$mean$beta.p * x), -2, 2, col = "blue", lwd = 2, add = TRUE)
[image:]

Fig. XX: True values of psi, theta and p for all quadrats (left), subquadrats (middle) and surveys (right) as a function of the three covariates A, B, and C, along with the true (red) and estimated (blue) relationships, when there is no replication at the bottom level.

(b) Typical case: no magical covariate known: theta and p are confounded when there is no replication at bottom level (i.e., in space for time)

We demonstrate via simulation that a traditional (two-level) occupancy model fitted to space for time data obtains unbiased estimates of psi and yields an estimate of the product of theta and p in what is called "probability of detection" (of course, a simulation can never be a proof, but no doubt a proof could be derived as well, but would be less intuitive for ecologists ...).

We define a function to fit the model in unmarked, so that we can use the try R function in the simulation, which prevents an untimely stop of the simulation in case estimation fails in function occu.

occUM.fn <- function(data = data, inits = c(1,1,-1)){
library(unmarked)
umf <- unmarkedFrameOccu(y = data$y[,,1], siteCovs = data.frame(A = data$A))
tmp1 <- summary(fm <- occu(~1 ~A, data=umf, starts =inits))
tmp <- matrix(unlist(c(tmp1$state[,1], tmp1$det[,1], tmp1$state[,2], tmp1$det[,2])), ncol = 2, byrow = F)
dimnames(tmp) <- list(c("Occ_Int", "Occ_A", "Det_Int"), c("MLE", "SE"))
return(MLE = tmp)
}

Number of simulations
simreps <- 10000

Generate structures to hold results
obs.stats <- array(NA, dim = c(simreps, 3))
dimnames(obs.stats) <- list(NULL, c("sum.z", "obs.sum.z", "sum.z.x"))
MLEs <- array(NA, dim = c(3,2,simreps))
dimnames(MLEs) <- list(c("Occ_Int", "Occ_A", "Det_Int"), c("MLE", "SE"), NULL)

for(i in 1:simreps){
 start.time = Sys.time() # Set timer
 cat("\n\n*** Simrep Number:", i, "***\n\n")
 # Generate data set
 data <- data.fn(nquad = 500, nsubquad = 5, nrep = 1, mean.psi = 0.8,
 beta.Xpsi = 1, sd.logit.psi = 0, mean.theta = 0.6,
 theta.time.range = c(0, 0), beta.Xtheta = 0, sd.logit.theta = 0,
 mean.p = 0.4, p.time.range = c(0,0), beta.Xp = 0, sd.logit.p = 0)

 # Save stats
 obs.stats[i,] <- unlist(data[23:25])

 # Get MLEs of occupancy model and save them
 UMmle <- try(occUM.fn(data = data, inits = c(1,1,-1)))
 if (class(UMmle) == "try-error") {v<-1} else {
 MLEs[,,i] <- UMmle
 }

 elapsed.time <- round(difftime(Sys.time(), start.time, units='mins'), 2)
 cat(paste(paste('\n\n*** Iteration completed in ', elapsed.time,
 sep=''),' mins ***\n\n', sep=''))
rm(data, UMmle)
}

Visualise results
par(mfrow = c(1,3))
Estimate of occupancy (psi)
hist(plogis(MLEs[1,1,]), breaks = 40, col = "gold", main = "Quadrat occupancy (psi)")
abline(v = mean(plogis(MLEs[1,1,]), na.rm = T), col = "blue", lwd = 3)
abline(v = 0.8, col = "red", lwd = 3)

Estimate of occupancy covariate (A)
hist(MLEs[2,1,], breaks = 40, col = "gold", main = "Quadrat occupancy covariate (A)")
abline(v = mean(MLEs[2,1,], na.rm = T), col = "blue", lwd = 3)
abline(v = data$beta.Xpsi, col = "red", lwd = 3)

Estimate of "detection": product of theta and p
hist(plogis(MLEs[3,1,]), breaks = 40, col = "gold", main = "'Detection probability'")
abline(v = mean(plogis(MLEs[3,1,]), na.rm = T), col = "blue", lwd = 3)
abline(v = data$mean.theta * data$mean.p, col = "red", lwd = 3, lty = 2)

[image:]

8.10. Alternative observation models

8.11. Further generalizations of the basic model
- mentioned two species model of Waddle et al. Example of how trivial it is in a Bayesian analysis to make computations on latent variables (the z’s). This is really great.
- other state description: Royle-Nichols model obtaines estimate of abundance distribution underlying the presence/absence states; see Nmix chapter
- multiple states (Royle & Link 2005; Nichols et al. 2007; MacKenzie et al. 2009): convergence of occupancy models and multi-state capture recapture models; VERY POWERFUL; see other chapter
- occurrence dynamics; see chapter 11
- state uncertainty/misclassification errors: Royle and Link 2005; McClintock et al., Miller et al. (Ecology 2011); these are all instances of multistate models; see some section or chapter on multistate models
- joint modeling of occurrence and abundance by combining data sets with detection/nondetection data and capture-recapture data (Conroy et al. 2008)
- many more: very rich class of models

8.12. Summary and outlook
- the canonical model for occurrence when occurrence can be overlooked
- importantly, the fundamental species distribution model
- dynamic version of this model see Chapter 11

8.13. Exercises
1. (a) Change the data simulation in section 8.4. such that vegetation height also affects detection probability (for example, negatively). Conduct a maximum likelihood and a Bayesian analysis of this new data set. (b) If changing the data generation is too challenging, you can simply take the existing data set (which of course does not have an effect of vegHt on detection) and fit these models anyway.
2. In the simulation in section 8.5., play around with the values of the data generation to get a feel for the model. If possible do this for the known or expected values of the sample size and the parameters for your study.
3. In the squirrel analysis (section 8.6.), check whether survey duration has an effect on detection probability.
[bookmark: _GoBack]4. In the two-species model (section 8.7.), try to add elevation (linear and squared) and forest into the occurrence model for the crossbill and see whether there is still evidence for a positive relationship with the occurrence of the red squirrel.

54

oleObject1.bin

image2.wmf
Pr(1)

zp

==

oleObject2.bin

image3.wmf
Pr(0)1

zp

==-

oleObject3.bin

image4.wmf
~()

i

zBernoulli

y

oleObject4.bin

image5.wmf
~()

ijiij

yBernoullizp

oleObject5.bin

image6.wmf
y

oleObject6.bin

image7.wmf
ij

y

oleObject7.bin

image8.wmf
ij

p

oleObject8.bin

image9.wmf
i

z

oleObject9.bin

image10.wmf
ij

p

oleObject10.bin

image11.wmf
i

y

oleObject11.bin

oleObject12.bin

image12.emf
1.01.52.02.53.0

0.0

0.2

0.4

0.6

0.8

1.0

Vegetation height

Occurrence (z)

Truth

Estimate

image13.wmf
y

oleObject13.bin

image14.wmf
y

oleObject14.bin

image15.emf
1.01.52.02.53.0

0.0

0.2

0.4

0.6

0.8

1.0

Vegetation height

Occupancy probability

-3-2-10123

0.0

0.2

0.4

0.6

0.8

1.0

Wind

Detection probability

image16.wmf
{}0

i

y

=

oleObject15.bin

image17.wmf
y

oleObject16.bin

image18.wmf
p

oleObject17.bin

image19.wmf
(1)

Pr(1 | {}0)

(1)(1)

T

ii

T

p

zy

p

y

yy

-

===

-+-

oleObject18.bin

oleObject19.bin

oleObject20.bin

image20.wmf
T

oleObject21.bin

oleObject22.bin

oleObject23.bin

image21.wmf
1

1

(1)

Pr(1 | {}0)

(1)(1)

T

iij

j

ii

T

iiij

j

p

zy

p

y

yy

=

=

-

===

-+-

Õ

Õ

oleObject24.bin

image22.emf
Parametric Bootstrapped Samples

t*1

Frequency

606570758085

0

50

100

150

200

image23.wmf
()

logit()11*vegHt

iHabii

yab

=+

oleObject25.bin

image24.wmf
()

logit()22*wind

ijtimeiij

p

ab

=+

oleObject26.bin

image25.wmf
()()

logit()11*vegHt

iHabiHabii

yab

=+

oleObject27.bin

image26.wmf
()()

logit()22*wind

ijtimeitimeiij

p

ab

=+

oleObject28.bin

image27.wmf
logit()11*vegHt

ii

yab

=+

oleObject29.bin

image28.wmf
logit()22*wind

ijij

p

ab

=+

oleObject30.bin

image29.emf
1.01.52.02.53.0

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy probability

Vegetation height

-3-2-10123

0.0

0.2

0.4

0.6

0.8

1.0

Detection probability

Wind

Truth

unmarked

WinBUGS

JAGS

image30.emf
Histogram of out3J$BUGSoutput$sims.list$alpha.occ[, 2]

out3J$BUGSoutput$sims.list$alpha.occ[, 2]

Frequency

-20-10010

0

20

40

60

80

100

120

140

image31.emf
Histogram of out3J$BUGSoutput$sims.list$alpha.occ[, 2]

out3J$BUGSoutput$sims.list$alpha.occ[, 2]

Frequency

-20-100102030

0

40

80

140

Histogram of out3J$BUGSoutput$sims.list$alpha.occ[, 3]

out3J$BUGSoutput$sims.list$alpha.occ[, 3]

Frequency

-20-100102030

0

40

80

120

Histogram of diff2_3

diff2_3

Frequency

-20-100102030

0

40

80

image32.emf
0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 20, T = 2

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 120, T = 2

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 250, T = 2

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 20, T = 5

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 120, T = 5

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 250, T = 5

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 20, T = 10

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 120, T = 10

Detection probability

Site-occ estimate of psi

0.00.20.40.60.81.0

0.0

0.2

0.4

0.6

0.8

1.0

R = 250, T = 10

Detection probability

Site-occ estimate of psi

image33.jpeg

image34.emf
5001000150020002500

0.0

0.2

0.4

0.6

0.8

1.0

Elevation (m)

Pred. occupancy prob.

020406080100

0.0

0.2

0.4

0.6

0.8

1.0

Forest cover (%)

Pred. occupancy prob.

20406080100

0.0

0.2

0.4

0.6

0.8

1.0

Date (1 = 1 April)

Pred. detection prob.

100200300400500

0.0

0.2

0.4

0.6

0.8

1.0

Survey duration (min)

Pred. detection prob.

image35.emf
Elevation [m]

Forest cover [%]

 0.1

 0.1

 0.2

 0.2

 0.3

 0.3

 0.4

 0.4

 0.5

 0.6

 0.6

 0.7

 0.7

 0.8

 0.8

 0.9

 0.9

200700120017002200

0

10

20

30

40

50

60

70

80

90

Expected squirrel occurrence prob.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

Survey duration [min]

Date (1 = April 1)

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5 0.55

 0.6

 0.65

 0.7

 0.75

100200300400500

20

30

40

50

60

70

80

90

100

Expected squirrel detection prob.

+

+

++

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

++

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

image36.emf
Red squirrel distribution in 2007

0.2

0.4

0.6

0.8

Uncertainty map 2007

0.05

0.10

0.15

0.20

0.25

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

image37.jpeg

image38.wmf
~()

i

zBernoulli

y

oleObject31.bin

image39.wmf
~()

iji

xBernoulliz

q

´

oleObject32.bin

image40.wmf
~()

ijkij

yBernoullixp

´

oleObject33.bin

image41.wmf
y

oleObject34.bin

image42.wmf
q

oleObject35.bin

image43.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Large-scale occupancy (psi)

Quad covariate A

psi

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Small-scale occupancy (theta)

Quad-subquad covariate B

theta

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Detection (p)

Quad-subquad-rep covariate C

p

image44.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Large-scale occupancy (psi)

Quad covariate A

psi

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Small-scale occupancy (theta)

Quad-subquad covariate B

theta

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Detection (p)

Quad-subquad-rep covariate C

p

image45.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Large-scale occupancy (psi)

Quad covariate A

psi

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Small-scale occupancy (theta)

Quad-subquad covariate B

theta

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Detection (p)

Quad-subquad-rep covariate C

p

image46.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Large-scale occupancy (psi)

Quad covariate A

psi

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Small-scale occupancy (theta)

Quad-subquad covariate B

theta

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Detection (p)

Quad-subquad-rep covariate C

p

image1.wmf
~()

zBernoullip

image47.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Large-scale occupancy (psi)

Quad covariate A

psi

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Small-scale occupancy (theta)

Quad-subquad covariate B

theta

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Detection (p)

Quad-subquad-rep covariate C

p

image48.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Large-scale occupancy (psi)

Quad covariate A

psi

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Small-scale occupancy (theta)

Quad-subquad covariate B

theta

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Detection (p)

Quad-subquad-rep covariate C

p

oleObject36.bin

image49.wmf
~()

iki

yBernoullizp

q

´´

oleObject37.bin

image50.wmf
1

1(1)

J

j

j

q

=

--

Õ

oleObject38.bin

image51.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Large-scale occupancy (psi)

Quad covariate A

psi

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Small-scale occupancy (theta)

Quad-subquad covariate B

theta

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

Detection (p)

Quad-subquad-rep covariate C

p

image52.emf
-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

psi

Quad covariate A

Prob. of occupancy

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

theta

Quad-subquad covariate B

Prob. of small-scale occupancy

-2-1012

0.0

0.2

0.4

0.6

0.8

1.0

p

Quad-subquad-rep covariate C

Prob. of detection

image53.emf
Quadrat occupancy (psi)

plogis(MLEs[1, 1,])

Frequency

0.60.70.80.91.0

0

200

400

600

800

Quadrat occupancy covariate (A)

MLEs[2, 1,]

Frequency

0.51.01.52.02.53.03.5

0

500

1000

1500

'Detection probability'

plogis(MLEs[3, 1,])

Frequency

0.200.220.240.260.280.30

0

100

200

300

400

500

600

