
Bayesian statistical analysis using BUGS engines (WinBUGS, OpenBUGS, JAGS)

Module 4

Patuxent workshop
12–14 November 2013

[bookmark: _Toc296678235][bookmark: _Toc308638301][bookmark: _Toc261944329][bookmark: _Toc275788397][bookmark: _Toc252875016][bookmark: _Toc252876116][bookmark: _Toc252876433][bookmark: _Toc252876982][bookmark: _Toc252877318][bookmark: _Toc261944318][bookmark: _Toc275788386][bookmark: _Toc252875010][bookmark: _Toc252876105][bookmark: _Toc252876422][bookmark: _Toc252876971][bookmark: _Toc252877307]
4.1. Introduction
WinBUGS, OpenBUGS and JAGS are different MCMC engines that all use the BUGS programming language. The latter is perhaps better called a model definition language. It’s an ingeniously simple and yet very flexible language, remarkably similar to R and S, that lets ecologists and statisticians specify remarkably complex models in a concise and easy to understand way.
	All three programs essentially do 4 things for you:
1. They let you describe almost any kind of hierarchical model in the simple and powerful BUGS language.
2. they translate your BUGS language description of a statistical model into an MCMC algorithm
3. they run the algorithm for as long as you wish and thus accumulate the samples of the desired joint posterior distribution of all unknown quantities in your analysis
4. they allow some processing of results, such as graphical or tabular posterior summaries, convergence assessment, ...
WinBUGS and OpenBUGS exist as standalone applications with a Windows user interface, while this does not seem to be the case for JAGS. However, most of the time this doesn’t matter because most people run these programs from R.
	WinBUGS is not open source, while OpenBUGS is open-source, but apparently written in some strange language that nobody understands. In contrast, JAGS is open-source AND written in C. WinBUGS is an evolutionary dead-end, since its development has ceased about 10 years ago. In principle, the developmental branch of the BUGS project has moved over to OpenBUGS, which is maintained by a couple of people in Cambridge or somewhere in England. However, at the time of writing, OpenBUGS does not seem to have evolved much beyond the capabilities of the original WinBUGS. JAGS is developed by Martyn Plummer in Lyon.
	When we talk of BUGS, we typically mean WinBUGS and OpenBUGS, but sometimes all three Bayesian software programs, because they use essentially the same model definition language. We hope that the meaning of "BUGS" will become clear from the context.
	Bayesian estimates from a model with vague priors numerically resemble very much maximum likelihood estimates of the same model. To ilustrate this, we will also use non-bayesian methods in R to fit the models in this chapter.

BUGS language in a nutshell:
- nodes (quantities, parameters)
- relations among parameters: deterministic (<-, NOT equal sign) or stochastic (~)
- all fittable models can be represented as graphs (directed acyclic graphs, DAGs)
- math/stat functions, see manuals
- statistical distributions, see manuals
- language not vectorized: need loops to define model for every element in vectors or multi-dimensional arrays
- declarative language, hence order of statements does not matter (with few exceptions)

[bookmark: _Toc296678236][bookmark: _Toc308638302]4.2. Running WinBUGS as a standalone application
See odc file called ‘linreg.odc’.
[image:]

Do an analysis using click and point. Also look at coda files.
Easy to start with, but cumbersome and pain when many analyses should be run.
Look at manual and two volumes of richly commented example analyses

4.3. Running BUGS and JAGS from R
This is much, much more convenient. Here, we will illustrate this using simulated replicated count data, which we may then analyse as logistic regression, as a Poisson regression, as a site-occupancy model or as a binomial mixture model. We will first define a function that generates count data, where both abundance and detection are affected by a covariate. --- Note that to "fix" the random-number generators used to obtain these data, we could add a line as follows at the top of the function, after the header explaining things:

set.seed(24)

In this way, we would always obtain the same data set when executing the function and therefore (up to Monte Carlo error in the Bayesian analyses), also the same estimates from the ensuing analyses. However, for reasons explained here (http://www.mbr-pwrc.usgs.gov/pubanalysis/kerybook/), we prefer not to do so here.

Define function for generating binomial-mixture model data (see Chap. XX)
data.fn <- function(R = 200, T = 3, alpha0 = 1, alpha1 = 2, beta0 = 1, beta1 = -3){

R: number of sites at which counts were made (= number of spatial reps)
T: number of times that counts were made at each site
(= number of temporal reps)
alpha0 and alpha1: intercept and slope of log-linear regression
relating abundance to the site covariate A
beta0 and beta1: intercept and slope of logistic-linear regression
of detection probability on survey covariate B

y <- array(dim = c(R, T))	# Array for counts
A <- runif(n = R, -1, 1)	# Site covariate
B <- array(rnorm(n = R*T), dim = c(R, T)) # Sampling covariate
lam <- exp(alpha0 + alpha1 * A)	# Expected abundance
N <- rpois(n = R, lambda = lam)	# Realised abundance
p <- plogis(beta0 + beta1 * B)	# Detection probability
for (i in 1:T){				# Generate counts
 y[,i] <- rbinom(n = R, size = N, prob = p[,i])
}
return(list(R = R, T = T, A = A, B = B, alpha0 = alpha0, alpha1 = alpha1, beta0 = beta0, beta1 = beta1, lam = lam, N = N, p = p, y = y))
}

We execute this function once to generate one data set and produce an overview of the simulation.

set.seed(24)
data <- data.fn()
str(data)
> str(data)
List of 12
 $ R : num 200
 $ T : num 3
 $ A : num [1:200] -0.4149 -0.5502 0.4084 0.0378 0.3252 ...
 $ B : num [1:200, 1:3] 0.0831 2.7849 0.5953 0.0777 -0.5587 ...
 $ alpha0: num 1
 $ alpha1: num 2
 $ beta0 : num 1
 $ beta1 : num -3
 $ lam : num [1:200] 1.186 0.904 6.153 2.932 5.209 ...
 $ N : int [1:200] 1 1 2 0 3 13 1 2 10 4 ...
 $ p : num [1:200, 1:3] 0.679303 0.000639 0.313061 0.682872 0.935601 ...
 $ y : int [1:200, 1:3] 1 0 0 0 2 11 1 2 6 4 ...

The building blocks of much of what we do in hierarchical modeling of abundance, occurrence and species richness are Poisson and binomial generalized linear models (GLMs; the latter also typically called logistic regression). We will therefore look at how we can use BUGS to fit these models to our data. We will also illustrate the fitting of the same models using maximum likelihood, to show how extremely similar, numerically, Bayesian and maximum likelihood estimates typically are.

4.3.1. Fitting a Poisson GLM
To fit a simple Poisson generalized linear model, we face the challenge that we have not one observed count per site, but three. One approach that people who don’t worry too much about measurement errors often take, is to simply analyse the maximum count at each site, knowing that this must be the best (in the sense of being closest) approximation of the true abundance at each site. So lets do this then.

Summarize the data by taking the max at each site
C <- apply(data$y, 1, max)
table(C)		# this is what we get
C
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 23 25 28
44 29 35 20 13 11 7 7 5 3 4 3 7 2 1 2 1 2 1 1 1 1

To fit a model in WinBUGS or JAGS run from R, we must first prepare all the ingredients of the analyses, before we use a function that ships all of them over to BUGS or JAGS and instructs the latter how to execute the analyses. After the desired number of MCMC draws have been produced by the MCMC engine, the results (essentially simply the samples from the joint posterior distribution) are imported back into R and are summarized in various convenient ways.
	What we need to prepare to run an analysis from R are the following objects: data file, model file, file with initial values, file with parameters that we want to save and instructionts about the MCMC settings (how many chains, for how long etc.). We will now prepare each of them. Instead of a list with initial values, we usually define a function that produces random initial values for at least some of the unknowns that we want to estimate.

Bundle data
win.data <- list(C = C, R = length(C), A = data$A)

Specify model in BUGS language
sink("Poisson_GLM.txt")
cat("
model { # -------- Code in BUGS language starts here --------

Priors
#alpha0 ~ dunif(-10, 10) # Set of vague priors A
#alpha1 ~ dunif(-10, 10)
alpha0 ~ dnorm(0, 0.1) # Set of vague priors B
alpha1 ~ dnorm(0, 0.1)

Likelihood
for (i in 1:R){
 C[i] ~ dpois(lambda[i])
 log(lambda[i]) <- alpha0 + alpha1 * A[i]
}
} # -------- Code in BUGS language ends here --------
",fill = TRUE)
sink()

This is the first place we meet a program in the BUGS language and hence, a couple of comments are in order. One of the first things to be absolutely clear about is which code is written in the R language and which in the BUGS language. The way we write our code, everything between the quotes as indicated by the comments is in the BUGS language and everything outside is R. We use the sink construct to write into the R working directory a text file named "Poisson_GLM.txt" that contains the BUGS model.
	Then, in terms of elements of a BUGS program, you see the following nodes: alpha0, alpha1, lambda, log(lambda), A and C. The relationship between the observed counts, C, and the expected count of the Poisson random variable, lambda, is a stochastic one (therefore the tilde), while that between the log of the expected count and the covariate A is deterministic (therefore the arrow operator, which is the equal sign in the BUGS language). We see the log function and the Poisson distribution. Finally, we see that we use a loop to describe the statistical model for the relationship between covariate A and count C for all R elements. Note that we could define the priors also after the loop over R (the likelihood), though obviously not inside of that loop.
	In terms of the Bayesian analysis, we try to keep the two main parts of the analysis separate, namely the likelihood (which describes the relationship between the observed data and the unknown parameters) and the priors, which use a probability distribution to describe our knowledge about these parameters. This distinction between the likelihood and the priors becomes somewhat blurred in hierarchical models later.

Initial values
inits <- function() list(alpha0 = runif(1, -1, 1), alpha1 = runif(1, -1, 1))

Parameters monitored (i.e., for which estimates are saved)
params <- c("lambda", "alpha0", "alpha1")

MCMC settings
ni <- 3000 ; nt <- 1 ; nb <- 1000 ; nc <- 3
ni <- 100 ; nt <- 1 ; nb <- 1 ; nc <- 3 # To observe convergence

Call WinBUGS from R (ART <1 min)
out1B <- bugs(win.data, inits, params, "Poisson_GLM.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

After visually inspecting the trace plots to gauge convergence in WinBUGS, we look at output in WinBUGS program.

Interlude
Overview of object created by bugs()
names(out1B)
> names(out1B)
 [1] "n.chains" "n.iter" "n.burnin"
 [4] "n.thin" "n.keep" "n.sims"
 [7] "sims.array" "sims.list" "sims.matrix"
[10] "summary" "mean" "sd"
[13] "median" "root.short" "long.short"
[16] "dimension.short" "indexes.short" "last.values"
[19] "isDIC" "DICbyR" "pD"
[22] "DIC" "model.file" "program"

str(out1B)
List of 24
 $ n.chains : num 3
 $ n.iter : num 3000
 $ n.burnin : num 1000
 $ n.thin : num 1
 $ n.keep : num 2000
 $ n.sims : num 6000
 $ sims.array : num [1:2000, 1:3, 1:203] 1.27 1.28 1.28 1.32 1.31 ...
 ..- attr(*, "dimnames")=List of 3
 $: NULL
 $: NULL
 $: chr [1:203] "lambda[1]" "lambda[2]" "lambda[3]" "lambda[4]" ...
 $ sims.list :List of 4
 ..$ lambda : num [1:6000, 1:200] 1.24 1.16 1.16 1.44 1.19 ...
 ..$ alpha0 : num [1:6000] 0.959 0.929 0.937 1.057 0.961 ...
 ..$ alpha1 : num [1:6000] 1.8 1.88 1.91 1.67 1.89 ...
 ..$ deviance: num [1:6000] 783 783 783 788 783 ...
 $ sims.matrix : num [1:6000, 1:203] 1.24 1.16 1.16 1.44 1.19 ...
 ..- attr(*, "dimnames")=List of 2
 $: NULL
 $: chr [1:203] "lambda[1]" "lambda[2]" "lambda[3]" "lambda[4]" ...
 $ summary : num [1:203, 1:9] 1.213 0.946 5.527 2.791 4.741 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:203] "lambda[1]" "lambda[2]" "lambda[3]" "lambda[4]" ...
 $: chr [1:9] "mean" "sd" "2.5%" "25%" ...
 $ mean :List of 4
 ..$ lambda : num [1:200(1d)] 1.213 0.946 5.527 2.791 4.741 ...
 ..$ alpha0 : num 0.956
 ..$ alpha1 : num 1.84
 ..$ deviance: num 784
 $ sd :List of 4
 ..$ lambda : num [1:200(1d)] 0.092 0.0806 0.1938 0.133 0.1724 ...
 ..$ alpha0 : num 0.0497
 ..$ alpha1 : num 0.0768
 ..$ deviance: num 1.96
[...]

Call JAGS from R, check convergence and summarize marginal posteriors
library(R2jags)	# requires rjags
system.time(out1J <- jags(win.data, inits, params, "Poisson_GLM.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(out1J)

Overview of object created by jags()
names(out1J)
> names(out1)
[1] "model" "BUGSoutput" "parameters.to.save"
[4] "model.file" "n.iter" "DIC"

names(out1J$BUGSoutput)
> names(out1J$BUGSoutput)
 [1] "n.chains" "n.iter" "n.burnin" "n.thin"
 [5] "n.keep" "n.sims" "sims.array" "sims.list"
 [9] "sims.matrix" "summary" "mean" "sd"
[13] "median" "root.short" "long.short" "dimension.short"
[17] "indexes.short" "last.values" "program" "model.file"
[21] "isDIC" "DICbyR" "pD" "DIC"

str(out1J$BUGSoutput)
List of 24
 $ n.chains : int 3
 $ n.iter : num 3000
 $ n.burnin : num 1000
 $ n.thin : num 1
 $ n.keep : int 2000
 $ n.sims : int 6000
 $ sims.array : num [1:2000, 1:3, 1:203] 0.506 0.585 0.689 0.702 0.736 ...
 ..- attr(*, "dimnames")=List of 3
 $: NULL
 $: NULL
 $: chr [1:203] "alpha0" "alpha1" "deviance" "lambda[1]" ...
 $ sims.list :List of 4
 ..$ alpha0 : num [1:6000, 1] 1.012 1.021 1.081 0.989 0.862 ...
 ..$ alpha1 : num [1:6000, 1] 1.74 1.75 1.73 1.76 1.91 ...
 ..$ deviance: num [1:6000, 1] 784 784 789 784 787 ...
 ..$ lambda : num [1:6000, 1:200] 1.34 1.34 1.44 1.29 1.07 ...
 $ sims.matrix : num [1:6000, 1:203] 1.012 1.021 1.081 0.989 0.862 ...
 ..- attr(*, "dimnames")=List of 2
 $: NULL
 $: chr [1:203] "alpha0" "alpha1" "deviance" "lambda[1]" ...
 $ summary : num [1:203, 1:9] 0.953 1.841 785.146 1.212 0.946 ...
 ..- attr(*, "dimnames")=List of 2
 $: chr [1:203] "alpha0" "alpha1" "deviance" "lambda[1]" ...
 $: chr [1:9] "mean" "sd" "2.5%" "25%" ...
 $ mean :List of 4
 ..$ alpha0 : num [1(1d)] 0.953
 ..$ alpha1 : num [1(1d)] 1.84
 ..$ deviance: num [1(1d)] 785
 ..$ lambda : num [1:200(1d)] 1.212 0.946 5.509 2.785 4.726 ...
[...]

So we see that we can VERY easily switch between WinBUGS and JAGS when fitting a model. Most of the time, hardly or no changes are required in the model code and the other R objects that are required for the analysis.
	We can also summarize the posterior distributions for the log-linear regression paarmeters. Since truth was 1 and 2, we see that imperfect detection did not bias the estimates much in this case.

Summarize posteriors from WinBUGS run
print(out1B, 3)
Inference for Bugs model at "Poisson_GLM.txt", fit using WinBUGS,
 3 chains, each with 3000 iterations (first 1000 discarded)
 n.sims = 6000 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
lambda[1] 1.213 0.092 1.042 1.151 1.211 1.272 1.406 1.001 3600
lambda[2] 0.946 0.081 0.798 0.891 0.943 0.998 1.117 1.001 3400
lambda[3] 5.527 0.194 5.149 5.398 5.525 5.657 5.913 1.001 6000
[...]
lambda[198] 2.461 0.126 2.220 2.375 2.459 2.545 2.716 1.001 6000
lambda[199] 10.845 0.459 9.957 10.530 10.830 11.150 11.750 1.001 5000
lambda[200] 7.172 0.255 6.671 7.001 7.170 7.341 7.685 1.001 6000
alpha0 0.956 0.050 0.857 0.922 0.956 0.989 1.052 1.001 6000
alpha1 1.844 0.077 1.693 1.793 1.845 1.896 1.997 1.002 2400
deviance 784.497 1.958 782.600 783.100 783.900 785.200 789.700 1.004 1400

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)
pD = 1.9 and DIC = 786.4
DIC is an estimate of expected predictive error (lower deviance is better).

Summarize posteriors from JAGS run
print(out1J, 3)
Inference for Bugs model at "Poisson_GLM.txt", fit using jags,
 3 chains, each with 3000 iterations (first 1000 discarded)
 n.sims = 6000 iterations saved
 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha0 0.953 0.052 0.853 0.919 0.954 0.988 1.054 1.005 490
alpha1 1.841 0.085 1.688 1.788 1.841 1.898 1.992 1.029 370
lambda[1] 1.212 0.095 1.039 1.146 1.210 1.274 1.410 1.007 330
lambda[2] 0.946 0.083 0.795 0.887 0.943 1.000 1.119 1.007 320
lambda[3] 5.509 0.223 5.119 5.382 5.508 5.641 5.915 1.002 1800
[...]
lambda[198] 2.456 0.131 2.211 2.366 2.454 2.543 2.723 1.005 480
lambda[199] 10.800 0.533 9.881 10.493 10.798 11.113 11.776 1.006 770
lambda[200] 7.146 0.299 6.633 6.980 7.148 7.321 7.685 1.002 1500
deviance 785.146 14.755 782.596 783.156 783.937 785.398 790.196 1.022 6000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 108.9 and DIC = 894.0
DIC is an estimate of expected predictive error (lower deviance is better).

Note that in the output from BUGS, the parameter estimates appear in the order given in the param R object, while that from JAGS, they always appear in alphabetical order (but with the deviance always comin last).

For comparison, we will now use the R function glm to obtain MLEs for the same model.

(fm <- summary(glm(C ~ A, data = data, family = poisson)))
Call:
glm(formula = C ~ A, family = poisson, data = data)

Deviance Residuals:
 Min 1Q Median 3Q Max
-3.5451 -1.0913 -0.1731 0.7250 3.0786

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.95726 0.05092 18.80 <2e-16 ***
A 1.84470 0.07771 23.74 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 997.95 on 199 degrees of freedom
Residual deviance: 292.11 on 198 degrees of freedom
AIC: 786.55

Number of Fisher Scoring iterations: 5

We observe numerically very similar estimates (posterior means and sd from WinBUGS, first, and then JAGS, and MLEs from R):
print(cbind(out1B$summary[201:202, 1:2], out1J$BUGSoutput$summary[1:2, 1:2], fm$coef[,1:2]),3)
 mean sd mean sd Estimate Std. Error
alpha0 0.956 0.0497 0.953 0.0523 0.957 0.0509
alpha1 1.844 0.0768 1.841 0.0845 1.845 0.0777

4.3.2. Fitting a binomial GLM or logistic regression
To obtain data that we can use to illustrate the fitting of a linear regression, we squash the counts to obtain 0-1 indicators, which tell us whether a count was zero or whether a count was greater than zero. At several places in this book we stress that this is exactly how “presence/absence” or “detection/nondetection” data arise, namely as a simple summary of an abundance distribution.

Summarize the data even more
y <- as.numeric(C > 0)
table(y)
y
 0 1
 44 156

We conduct the same steps as before again but now specify a binomial (or Bernoulli) generalized linear model for the binary responses.

Bundle data
win.data <- list(y = y, R = length(C), A = data$A)

Specify model in BUGS language
sink("Binomial_GLM.txt")
cat("
model {

Priors
alpha0 ~ dunif(-10, 10)
alpha1 ~ dunif(-10, 10)

Likelihood
for (i in 1:R){
 y[i] ~ dbern(psi[i])
 logit(psi[i]) <- alpha0 + alpha1 * A[i]
}
}
",fill = TRUE)
sink()

Initial values
inits <- function() list(alpha0 = runif(1, -1, 1), alpha1 = runif(1, -1, 1))

Parameters monitored
params <- c("alpha0", "alpha1")

MCMC settings
ni <- 3000 ; nt <- 1 ; nb <- 1000 ; nc <- 3

Call WinBUGS from R (ART <1 min)
out2B <- bugs(win.data, inits, params, "Binomial_GLM.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Call JAGS from R
library(R2jags)	# requires rjags
system.time(out2J <- jags(win.data, inits, params, "Binomial_GLM.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(out2J)

We can again summarize the posterior distributions for the logit-linear regression parameters. We can no longer compare the estimates with the truth (1 and 2), since the data were generated under a different model than the one now fitted.

Summarize posteriors from WinBUGS run
print(out2B, 2)
Inference for Bugs model at "Binomial_GLM.txt", fit using WinBUGS,
 3 chains, each with 3000 iterations (first 1000 discarded)
 n.sims = 6000 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha0 2.70 0.42 1.94 2.40 2.68 2.97 3.59 1 1600
alpha1 4.32 0.71 3.03 3.81 4.29 4.78 5.81 1 1100
deviance 134.92 2.05 132.90 133.50 134.30 135.70 140.50 1 2600

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)
pD = 2.0 and DIC = 136.9
DIC is an estimate of expected predictive error (lower deviance is better).

Summarize posteriors from JAGS run
print(out2J, 2)
Inference for Bugs model at "Binomial_GLM.txt", fit using jags,
 3 chains, each with 3000 iterations (first 1000 discarded)
 n.sims = 6000 iterations saved
 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha0 2.67 0.41 1.95 2.39 2.65 2.93 3.53 1 800
alpha1 4.28 0.71 2.99 3.78 4.25 4.74 5.73 1 720
deviance 134.93 2.00 132.94 133.49 134.33 135.73 140.37 1 1200

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 2.0 and DIC = 136.9
DIC is an estimate of expected predictive error (lower deviance is better).

Compare with MLEs
summary(glm(y ~ data$A, family = binomial))

Call:
glm(formula = y ~ data$A, family = binomial)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.37861 0.05427 0.17455 0.50038 1.86842

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.6102 0.4016 6.499 8.06e-11 ***
data$A 4.1738 0.6888 6.059 1.37e-09 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 210.76 on 199 degrees of freedom
Residual deviance: 132.88 on 198 degrees of freedom
AIC: 136.88

Number of Fisher Scoring iterations: 6

Bayesians express imperfect knowledge using a probability distribution, such as the prior or the posterior distribution. The latter combines everything that is known about a parameter after analysis of a data set at hand. We can inspect this knowledge by plotting a histogram of the posterior samples for a parameter, for instance, alpha1. If we do this, we "marginalise" the joint posterior over all other unknowns in the analysis, here, over the intercept alpha0. We can also plot the joint posterior distribution of alpha0 and alpha1. The latter plot may give clues about whether two parameters can be estimated separately at all.

par(mfrow = c(1,2))
hist(out2J$BUGSoutput$sims.list$alpha1, breaks = 100, col = "grey", xlim = c(0, 10), main = "Marginal posterior distribution of alpha1", cex.main = 1)
plot(out2J$BUGSoutput$sims.list$alpha0, out2J$BUGSoutput$sims.list$alpha1, main = "Joint posterior dist. of alpha0 and alpha1", cex.main = 1)
[image:]
To communicate the results of a Bayesian analysis, one particularly attractive feature is the ability to make direct probability statements about the magnitude of the parameters. For instance, from the posterior samples of alpha1 we can easily compute the probability that the slope lies somewhere between 2 and 4 or that it is greater than 5. The geometrical interpretation of these probabilties is the area under the posterior defined by these limits.

mean((out2J$BUGSoutput$sims.list$alpha1 > 2) & (out2J$BUGSoutput$sims.list$alpha1 < 4))
[1] 0.3636667
mean(out2J$BUGSoutput$sims.list$alpha1 > 5)
[1] 0.1593333

4.3.3. Fitting a random-effects Poisson model to the replicated counts
This is a kind of model that some colleagues who don’t believe in closed populations like to fit. We model directly all the counts now. We include a random site effect to avoid pseudoreplication. This example serves as an illustration of how random effects are modelled in BUGS.

To clarify, we fit the following GLMM to the counts at site i during replicate survey j:

Bundle data
win.data <- list(C = data$y, R = nrow(data$y), T = ncol(data$y), A = data$A, B = data$B)

Specify model in BUGS language
sink("RE.Poisson.txt")
cat("
model {

Priors
mu.alpha ~ dnorm(0, 0.001)
tau.alpha <- pow(sd.alpha, -2)
sd.alpha ~ dunif(0, 10)
alpha1 ~ dunif(-10, 10)
alpha2 ~ dunif(-10, 10)

Likelihood
for (i in 1:R){
 alpha0[i] ~ dnorm(mu.alpha, tau.alpha)
 for(j in 1:T){
 C[i,j] ~ dpois(lambda[i,j])
 log(lambda[i,j]) <- alpha0[i] + alpha1 * A[i] + alpha2 * B[i,j]
 }
}
}
",fill = TRUE)
sink()

Initial values
inits <- function() list(alpha0 = runif(200, -1, 1), alpha1 = runif(1, -1, 1), alpha2 = runif(1, -1, 1))

Parameters monitored
params <- c("mu.alpha", "sd.alpha", "alpha1", "alpha2")
could add "alpha0" to obtain estimates of the random effects

MCMC settings
ni <- 3000 ; nt <- 1 ; nb <- 1000 ; nc <- 3

Call WinBUGS from R (ART <1 min)
out3B <- bugs(win.data, inits, params, "RE.Poisson.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Call JAGS from R
library(R2jags)	# requires rjags
system.time(out3J <- jags(win.data, inits, params, "RE.Poisson.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(out3J)

Summarize posteriors from WinBUGS run
print(out3B, 3)
Inference for Bugs model at "RE.Poisson.txt", fit using WinBUGS,
 3 chains, each with 3000 iterations (first 1000 discarded)
 n.sims = 6000 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mu.alpha 0.218 0.064 0.089 0.174 0.219 0.262 0.342 1.003 950
sd.alpha 0.579 0.058 0.468 0.540 0.578 0.618 0.693 1.005 430
alpha1 1.928 0.114 1.708 1.851 1.925 2.005 2.151 1.002 1400
alpha2 -0.648 0.034 -0.718 -0.671 -0.648 -0.625 -0.581 1.002 1400
deviance 1666.568 21.341 1627.000 1652.000 1666.000 1681.000 1710.000 1.002 1400

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)
pD = 112.9 and DIC = 1779.5
DIC is an estimate of expected predictive error (lower deviance is better).

Summarize posteriors from JAGS run
print(out3J, 3)
Inference for Bugs model at "RE.Poisson.txt", fit using jags,
 3 chains, each with 3000 iterations (first 1000 discarded)
 n.sims = 6000 iterations saved
 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha1 1.915 0.099 1.730 1.846 1.914 1.981 2.119 1.010 220
alpha2 -0.646 0.034 -0.711 -0.669 -0.646 -0.623 -0.581 1.001 2800
mu.alpha 0.225 0.062 0.103 0.183 0.226 0.267 0.341 1.011 240
sd.alpha 0.571 0.058 0.461 0.530 0.569 0.608 0.694 1.028 96
deviance 1668.312 21.484 1627.875 1653.471 1667.869 1682.343 1711.936 1.008 290

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 229.3 and DIC = 1897.6
DIC is an estimate of expected predictive error (lower deviance is better).

We canfit this model non-bayesianly, for instance, using the REML criterion in the package lme4. Let's do this quickly to convince us (once again) that Bayesian estimates under a model with vague priors look numerically very much like non-bayesian estimates.

Function lmer (or glmer) requires the data to be input in a vector format, rather than as an array. Therefore, we first reformat our data set to make it palatable for lmer.
Restructure the response data into a vector:

yvec <- c(data$y)
Avec <- rep(data$A, 3)
Bvec <- c(data$B)
fac.site <- factor(rep(1:200, 3))
cbind(yvec, fac.site, Avec, Bvec)

Fit same model using restricted maximum likelihood (function lmer/glmer in package lme4)
library(lme4)
summary(fm <- lmer(yvec ~ Avec + Bvec + (1| fac.site), family = poisson))
ranef(fm)
Generalized linear mixed model fit by maximum likelihood ['glmerMod']
 Family: poisson (log)
Formula: yvec ~ Avec + Bvec + (1 | fac.site)

 AIC BIC logLik deviance
1874.0006 1891.5883 -933.0003 1866.0006

Random effects:
 Groups Name Variance Std.Dev.
 fac.site (Intercept) 0.3127 0.5592
Number of obs: 600, groups: fac.site, 200

Fixed effects:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.22774 0.05849 3.894 9.87e-05 ***
Avec 1.91637 0.10204 18.780 < 2e-16 ***
Bvec -0.64662 0.03368 -19.200 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
 (Intr) Avec
Avec -0.309
Bvec 0.296 -0.073
Warnmeldung:
In lmer(yvec ~ Avec + Bvec + (1 | fac.site), family = poisson) :
 calling lmer with 'family' is deprecated; please use glmer() instead

> ranef(fm) # To see the estimates of the random intercepts
$fac.site
 (Intercept)
1 0.1891666097
2 -0.0712003349
3 -0.6344574278
[...]
198 -0.2811316036
199 -0.5040169498
200 0.3789903014

Hence, once again, a comforting similarity between the non-Bayesian and the bayesian parameter estimates, even with respect to their uncertainty (SEs and posterior standard deviations, respectively). In the Bayesian analysis, estimates of the random effects could be obtained by simply adding "alpha0" in the list of parameters monitored.

There is a lot that can be done to analyse the output of a model analysis, especially of a Bayesian model analysis. For instance, we can draw a picture of the posterior distribution of a parameter, by summarising the posterior draws from the MCMC algorithm. These are stored in various ways after running WinBUGS or JAGS using R2WinBUGS or R2jags, respectively. They are in an ordered format, with chains kept separate, in the slot "sims.array"; see under str(out3B). The slots "sims.matrix" and "sims.list" have the series of draws from different chains joinded in a single vector, either in a matrix or in a list format. To draw a raw histogram of the four parameters we monitored, we can do the following.

par(mfrow = c(2,2))
hist(out3B$sims.list$alpha1, breaks = 100, col = "gray", main = "alpha1")
hist(out3B$sims.list$alpha2, breaks = 100, col = "gray", main = "alpha2")
hist(out3B$sims.list$mu.alpha, breaks = 100, col = "gray", main = "mu.alpha")
hist(out3B$sims.list$sd.alpha, breaks = 100, col = "gray", main = "sd.alpha")

[image:]
Among other things, hypotheses about the parameters can be tested trivially easily. For instance, the hypothesis that a parameter is "significant" (typically meaning, significantly different from zero), can be addressed by seeing whether 0 is contained in a 95% credible interval (a Bayesian analogue to a confidence interval) or not. One such interval can be read off the analysis summary. Another question might be whether, for instance, the parameter alpha1 was greater than 2. The probability that this hypothesis is true is given by the proportion of the MCMC samples for which this condition is met, that is,

mean(out3B$sims.list$alpha1 > 2)
[1] 0.261

12.5. Summary and outlook
You can think of BUGS as a giant and super-powerful function g/lmer() for fitting almost any kind of mixed model to small and moderately-sized data sets.

12.6. Exercises
1. Fit a normal model to the counts or perhaps the log counts
[bookmark: _GoBack]

16

image2.emf
Marginal posterior distribution of alpha1

out2J$BUGSoutput$sims.list$alpha1

Frequency

0 2 4 6 8 10

0

50

100

150

1.5 2.0 2.5 3.0 3.5 4.0 4.5

2

3

4

5

6

7

Joint posterior dist. of alpha0 and alpha1

out2J$BUGSoutput$sims.list$alpha0

out2J$BUGSoutput$sims.list$alpha1

image3.wmf
ij

C

oleObject1.bin

image4.wmf
~()

ijij

CPoisson

l

oleObject2.bin

image5.wmf
0,12

log()**

ijiiij

AB

laaa

=++

oleObject3.bin

image6.wmf
2

0,

~(,)

i

Normal

aa

ams

oleObject4.bin

image7.emf
alpha1

out3B$sims.list$alpha1

Frequency

1.6 1.8 2.0 2.2

0

50

100

150

200

alpha2

out3B$sims.list$alpha2

Frequency

-0.75 -0.70 -0.65 -0.60 -0.55

0

50

100

150

mu.alpha

out3B$sims.list$mu.alpha

Frequency

0.0 0.1 0.2 0.3 0.4

0

50

100

150

200

sd.alpha

out3B$sims.list$sd.alpha

Frequency

0.4 0.5 0.6 0.7 0.8

0

50

100

150

200

image1.png
#Model description
model {

Priors

alpha ~ dnorm(0,0.0001)
beta ~ dnorm(0,0.0001)
tau <- 1/ (sigma * sigma)
sigma ~ dunif(0, 100)

Likelihood

for (iin 1:n) {
ylil ~ dnorm(muf], tau)
muf] <- alpha + beta™(i]

#Data

list(x=c(1,2, 3,4,5,6,7,8,9,10,11,12,13,14,15,16),
y=c(41.54,46.85,42.67,33.21,28.04,20.38,34.74,34.77,20.71,29.86,
27.88,23.84,15.26,22.75,27.96,15.48), n=16)

#Initial values
list(alpha=-2.95247E-01, beta=-3 26399E-02, sigma=8 42696E-01)
list(alpha=-2.64075E-01, beta=-2 94204E-01, sigma=6.03639E-01)

