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- in simple random effects models, show the modeling of groups (e.g., guilds of species)
- To model N, we could also probably specify a linear-logistic model for the inclusion probability in the data-augmentation part of the model. But we would have to do separate DA for every site. Refer to paper by Converse, Royle et al. (MEE 2013)


12.1. Introduction
A community is a collection of species at a site and a metacommunity is a collection of such communities. Communities and metacommunities are the focus of much interest in ecology and related disciplines and much effort goes into the study of questions such as how community size (species richness) is determined by biotic and abiotic factors, how communities are assembled and how community characters emerge from the aggregate of traits of its members, how communities differ from one place to another or over time.
	Surprisingly, most of the ecological literature on communities and metacommunities neglects the fact that the occurrence of a species is usually determined imperfectly, and that therefore metrics of community size and composition are also measured with systematic errors having to do with non-detection errors of the species making up a community. In this chapter, we naturally choose a different approach, and model community size and composition in a hierarchical model that allows for imperfect detection of species. The models in this chapter build directly upon the single-species occupancy models of chapter XX.
	Strictly speaking, the models in this chapter are for metacommunities, i.e., for the case where we have data on the occurrence of a collection of species at a collection of sites, in other words, on a spatially structured community. Single communities can be analysed with simple occupancy models, where species take the place of sites; see chapter XX (occupancy chapter). Nevertheless, we will call only the models in this chapter community models.
	Currently, there is no functionality in unmarked for analysing community models in a likelihood framework. So, we will only illustrate Bayesian analyses of the models in this chapter using WinBUGS and JAGS. As usual, the difference in code between the two software programs is minute and we will comment on any such differences. 
	In writing code, there is often a tradeoff between readability and efficiency. Often, more efficient code comes at the expense of readability. Here, we strive to write code such that it is as easily understandable as possible, recognizing that the coding may perhaps be optimized for increased speed.
	The models in this chapter are among the most computationally expensive in this book (perhaps only beaten by the dynamic N-mixture models of Dail and Madsen; see section XXX, and of course the dynamic community models in chapter XXX). We add approximate run times (ART) for each analysis to help you decide whether you should go to bed after launching a model run. In earlier sections of this chapter, we present code for executing the analysis in WinBUGS as well as in JAGS. As you will see, the run times in JAGS are about half of those in WinBUGS, so for the later, and more computationally expensive, models, we only give code for JAGS. Nevertheless, running the models in WinBUGS can be very beneficial for debugging, which is not always easy in WinBUGS, but may be still more of a pain still with JAGS (though some disagree).


[bookmark: _Toc296678236][bookmark: _Toc308638302]12.2. Sampling situation, simulation of data and model assumptions
Data simulation yet to come for the simplest case with constant parameters for everybody

# Simulate data with random psi and p. No covariates. (From Richard)
sim <- function(nSites=50, nSpp=30, nReps=4, mu.psi=-1, sig.psi=1,
                mu.p=0, sig.p=0.5) {
    y <- array(NA_integer_, c(nSites, nSpp, nReps))
    dimnames(y) <- list(paste("site", 1:nSites, sep=""),
                        paste("sp", 1:nSpp, sep=""),
                        paste("rep", 1:nReps, sep=""))
    z <- matrix(NA_integer_, nSites, nSpp)
    psi <- plogis(rnorm(nSpp, mu.psi, sig.psi))
    p <- plogis(rnorm(nSpp, mu.p, sig.p))
    detected.at.all <- rep(NA, nSpp)
    for(i in 1:nSpp) {
        z[,i] <- rbinom(nSites, 1, psi[i])
        for(j in 1:nReps) {
            y[,i,j] <- rbinom(nSites, 1, z[,i]*p[i])
        }
        detected.at.all[i] <- if(any(y[,i,]>0)) TRUE else FALSE
    }
    y <- y[,detected.at.all,]
    detected.at.site <- apply(y>0, c(1,2), any)
    y.dim <- dim(y)
    y0 <- array(0L, c(y.dim[1], y.dim[2]+1, y.dim[3]))
    y0[,1:y.dim[2],] <- y
    nd0 <- cbind(!detected.at.site, 1L)
    return(list(y=y, y0=y0, z=z, psi=psi, p=p,
                nd=!detected.at.site, nd0=nd0))
}

sim1 <- sim(nSites=50, nSpp=30, nReps=3, mu.psi=-1, sig.psi=1,
            mu.p=-1, sig.p=0.5)
str(sim1)

apply(sim1$y, 2, sum)

op <- par(mfrow=c(2,1))
hist(sim1$psi)
hist(sim1$p)
par(op)






In this chapter we deal with models for data , which indicate by a 1 the event that species  was detected at site  during replicate survey  and by a 0 the event that it was not detected. Thus, the models in this chapter are ‘incidence-based’, rather than ‘abundance-based’, to use two terms that are sometimes used in the literature. Thus, our data simply keep track of whether at least one individual of a species was recorded at a site during a particular time, but does not record a count. Or, if counts are recorded, they are reduced to simple detection/nondetection data. It is possible to write models similar to those in this chapter for count data (Yamaura et al. Diversity and Distributions, 2012) or for capture-recapture data where again the basic latent quantity estimated is abundance (Chandler et al., Conservation Biology, 2013). We will later add an example of this in the book.

	As usual, the short-term temporal replication (implied by the index ) is required to separate absence from non-detection error. Replication is assumed to be at least two for at least some sites, with more replication better, but a balanced design is not a requirement of the model. Thus, as for the single-species occupancy models, multi-species occupancy models may be applied to data sets whether replicates are only available for a fraction of all sites, the remainder being surveyed a single time only. Of course, there is the usual tradeoff between the amount of replication and the requirement of community closure. The models in this chapter assume that a site is either occupied or not occupied by a species during all repliacte surveys utilized in the analysis (for open community models see chapter XX). The effects of violation of the closure assumption have not been studied in detail, but intuition and analogy with the similar single-species occupancy models suggests that some degree of non-closure will simply lead to a redefinition of the occupancy parameter and the number of species. With lack of closure, occupancy will likely denote use of the study area by a species, rather than its permanenent presence, and the number of species will refer to all the species that ever occur in the study area during the entire period of study. Nevertheless, as for other hierarchical models in this book, we stress that the better the closure assumption is met, the easier is the interpretation of the parameters and that therefore, efforts should be made to meet this assumption.
	Importantly, all the models in this chapter assume that the occurrence of one species is independent of the occurrence of all other species in the community, i.e., there must not be interactions in the sense that the occurrence probability of one species is greater or less when another speciesis present than when it is absent. At first sight, this assumption may appear to be a tall order and indeed, there will no doubt be situations where this assumption may be so strongly violated that the use of the multispecies occupancy models is not sensible (at least not the later ones in this chapter). However, we believe that the strength of interaction between the species in a community must be scale-dependent, with interactions probably strongest at small spatial scales and becoming increasingly neglectable at larger spatial scales. In this chapter, we use for illustration data from the Swiss breeding bird survey MHB, where occurrence is assessed at a scale of 1km2 quadrats. At this scale, we believe that very few species would interact such that this was noticeable in terms of their probability of occupancy. However, the assumption of independence is one that ought to be scrutinized whenever these multi-species models are adopted.
	Modeling species interactions appears like the final frontier for a rigorous framework for modeling communities. Some attempts have been made in this regard (R.M. Dorazio, pers. comm.), but the challenges appear huge. One exception is the modeling of interactions between two or a few species; see section XX in the single-species occupancy chapter for an example.
More on interactions somewhere else in the book.

12.3. Overview of some models for metacommunities




In this chapter, we will fit a progression of ten increasingly complex models to the original binary data or functions thereof. The data can be denoted  and contain the detection (1) or nondetection (0) of species  at site  during replicate survey .
1. The simplest model for the community will consist of a regression model which relates the number of observed species to a couple of covariates. Two drawbacks of this analysis are that imperfect detection of species is not allowed for and that the species identities are lost, i.e., individual species are not distinguished across sites.
2. A slightly more advanced approach to community modeling is the adoption of a straightforward N-mixture model for the replicated counts of observed species. Under this approach, imperfect detection of species is partly accounted for, although species heterogeneity in detection cannot be modelled apart from differences among sites and surveys. Furthermore, species identities are not retained either. We can see this as an intermediate model in a progression of models from very basic to increasingly sophisticated approaches.
3. The final three steps in our progression of community models will consist of multi-species site-occupancy models. Importantly, in these models species identity is retained, so the model accommodates both features of the individual member species of a community as well as emerging characteristics of the (meta-)community. Furthermore, heterogeneity among species both in occurrence and in detection can be fully accounted for. The simplest such model consists in the fitting of a separate occupancy model to each observed species, but for all species at once. No relationship among the species will be imposed on parameters. In ANOVA terms, species will be treated as fixed effects; their estimates will be fully independent from one another. This analysis allows one to estimate (correcting for imperfect detection) the number of species occurring at each site among the total number of species ever detected in the metacommunity, but not the total number of species occurring in the entire metacommunity.
4. A more complex model will treat each species as a random sample from the studied community, i.e., each species will be assigned a random effect in the analysis and the parameter estimates of each species will no longer be independent from one another. This analysis will allow to formally estimate characteristics of the observed community, e.g., the mean probability of occupancy or detection or the mean response of occupancy probability to a covariate for some environmental conditions. This approach also allows us to estimate the number of species occurring at each site among all the species that were ever detected anywhere in the metacommunity, but not the total size of the metacommunity. That is, no inference is made about those species that were never observed anywhere. This is the model of Gelfand and Latimer (e.g., Ecological Applications, Appied Statistics, around 2005 and 2006) [or at least structurally very similar to those models]
5. The final model accommodates the fact that some species in the metacommunity may never be observed anywhere at all. We can extend the random-effects, multi-species model to those unseen species, in an attempt to make an inference about the entire community. This analysis uses parameter-expanded data augmentation (Tanner and Wong 1987, Royle et al. 2007, Royle and Dorazio 2011), i.e., the fitting of a more complex hierarchical model (with one additional hierarchical layer) to a modified data set, one which includes an added portion of data to accommodate potentially unseen species (such as the Ivory-billed woodpecker .... just kidding!). This is the full multi-species site-occupancy model of Dorazio and Royle (Dorazio & Royle 2005; Dorazio et al. 2006), and the most complex community model we consider in this chapter. We will show a first example without covariates and then an example where we include covariates in both parts of the model (i.e., occupancy and detection probability).






In the absence of covariates that vary by replicate survey , it is convenient to aggregate the binary detection/nondetection data  by summing over replicates and then model detection frequency , i.e., the number of detections of species  at site , as binomial random variable with a binomial index given by the number of surveys (which may or may not be the same for all sites and/or species). We will show examples of such a binomial, instead of a Bernoulli, observation model for two of the models and will see that the binomial version runs faster (by about 20% in our case).
	Importantly, all occupancy-based community models in this chapter do not directly model species richness; rather, they model the occurrence of each individual species in the community. Species richness is then a derived quantity based on the occurrence of individual species. At first, this may seem a little indirect and unsatifactory if your interest is focused simply on community size, perhaps because you want to relate that to environmental variables or study temporal trends. However, we believe that this is actually often a good thing, because it emphasizes a much more mechanistic approach to the modeling of species species richness, where species richness is a derived quantity from the individual occurring species. We will also see that a focus on species richness directly may fail to identify important environmental factors that govern the occurrence of individual species.
However, if you want to model species richness as a function of other spatially or temporally indexed covariates, you can always do a two-step analysis and plug estimates of N into a regression analysis to model those covariates. One neat example of this is Tingley and Beissinger, Ecology, 2013. See model 9 for an example of how to do this in the context of estimating an elevational profile of avian species richness in Switzerland.


12.4. Reading in the data and generating some data summaries
We will use part of the survey data collected during 1999–2007 in the Swiss breeding bird survey MHB (Monitoring Häufige Brutvögel; Schmid et al. 2004). In this national biological inventory, all individuals of all breeding bird species are surveyed using territory mapping during three surveys in the breeding season (mid-April through end of June) in 267 1 km2 sampling units laid out as a grid over Switzerland. (Only two surveys are conducted in quadrats above the treeline.) Surveys are conducted along irregular and quadrat-specific transects of typical length 3-8 km (mean 5). Thus, in the MHB counts and territory ID data are collected, but we will reduce the information content of the original data and simply model the the species-specific detection/nondetection data. The data chosen, for 2007, contain detection/nondetection data for a total of 156 species at 267 quadrats during three surveys and include species identification (specid, spec.name), a quadrat identifier (coord), quadrat elevation in metres (ele), route length in km (route) and forest cover in % of a quadrat (forest). The variables det071, det072 and det073 contain the binary detection/nondetection data for the first, second and third survey in 2007. The variables date071, date072 and date073 contain the dates of survey 1, 2 and 3 in 2007, with the day 1 being April 1.

# Read in data set and look at data first
data <- read.table("mhb-occupancy-2007.txt", header = TRUE)
str(data)
'data.frame':   41652 obs. of  13 variables:
 $ case     : int  1 2 3 4 5 6 7 8 9 10 ...
 $ specid   : int  50 50 50 50 50 50 50 50 50 50 ...
 $ spec.name: Factor w/ 156 levels "Alpenbraunelle",..: 156 156 156 156 ...
 $ coord    : num  1.5 1.5 1.5 1.51 1.51 ...
 $ ele      : int  450 450 1050 950 1150 550 750 650 550 550 ...
 $ route    : num  6.2 5.5 4.3 4.5 5.4 3.6 3.9 6.1 5.1 3.9 ...
 $ forest   : int  3 21 32 9 35 2 6 60 5 13 ...
 $ det071   : int  0 0 0 0 0 0 0 0 0 0 ...
 $ det072   : int  0 0 0 0 0 0 0 0 0 0 ...
 $ det073   : int  0 0 0 0 0 0 0 0 0 0 ...
 $ date071  : int  20 19 22 22 15 21 21 37 29 20 ...
 $ date072  : int  46 50 55 49 43 40 53 50 43 40 ...
 $ date073  : int  54 56 61 70 60 49 64 65 57 60 ...


# Create species lists
(species.list <- levels(data$spec.name))
(spec.name.list <- tapply(data$specid, data$spec.name, mean))
(spec.id.list <- unique(data$specid))
(ordered.spec.name.list <- spec.name.list[order(spec.name.list)])

# Select detection/nondetection data
DET <- cbind(data$det071, data$det072, data$det073)

In BUGS it is convenient to fit the model to the data formatted in a 3-dimensional array, because the model description is neater if we can use the dimensions of a multi-dimensional to convey the information about factors such as site, species and replicate survey. We do this next. The third dimension of the array indexes species and we name it using the appropriate species list.

# Put detection data into 3D array: site x rep x species
nsite <- 267
nrep <- 3
nspec <- 156
Y <- array(NA, dim = c(nsite, nrep, nspec))
for(i in 1:156){
   Y[,,i] <- DET[((i-1)*nsite+1):(i*nsite),]
}
dimnames(Y) <- list(NULL, NULL, ordered.spec.name.list)

Then, we look at the observed number of occupied sites, among the 265 which were surveyed in 2007 (two weren't).

# Observed number of occupied sites
tmp <- apply(Y, c(1,3), max, na.rm = TRUE)
tmp[tmp == -Inf] <- NA         # Only 265 quadrats surveyed in 2007
sort(obs.occ <- apply(tmp, 2, sum, na.rm = TRUE))

500  700  850 1670 1680 2140 3090 3230 4042 4450 4520 4870 4950 5140 5500 5570 5670 1050 
   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1 
1850 1920 4040 4390 5060   80 1420 1500 1620 3360 3700 4530 4610 1730 3170 3200 3260 3560 
   1    1    1    1    1    2    2    2    2    2    2    2    2    3    3    3    3    3 
4930   50  570 2230 3070 3120 3770 5740 3430 3710 1550 3320  390 1430 3000 1080 3390 4100 
   3    4    4    4    4    4    4    4    5    5    6    6    7    7    7    8    8    8 
4460 5640 1610 3960 4020 3460 5252 1110 1200 3370 3450 4470 1560 1770 2980 3683 2971 4180 
   8    8    9    9    9   10   10   12   12   12   12   13   14   15   16   16   17   17 
4720 1540 3660 3630 5290 5360 3140 1130 3020 4750 4090 3970 5320 5450 3780 5690 4860 4910 
  20   21   21   22   23   25   26   27   27   29   31   33   34   36   39   40   41   43 
1510 5390 4120 4740 4620  720 4070 3640 5160 3270 3880 5370 3570 3740 1090 4230 1100 5050 
  46   47   48   53   55   56   56   60   60   61   68   69   70   71   73   73   74   74 
5000 3670 3720 5280 4290 3870 3950 4970 5460 5520 1480 3400 3610 5580 5180 5251 5480 4600 
  77   81   83   83   86   91   91   92   92   93  100  100  103  106  110  111  112  114 
4840 5350 3380 3860 5330 3040 3940 2990 3830 1150 3800 4830 3910 4320 4900 3410 3681 3750 
 116  121  126  126  129  131  140  141  142  146  159  163  170  174  174  177  179  179 
4820 5030 3790 3820 4310 4730 4570 4240 4000 3980 4060 5550 
 179  181  196  197  203  211  214  215  223  228  238  241

A total of 17 species were never detected in 2007 and we toss them out. We are then left with binary detection/nondetection data from 267 sites, 3 replicate surveys for a total of 139 species that were observed during the 2007 surveys (NOTE: we could also toss out the data from the two unsurveyed sites, but we will keep them to illustrate the ability of some random-effects models to estimate things for new, unsurveyed units such as sites).

Y <- Y[,,obs.occ > 0]
str(Y)
> str(Y)
int [1:267, 1:3, 1:139] 0 0 0 0 0 0 0 0 0 0 ...
 - attr(*, "dimnames")=List of 3
  ..$ : NULL
  ..$ : NULL
  ..$ : chr [1:139] "50" "80" "390" "570" ...

# Redefine nspec as the observed # species
nspec <- dim(Y)[3]

We can also look at the observed species richness at each quadrat.

# Get observed species richness
tmp <- apply(Y, c(1,3), max, na.rm = TRUE)
tmp[tmp == -Inf] <- NA
(sort(C <- apply(tmp, 1, sum)))
  [1]  5  6  6  7  7  8  8  9  9  9  9  9  9  9 10 10 11 11 11 11 13 14 14
 [24] 14 15 15 15 16 16 16 17 17 18 19 20 20 21 21 22 22 23 24 24 24 24 25
 [47] 26 26 26 27 27 27 27 27 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29
 [70] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31
 [93] 32 32 32 32 32 32 32 32 32 33 33 33 33 33 33 33 33 33 34 34 34 34 34
[116] 34 34 34 34 34 34 34 34 34 35 35 35 35 35 35 35 35 35 35 36 36 36 36
[139] 36 36 36 36 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 38 38 38 38
[162] 38 38 38 38 38 38 38 39 39 39 39 39 39 39 39 39 40 40 40 40 40 40 40
[185] 40 40 40 41 41 41 41 41 41 41 41 41 42 42 42 42 42 42 42 42 42 42 42
[208] 42 42 42 42 43 43 43 43 43 43 43 43 44 44 44 44 44 44 44 44 44 44 45
[231] 45 45 45 45 46 46 46 46 46 46 46 46 46 47 47 47 47 48 48 48 48 48 48
[254] 48 49 49 49 50 50 51 51 52 56 62 62

So the observed species richness varied from 5 to 62, with an average of 34. Let’s plot that.

plot(table(C), xlim = c(0, 65), xlab = "Observed number of species", ylab = "Number of quadrats")
abline(v = mean(C, na.rm = TRUE), col = "blue", lwd = 3)
[image: ]


12.5. Models for species richness and other features of a metacommunity
Note our progression of ten models goes from very simplistic to increasingly realistic/mechanistic. We believe that such a progression can help to clarify the differences between these models.

12.5.1. Simple Poisson regression of the observed community size
Probably the most common approach to inference about species richness in much of current ecology would be to fit some kind of regression model to these observed numbers of species. Since it is not immediately clear how we should incorporate survey date, we would typically analyse the observed number of species. Here, we related this number to elevation (linear and squared) and forest cover (linear). Of course, we could fit this model in R as well, but we choose Bayesian analyses for the models in this chapter throughout.

# Get covariates and standardise them
# Quadrat elevation and forest cover
ele <- data$ele[1:nsite]
(mean.ele <- mean(ele, na.rm = TRUE))
(sd.ele <- sd(ele, na.rm = TRUE))
ele <- (ele - mean.ele) / sd.ele
forest <- data$forest[1:nsite]
(mean.forest <- mean(forest, na.rm = TRUE))
(sd.forest <- sd(forest, na.rm = TRUE))
forest <- (forest - mean.forest) / sd.forest


# Bundle data
win.data <- list(C = C, nsite = length(C), ele = ele, forest = forest)


# Specify model in BUGS language
sink("model1.txt")
cat("
model {

# Priors
beta0 ~ dnorm(0, 0.001)
beta1 ~ dnorm(0, 0.001)
beta2 ~ dnorm(0, 0.001)
beta3 ~ dnorm(0, 0.001)

# Likelihood
for (i in 1:nsite){
   C[i] ~ dpois(lambda[i])
   log(lambda[i]) <- beta0 + beta1 * ele[i] + beta2 * pow(ele[i],2) + beta3 * forest[i]
}

}
",fill = TRUE)
sink()


# Initial values
inits <- function() list(beta0 = rnorm(1), beta1 = rnorm(1), beta2 = rnorm(1), beta3 = rnorm(1))

# Parameters monitored
params <- c("beta0", "beta1", "beta2", "beta3")


# MCMC settings
ni <- 6000   ;   nt <- 4   ;   nb <- 2000   ;   nc <- 3

# Call WinBUGS from R (ART <1 min)
out1 <- bugs(win.data, inits, params, "model1.txt", n.chains = nc, 
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R (ART <1 min)
library("R2jags")
system.time(out1J <- jags(win.data, inits, params, "model1.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )

# Summarize posteriors
print(out1, dig = 2)
Inference for Bugs model at "model1.txt", fit using WinBUGS,
 3 chains, each with 6000 iterations (first 2000 discarded), n.thin = 4
 n.sims = 3000 iterations saved
            mean   sd    2.5%     25%     50%     75%   97.5% Rhat n.eff
beta0       3.66 0.02    3.63    3.65    3.66    3.67    3.69    1  1100
beta1      -0.19 0.01   -0.21   -0.20   -0.19   -0.18   -0.16    1  3000
beta2      -0.18 0.02   -0.21   -0.20   -0.18   -0.17   -0.15    1  1700
beta3       0.01 0.01   -0.01    0.01    0.01    0.02    0.04    1  3000
deviance 1917.88 2.80 1914.00 1916.00 1917.00 1919.00 1925.00    1  3000

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)
pD = 4.0 and DIC = 1921.9
DIC is an estimate of expected predictive error (lower deviance is better).


# Summarize output
par(mfrow = c(1,3))
hist(out1$sims.list$beta1, breaks = 100, col = "grey", main = "", xlab = "Slope of elevation (linear)")
hist(out1$sims.list$beta2, breaks = 100, col = "grey", main = "", xlab = "Slope of elevation (squared)")
hist(out1$sims.list$beta3, breaks = 100, col = "grey", main = "", xlab = "Slope of forest")

[image: ]
We see that the evidence for both a linear and a squared effect of elevation is strong, while that for a forest cover effect much less so. We want to estimate the relationships between observed species richness and these environmental covariates.

# Get covariate values for prediction
orig.pred.ele <- 250:2250
pred.ele <- (orig.pred.ele - mean.ele) / sd.ele
orig.pred.forest <- 1:100
pred.forest <- (orig.pred.forest - mean.forest) / sd.forest

# Compute predictions and 95% CRIs and plot
mean.pred.ele <- exp(out1$mean$beta0 + out1$mean$beta1 * pred.ele + out1$mean$beta2 * pred.ele^2)
LCL.ele <- exp(out1$summary["beta0",3] + out1$summary["beta1",3] * pred.ele + out1$summary["beta2",3] * pred.ele^2)
UCL.ele <- exp(out1$summary["beta0",7] + out1$summary["beta1",7] * pred.ele + out1$summary["beta2",7] * pred.ele^2)
mean.pred.forest <- exp(out1$mean$beta0 + out1$mean$beta3 * pred.forest)
LCL.forest <- exp(out1$summary["beta0",3] + out1$summary["beta3",3] * pred.forest)
UCL.forest <- exp(out1$summary["beta0",7] + out1$summary["beta3",7] * pred.forest)
par(mfrow = c(1,2))
plot(orig.pred.ele, mean.pred.ele, ylab = "Predicted species count", xlab = "Elevation", type = "l", lwd = 3, col = "blue", ylim = c(0, 50))
lines(orig.pred.ele, LCL.ele, lwd = 1, col = "grey")
lines(orig.pred.ele, UCL.ele, lwd = 1, col = "grey")
plot(orig.pred.forest, mean.pred.forest, ylab = "Predicted species count", xlab = "Forest cover", type = "l", lwd = 3, col = "blue", ylim = c(0, 50))
lines(orig.pred.forest, LCL.forest, lwd = 1, col = "grey")
lines(orig.pred.forest, UCL.forest, lwd = 1, col = "grey")

[image: ]So the response of the community to elevation seems clear: it is greatest at medium elevation. However, there is only a weak linear response, at best, of observed species richness to forest cover. That’s all we have learned about the community of Swiss breeding birds using what is probably the most traditional approach of inference about a community.

We can also try out to fit an effect of date, by keeping the species counts for each site and replicate. We do this next. Note this analysis is for the less aggregated data than the one in the previous analysis.

# Get observed species richness per site and rep
CC <- apply(Y, c(1,2), sum, na.rm = TRUE)
CC[CC == 0] <- NA		# 0 means not surveyed

# Get covariates and standardise them
# Quadrat elevation and forest cover
ele <- data$ele[1:nsite]
(mean.ele <- mean(ele, na.rm = TRUE))
(sd.ele <- sd(ele, na.rm = TRUE))
ele <- (ele - mean.ele) / sd.ele
forest <- data$forest[1:nsite]
(mean.forest <- mean(forest, na.rm = TRUE))
(sd.forest <- sd(forest, na.rm = TRUE))
forest <- (forest - mean.forest) / sd.forest

# Survey date
DAT <- cbind(data$date071, data$date072, data$date073)[1:nsite,]  # Survey dates, vary by site and rep only
(mean.date <- mean(DAT, na.rm = TRUE))
(sd.date <- sd(c(DAT), na.rm = TRUE))
DAT <- (DAT - mean.date) / sd.date
DAT[is.na(DAT)] <- 0

# Bundle data
win.data <- list(CC = CC, nsite = nrow(CC), nrep = ncol(CC), ele = ele, forest = forest, DAT = DAT)


# Specify model in BUGS language
sink("model2.txt")
cat("
model {

# Priors
beta0 ~ dnorm(0, 0.001)
beta1 ~ dnorm(0, 0.001)
beta2 ~ dnorm(0, 0.001)
beta3 ~ dnorm(0, 0.001)
beta4 ~ dnorm(0, 0.001)

# Likelihood
for (i in 1:nsite){
   for(j in 1:nrep){
      CC[i,j] ~ dpois(lambda[i,j])
      log(lambda[i,j]) <- beta0 + beta1 * ele[i] + beta2 * pow(ele[i],2) +
      beta3 * forest[i] + beta4 * DAT[i,j]
   }
}
}
",fill = TRUE)
sink()


# Initial values
inits <- function() list(beta0 = rnorm(1), beta1 = rnorm(1), beta2 = rnorm(1), beta3 = rnorm(1), beta4 = rnorm(1))

# Parameters monitored
params <- c("beta0", "beta1", "beta2", "beta3", "beta4")


# MCMC settings
ni <- 6000   ;   nt <- 4   ;   nb <- 2000   ;   nc <- 3

# Call WinBUGS from R (ART 1.3 min)
out2 <- bugs(win.data, inits, params, "model2.txt", n.chains = nc, 
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R (ART 0.5 min)
library("R2jags")
system.time(out2J <- jags(win.data, inits, params, "model2.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )

# Summarize posteriors
print(out2, dig = 2)
Inference for Bugs model at "model2.txt", fit using WinBUGS,
 3 chains, each with 6000 iterations (first 2000 discarded), n.thin = 4
 n.sims = 3000 iterations saved
            mean   sd    2.5%     25%     50%     75%   97.5% Rhat n.eff
beta0       3.39 0.01    3.37    3.38    3.39    3.40    3.42    1   520
beta1      -0.18 0.01   -0.20   -0.19   -0.18   -0.18   -0.16    1  3000
beta2      -0.15 0.01   -0.17   -0.16   -0.15   -0.15   -0.13    1   900
beta3       0.01 0.01    0.00    0.01    0.01    0.02    0.03    1   550
beta4       0.01 0.01    0.00    0.01    0.01    0.02    0.03    1  3000
deviance 5060.86 3.20 5057.00 5059.00 5060.00 5062.00 5069.00    1  3000

Now, we see a significant negative effect of elevation linear (beta1), elevation squared (beta2), forest cover (beta3) and also of survey date (beta4) on observed species richness. Species richness appears to increase over time. Who knows what that all means ....


And as a final model for the observed community size, here is the equivalent to the random-effects Poisson (REP) model from chapter XX. We add a random site effect to account for the non-independence of counts from the same site. Data and covariates will be the same as for the previous model; the relevant code will not be repeated. This is a greatly simplified version of the random-effects Poisson models developed by Link and Sauer (e.g., Link and Barker, cerulean warbler, Ecology 2002)

# Bundle data
win.data <- list(CC = CC, nsite = nrow(CC), nrep = ncol(CC), ele = ele, forest = forest, DAT = DAT)


# Specify model in BUGS language
sink("model3.txt")
cat("
model {

# Priors
mubeta0 ~ dnorm(0, 0.001)
taubeta0 <- pow(sd.beta0,-2)
sd.beta0 ~ dunif(0, 10)
beta1 ~ dnorm(0, 0.001)
beta2 ~ dnorm(0, 0.001)
beta3 ~ dnorm(0, 0.001)
beta4 ~ dnorm(0, 0.001)
beta5 ~ dnorm(0, 0.001)

# Likelihood
for (i in 1:nsite){
   beta0[i] ~ dnorm(mubeta0, taubeta0)     # site intercepts random now
   for(j in 1:nrep){
      CC[i,j] ~ dpois(lambda[i,j])
      log(lambda[i,j]) <- beta0[i] + beta1 * ele[i] + beta2 * pow(ele[i],2) +
      beta3 * forest[i] + beta4 * DAT[i,j] + beta5 * pow(DAT[i,j],2)
   }
}
}
",fill = TRUE)
sink()

# Initial values
inits <- function() list(beta0 = rnorm(nrow(CC)), beta1 = rnorm(1), beta2 = rnorm(1), beta3 = rnorm(1), beta4 = rnorm(1), beta5 = rnorm(1))

# Parameters monitored
params <- c("mubeta0", "sd.beta0", "beta0", "beta1", "beta2", "beta3", "beta4", "beta5")

# MCMC settings
ni <- 6000   ;   nt <- 4   ;   nb <- 2000   ;   nc <- 3

# Call WinBUGS from R (ART 1.8 min)
out3 <- bugs(win.data, inits, params, "model3.txt", n.chains = nc, 
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R (ART 0.8 min)
library("R2jags")
system.time(out3J <- jags(win.data, inits, params, "model3.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )

# Summarize posteriors
print(out3, dig = 2)
Inference for Bugs model at "model3.txt", fit using WinBUGS,
 3 chains, each with 6000 iterations (first 2000 discarded), n.thin = 4
 n.sims = 3000 iterations saved
              mean    sd    2.5%     25%     50%     75%   97.5% Rhat n.eff
mubeta0       3.40  0.03    3.34    3.38    3.40    3.41    3.45 1.00  3000
sd.beta0      0.22  0.01    0.19    0.21    0.22    0.23    0.25 1.00  3000
beta0[1]      3.29  0.11    3.08    3.22    3.29    3.36    3.50 1.00  1500
beta0[2]      3.34  0.10    3.13    3.27    3.34    3.41    3.54 1.00  3000
beta0[3]      3.20  0.10    2.99    3.12    3.20    3.27    3.40 1.00  3000
[ ... ]
beta0[265]    3.31  0.16    2.99    3.20    3.31    3.42    3.62 1.00   720
beta0[266]    3.81  0.10    3.61    3.74    3.81    3.88    4.01 1.00  3000
beta0[267]    4.04  0.09    3.87    3.98    4.05    4.11    4.21 1.00  3000
beta1        -0.20  0.02   -0.24   -0.21   -0.20   -0.19   -0.16 1.00  1700
beta2        -0.17  0.02   -0.21   -0.18   -0.17   -0.15   -0.12 1.00  2100
beta3         0.03  0.02   -0.01    0.02    0.03    0.04    0.06 1.00  3000
beta4         0.02  0.01    0.00    0.01    0.02    0.02    0.03 1.00  2600
beta5        -0.02  0.01   -0.04   -0.03   -0.02   -0.02   -0.01 1.00  1400
deviance   4198.02 24.56 4151.00 4181.00 4197.00 4214.00 4248.00 1.00  2600

So what can we say about this ?



12.5.2. N-mixture model for temporally replicated counts of species
The simple N-mixture model represents a slightly more sophisticated method of inference for the replicated species counts. This approach corrects (somewhat) for imperfect detection, but it does not allow to model species heterogeneity in detection, nor does it allow inference about individual species, because species identities are lost in this approach.

# Bundle data
win.data <- list(CC = CC, R = nrow(CC), T = ncol(CC), ele = ele, forest = forest, DAT = DAT)

# Specify model in BUGS language
sink("model4.txt")
cat("
model {

# Priors
#alpha0 ~ dunif(-10, 10)
#alpha1 ~ dunif(-10, 10)
#alpha2 ~ dunif(-10, 10)
#alpha3 ~ dunif(-10, 10)
#beta0 ~ dunif(-10, 10)
#beta1 ~ dunif(-10, 10)
#beta2 ~ dunif(-10, 10)

alpha0 ~ dnorm(0, 0.01)
alpha1 ~ dnorm(0, 0.01)
alpha2 ~ dnorm(0, 0.01)
alpha3 ~ dnorm(0, 0.01)
beta0 ~ dnorm(0, 0.01)
beta1 ~ dnorm(0, 0.01)
beta2 ~ dnorm(0, 0.01)


# Likelihood
# Ecological model for true abundance
for (i in 1:R){
   N[i] ~ dpois(lambda[i])
   lambda[i] <- exp(alpha0 + alpha1 * ele[i] + alpha2 * pow(ele[i],2) + alpha3 * forest[i])
#   log(lambda[i]) <- alpha0 + alpha1 * ele[i] + alpha2 * pow(ele[i],2) + alpha3 * forest[i]

   # Observation model for replicated counts
   for (j in 1:T){
      CC[i,j] ~ dbin(p[i,j], N[i])
      p[i,j] <- 1 / (1 + exp(-lp[i,j]))
      lp[i,j] <- beta0 + beta1 * DAT[i,j] + beta2 * pow(DAT[i,j],2)
   # logit(p) = ... causes undefined real result in WinBUGS (but not JAGS)
   }
}
}
",fill = TRUE)
sink()

The total over all sites, Ntotal in the application of the model for abundance, is no longer a meaningful quantity. Not keeping track of which species contributes to the species total at each sites precludes us from adding the species at all sites up for an estimate of the total number of species occurring at all sites.

# Define function to generate random initial values
Nst <- apply(CC, 1, max, na.rm = TRUE) + 1
Nst[Nst == -Inf] <- 35      # Give some nonzero value for unsurveyed sites
inits <- function() list(N = Nst, alpha0 = rnorm(1), alpha1 = rnorm(1), alpha2 = rnorm(1), alpha3 = rnorm(1), beta0 = rnorm(1), beta1 = rnorm(1), beta2 = rnorm(1))

# Parameters monitored
params <- c("alpha0", "alpha1", "alpha2", "alpha3", "beta0", "beta1", "beta2", "N")

# MCMC settings
ni <- 6000   ;   nt <- 4   ;   nb <- 2000   ;   nc <- 3


# Call WinBUGS from R (ART 3.8 min)
out4 <- bugs(win.data, inits, params, "model4.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Summarize posteriors
print(out4, 2)
Inference for Bugs model at "model4.txt", fit using WinBUGS,
 3 chains, each with 6000 iterations (first 2000 discarded), n.thin = 4
 n.sims = 3000 iterations saved
            mean    sd    2.5%     25%     50%     75%   97.5% Rhat n.eff
alpha0      3.67  0.03    3.62    3.65    3.67    3.68    3.72 1.02   140
alpha1     -0.20  0.01   -0.22   -0.21   -0.20   -0.19   -0.17 1.00  3000
alpha2     -0.16  0.02   -0.19   -0.17   -0.16   -0.15   -0.13 1.00   520
alpha3      0.02  0.01   -0.01    0.01    0.02    0.02    0.04 1.00   940
beta0       1.21  0.08    1.05    1.16    1.21    1.27    1.38 1.06    51
beta1       0.08  0.02    0.04    0.07    0.08    0.10    0.12 1.01   380
beta2      -0.06  0.02   -0.10   -0.08   -0.06   -0.05   -0.03 1.00  3000
N[1]       33.37  2.02   30.00   32.00   33.00   35.00   38.00 1.01   370
N[2]       36.14  1.97   33.00   35.00   36.00   37.00   40.00 1.01   420
N[3]       32.41  1.86   29.00   31.00   32.00   34.00   36.00 1.00   510
[ ... ]
N[264]     34.82  1.82   32.00   34.00   35.00   36.00   38.00 1.00   960
N[265]     11.69  1.22   10.00   11.00   12.00   12.00   14.00 1.01   390
N[266]     43.88  1.90   40.00   43.00   44.00   45.00   48.00 1.01   140
N[267]     54.07  2.08   50.00   53.00   54.00   55.00   58.00 1.01   330
deviance 3521.55 31.79 3461.00 3500.00 3520.00 3542.00 3586.00 1.02   110


# Call JAGS from R (ART 2.6 min)
library("R2jags")
system.time(out4J <- jags(win.data, inits, params, "model4.txt", 
   n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )
traceplot(out4J)

# Summarize posteriors
print(out4J, dig = 2)
Inference for Bugs model at "model4.txt", fit using jags,
 3 chains, each with 6000 iterations (first 2000 discarded), n.thin = 4
 n.sims = 3000 iterations saved
         mu.vect sd.vect    2.5%     25%     50%     75%   97.5% Rhat n.eff
N[1]       33.39    1.98   30.00   32.00   33.00   35.00   37.03 1.00  1500
N[2]       36.16    2.03   32.98   35.00   36.00   37.00   40.00 1.00  1100
N[3]       32.42    1.87   29.00   31.00   32.00   34.00   36.00 1.00  2000
[ ... ]
N[264]     34.89    1.82   32.00   34.00   35.00   36.00   39.00 1.00   580
N[265]     11.68    1.21   10.00   11.00   12.00   12.00   14.00 1.00  1100
N[266]     43.96    1.87   41.00   43.00   44.00   45.00   48.00 1.00   610
N[267]     54.07    2.08   50.00   53.00   54.00   55.00   58.00 1.00  3000
alpha0      3.67    0.03    3.62    3.65    3.67    3.68    3.72 1.01   440
alpha1     -0.20    0.01   -0.22   -0.20   -0.20   -0.19   -0.17 1.00  3000
alpha2     -0.16    0.02   -0.20   -0.17   -0.16   -0.15   -0.13 1.00   850
alpha3      0.02    0.01   -0.01    0.01    0.01    0.02    0.04 1.00   530
beta0       1.21    0.08    1.06    1.16    1.21    1.27    1.37 1.03   170
beta1       0.08    0.02    0.04    0.07    0.08    0.10    0.12 1.00   670
beta2      -0.07    0.02   -0.10   -0.08   -0.07   -0.05   -0.03 1.00  1500
deviance 3523.63   30.83 3465.91 3502.37 3523.20 3543.55 3586.44 1.00  1400

We can look at how "well" the model can estimate the intercepts of the two levels of this hierarchical model.

plot(out4$sims.list$alpha0, out4$sims.list$beta0, main = "Joint posterior of abundance and detection intercepts")

We can also compare the main parameter estimates from the random-effects Poisson regression (model 3) with the N-mixture model (#4). First, the parameters in the abundance model (or the equivalent in model 3).

print(tmp <- cbind(out3$summary[c(1, 270:272),c(1:3,7)], out4$summary[1:4, c(1:3, 7)]), 3)
           mean     sd     2.5%   97.5%   mean     sd     2.5%   97.5%
mubeta0  3.3951 0.0267  3.34400  3.4480  3.668 0.0254  3.61897  3.7170
beta1   -0.1991 0.0187 -0.23581 -0.1620 -0.197 0.0130 -0.22260 -0.1714
beta2   -0.1668 0.0224 -0.21030 -0.1237 -0.162 0.0164 -0.19430 -0.1298
beta3    0.0282 0.0179 -0.00737  0.0631  0.015 0.0127 -0.00927  0.0404

Then, the effects of date, which is on the counts directly in model 3 but at the appropriate place (i.e., the detection model) in the N-mixture model (#4)

print(tmp <- cbind(out3$summary[273:274,c(1:3,7)], out4$summary[6:7, c(1:3, 7)]), 3)
         mean      sd     2.5%    97.5%    mean     sd    2.5%   97.5%
beta4  0.0159 0.00958 -0.00312  0.03452  0.0839 0.0204  0.0441  0.1229
beta5 -0.0218 0.00839 -0.03785 -0.00572 -0.0641 0.0181 -0.0998 -0.0288

Some observations ?


12.5.3. Multi-species occupancy models




Next , we will adopt a totally different approach and will model the specific response of each member of the community. We will see that this will allow us to get a MUCH deeper insight into the community and how it responds to environmental and other covariates. It will alow us to look both at average responses of the community, while at the same time we can also inspect the response of very member of the community. Remember our observed data are the binary occurrence indicators  for species  at site  during survey . So what can we do with these data when we want to retain species identities ?

12.5.3.1. Analysis of Bernoulli response as an n-fold single species occupancy model
The first and simplest approach is just to fit a separate occupancy model to each species. We could do this in a loop, by fitting one occupancy model to the data from each species in turn. However, it is much more efficient to fit the models to the data of ALL species at once. This can easily be done in BUGS by organizing the data as a 3-dimensional array (which we have already done). For illustration, we will fit a Null model to each species, with a species-specific intercept for occupancy and for detection only.
	We can easily add up the estimated number of occurring species for each site, as well as the estimated number of occupied sites for each species. As usual, the ease with which we can do computations on latent variables (here, the indicators of occurrence z) is one of the great benefits of a Bayesian analysis.







	It is useful to write the model fitted in algebra. Again, the observed data are the binary occurrence indicators  for species  (), site  () and survey  (). We fit the following two-level hierarchical model.


Process model: 		

Observation model:		



Note that no relationship among species is imposed on the species-specific parameters of occupancy () and detection ().


# Bundle data
win.data <- list(Y = Y, nsite = nrow(Y), nrep = ncol(Y), nspec = dim(Y)[3])

# Specify model in BUGS language
sink("model5.txt")
cat("
model {

# Priors
for(k in 1:nspec){
   psi[k] ~ dunif(0, 1)
   p[k] ~ dunif(0, 1)
}

# Ecological model for latent occurrence z (process model)
for(k in 1:nspec){
   for (i in 1:nsite) {
      z[i,k] ~ dbern(psi[k])
   }
}

# Observation model for observed data Y
for(k in 1:nspec){
   for (i in 1:nsite) {
      p.eff[i,k] <- z[i,k] * p[k]
      for (j in 1:nrep) {
         Y[i,j,k] ~ dbern(p.eff[i,k])
      }
   }
}

# Derived quantities
for(k in 1:nspec){
   occ.fs[k] <- sum(z[,k])      # Number of occupied sites among the 267
}
for (i in 1:nsite) {
   Nsite[i] <- sum(z[i,])       # Number of occurring species at each site
}
}
",fill = TRUE)
sink()

# Initial values
zst <- apply(Y, c(1,3), max) # Observed occurrence as inits for z
zst[is.na(zst)] <- 1
inits <- function() list(z = zst, psi = rep(0.4, 139), p = rep(0.4, 139))

# Parameters monitored
params <- c("psi", "p", "Nsite", "occ.fs")

# MCMC settings
ni <- 2500   ;   nt <- 2   ;   nb <- 500   ;   nc <- 3

# Call WinBUGS from R (ART 20.6 min)
out5 <- bugs(win.data, inits, params, "model5.txt", n.chains = nc, 
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R (ART 10 min)
system.time(out5J <- jags(win.data, inits, params, "model5.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )

JAGS is about twice as fast as WinBUGS. This appears to generally be the case for complex occupancy models. Hence, we will fit the models mostly with JAGS for the remainder of this chapter. To simplify the coding, we will overwrite the original JAGS output with the contens of BUGSoutput in it.

out5J <- out5J$BUGSoutput

# Summarize posteriors
print(out5$summary, dig = 2)
                 mean       sd       2.5%        25%        50%       75%     97.5% Rhat n.eff
psi[1]          0.028   0.0249     0.0078     0.0162     0.0232     0.032     0.086  1.0   320
psi[2]          0.011   0.0068     0.0024     0.0065     0.0099     0.015     0.028  1.0  2200
psi[3]          0.031   0.0108     0.0128     0.0227     0.0293     0.037     0.054  1.0  1600
 [ ... ]
psi[137]        0.037   0.0130     0.0174     0.0283     0.0357     0.045     0.068  1.0  2400
psi[138]        0.157   0.0223     0.1150     0.1419     0.1563     0.172     0.202  1.0  3000
psi[139]        0.026   0.0145     0.0079     0.0164     0.0231     0.032     0.062  1.0  3000
p[1]            0.454   0.1690     0.1067     0.3416     0.4626     0.577     0.760  1.0   190
p[2]            0.869   0.1231     0.5407     0.8113     0.9068     0.960     0.997  1.0  3000
p[3]            0.817   0.0848     0.6210     0.7659     0.8297     0.880     0.945  1.0  3000
[ ... ]
p[137]          0.601   0.1104     0.3749     0.5265     0.6061     0.680     0.802  1.0  3000
p[138]          0.779   0.0408     0.6951     0.7517     0.7812     0.808     0.854  1.0  3000
p[139]          0.460   0.1582     0.1589     0.3473     0.4580     0.576     0.763  1.0   890
Nsite[1]       35.084   2.1986    31.0000    34.0000    35.0000    37.000    40.000  1.0   620
Nsite[2]       38.763   2.1824    35.0000    37.0000    39.0000    40.000    43.000  1.0  1600
Nsite[3]       39.738   2.1893    36.0000    38.0000    40.0000    41.000    44.000  1.0  2400
 [ ... ]
Nsite[265]     20.328   2.7435    15.0000    18.0000    20.0000    22.000    26.000  1.0  1300
Nsite[266]     49.099   1.9028    46.0000    48.0000    49.0000    50.000    53.000  1.0  1700
Nsite[267]     55.734   2.0637    52.0000    54.0000    56.0000    57.000    60.000  1.0  3000
occ.fs[1]       6.592   6.1479     4.0000     4.0000     5.0000     7.000    21.000  1.1   160
occ.fs[2]       2.087   0.4696     2.0000     2.0000     2.0000     2.000     3.000  1.0  1400
occ.fs[3]       7.194   0.4800     7.0000     7.0000     7.0000     7.000     8.000  1.0   930
[ ... ]
occ.fs[137]     9.094   1.4894     8.0000     8.0000     9.0000    10.000    13.000  1.0  1100
occ.fs[138]    41.147   1.1264    40.0000    40.0000    41.0000    42.000    44.000  1.0  3000
occ.fs[139]     5.879   2.8550     4.0000     4.0000     5.0000     6.000    13.000  1.0   920
deviance    27639.010 157.6938 27330.0000 27530.0000 27640.0000 27750.000 27950.000  1.0   240

# Observed and estimated number of occupied sites for each species
cbind(obs.occu = obs.occ[obs.occ > 0], out5$summary[546:684, c(1,3,7)])
     obs.occu       mean     2.5%      97.5%
50          4   6.592000   4.0000  21.000000
80          2   2.086667   2.0000   3.000000
390         7   7.194000   7.0000   8.000000
570         4   4.402667   4.0000   7.000000
720        56  61.604000  57.0000  68.000000
1050        1   3.309667   1.0000  23.000000
1080        8  55.413000  12.0000 189.000000
1090       73  89.967333  80.0000 104.000000
1100       74  84.707667  78.0000  95.000000
1110       12  45.466333  16.0000 145.024916
1130       27 138.166333  61.0000 247.000000
1150      146 158.331000 151.0000 167.000000
1200       12  38.479000  14.0000 110.000000
1420        2  18.173333   2.0000 182.024933
1430        7  39.805000   9.0000 135.000000
1480      100 127.189000 113.0000 147.000000
[ ... ]

plot(obs.occ[obs.occ > 0], out5$summary[546:684,1], xlab = "Observed occupancy estimate", ylab = "Estimated occupancy")
abline(0,1)
segments(obs.occ[obs.occ > 0], out5$summary[546:684,3], obs.occ [obs.occ > 0], out5$summary[546:684,7], col = "grey")
[image: ]

# Estimated occupancy and detection probability for each species
plot(out5$summary[1:139,1], out5$summary[140:278,1], xlab = "Occupancy estimate", ylab = "Detection estimate", xlim = c(0,1), ylim = c(0,1))
segments(out5$summary[1:139,3], out5$summary[140:278,1], out5$summary[1:139,7], out5$summary[140:278,1], col = "grey")
segments(out5$summary[1:139,1], out5$summary[140:278,3], out5$summary[1:139,1], out5$summary[140:278,7], col = "grey")
[image: ]
Naturally, with small sample sizes estimates become worse, in the sense of having greater 95% credible intervals. Here, in what is essentially equivalent to independent, single-species occupancy models fitted to 139 species, we see that when psi is smaller than about 0.15 and p is smaller than about 0.25, then the estimates are crap (in the sense of being very imprecise). We will see that we can improve by not estimating the parameters for all species independently, but rather treating them as a sample from a larger statistical population of parameters (or species), i.e., by treating them as random effects.
	We can estimate site-specific species richness, but this refers to the number of species estimated to occur at a site among the 139 species ever detected.



12.5.3.2. Analysis of Bernoulli response as a random-effects model
In this analysis, we treat the paramters of each species as random effects, which means that we assume that the species-specific effects are drawn from a common distribution, called a prior distribution, with parameters (hyperparameters), whose values we estimate. If the species are exchangeable, i.e., not identical, but similar, in the sense of a common process having produced their parameter values, then the random effects assumption will typically lead to improved estimates, in the sense of having reduced prediction errors or reduced uncertainty intervals. The former is not something that we can prove or observe simply, but the latter is easily shown. Also see papers by Zipkin, DeWan, Ruiz-Gutierrez et al. And Kery & Royle (2008). Also Russell et al.
	This analysis is almost exactly the same as the one before, except that the species-specific parameters are constrained by a common prior distribituion. All the other things, for instance the finite-sample number of occupied quadrats, or the number of species (of the totalof 139) occurring at each site, can be computed in an identical way to the previous analysis.
	In the previous analysis, there was no need to apply any link function to the parameters. However, here, we make the random effects assumption, and we make the conventional assimption of normal priors for the parameters on the logit scale.




	Here is the model in algebra for the binary occurrence indicators  for species , site  and survey . We fit the following three-level hierarchical model; note that the species random effects can be considered a third level in the model hierarchy.


Process model: 			

Observation model:			

Models of species heterogeneity:	

					


Now, the species-specific parameters are no longer estimated independently; rather, they are constrained by the assumption of a common prior distribution for occupancy and detection probability. Also note that the species index  still runs from 1 to 139, the number of observed species. We could also model a covariance between pairs of logit(psi) and logit(p), based on the argument that both occupancy and detection will be affected by heterogeneity in the underlying abundances, which should lead to a positive correlation (see Dorazio and Royle 2005 and later work). We don’t do this here.

# Bundle data
win.data <- list(Y = Y, nsite = nrow(Y), nrep = ncol(Y), nspec = dim(Y)[3])


# Specify model in BUGS language
sink("model6.txt")
cat("
model {

# Priors
for(k in 1:nspec){
   lpsi[k] ~ dnorm(mu.lpsi, tau.lpsi)    # Hyperparams
   lp[k] ~ dnorm(mu.lp, tau.lp)
}
# Hyperpriors
mu.lpsi ~ dnorm(0,0.01)	# Narrower prior to avoid WinBUGS ‘undef real result’
tau.lpsi <- pow(sd.lpsi, -2)
sd.lpsi ~ dunif(0,5)
mu.lp ~ dnorm(0,0.01)	# ditto
tau.lp <- pow(sd.lp, -2)
sd.lp ~ dunif(0,5)

# Ecological model for latent occurrence z (process model)
for(k in 1:nspec){
   logit(psi[k]) <- lpsi[k]   # Take outside of i loop
   for (i in 1:nsite) {
      z[i,k] ~ dbern(psi[k])
   }
}

# Observation model for observed data Y
for(k in 1:nspec){
   logit(p[k]) <- lp[k]       # Needs to be outside of i loop
   for (i in 1:nsite) {
      p.eff[i,k] <- z[i,k] * p[k]
      for (j in 1:nrep) {
         Y[i,j,k] ~ dbern(p.eff[i,k])
      }
   }
}

# Derived quantities
for(k in 1:nspec){
   occ.fs[k] <- sum(z[,k])       # Number of occupied sites among the 267
}
for (i in 1:nsite) {
   Nsite[i] <- sum(z[i,])       # Number of occurring species
}
}
",fill = TRUE)
sink()

# Initial values
zst <- apply(Y, c(1,3), max)	# Observed occurrence as starting values for z
zst[is.na(zst)] <- 1
inits <- function() list(z = zst)

# Parameters monitored
params <- c("mu.lpsi", "sd.lpsi", "mu.lp", "sd.lp", "psi", "p", "Nsite", "occ.fs")

# MCMC settings
ni <- 4000   ;   nt <- 2   ;   nb <- 2000   ;   nc <- 3

# Call WinBUGS from R (ART 42.4 min)
out6 <- bugs(win.data, inits, params, "model6.txt", n.chains = nc, 
n.thin = nt, n.iter = ni, n.burnin = nb, debug = FALSE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R (ART 17.2 min)
system.time(out6J <- jags(win.data, inits, params, "model6.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )

out6J <- out6J$BUGSoutput


# Summarize posteriors
print(out6J$summary, dig = 2)
                  mean       sd       2.5%        25%        50%       75%     97.5% Rhat n.eff
Nsite[1]       32.6693   1.7727    30.0000    31.0000    33.0000    34.000    36.000  1.0   340
Nsite[2]       36.4710   1.7497    34.0000    35.0000    36.0000    38.000    40.000  1.0   260
Nsite[3]       37.4023   1.7246    34.0000    36.0000    37.0000    39.000    41.000  1.0   490
 [ ... ]
Nsite[265]     17.8520   2.4114    14.0000    16.0000    18.0000    19.000    23.000  1.0   220
Nsite[266]     47.1523   1.4266    45.0000    46.0000    47.0000    48.000    50.000  1.0   380
Nsite[267]     53.4723   1.4826    51.0000    52.0000    53.0000    54.000    57.000  1.0   440
deviance    27337.0925 157.3948 27035.1200 27231.4406 27333.8856 27441.685 27652.235  1.0   110
mu.lp           0.5018   0.1232     0.2613     0.4170     0.5032     0.583     0.745  1.0   350
mu.lpsi        -1.6395   0.1677    -1.9676    -1.7570    -1.6401    -1.528    -1.319  1.0   400
occ.fs[1]       5.1447   1.6904     4.0000     4.0000     5.0000     6.000    10.000  1.0   890
occ.fs[2]       2.0757   0.3214     2.0000     2.0000     2.0000     2.000     3.000  1.0  3000
occ.fs[3]       7.1850   0.4548     7.0000     7.0000     7.0000     7.000     8.000  1.0  2200
[ ... ]
occ.fs[137]     8.9283   1.2492     8.0000     8.0000     9.0000     9.000    12.000  1.0  3000
occ.fs[138]    41.0953   1.1045    40.0000    40.0000    41.0000    42.000    44.000  1.0  3000
occ.fs[139]     5.2687   1.9118     4.0000     4.0000     5.0000     6.000    11.000  1.0   790
p[1]            0.5117   0.1503     0.2166     0.4076     0.5148     0.627     0.780  1.0   790
p[2]            0.8499   0.1087     0.5770     0.7966     0.8766     0.932     0.980  1.0  1900
p[3]            0.8152   0.0830     0.6275     0.7657     0.8249     0.878     0.943  1.0  1100
[ ... ]
p[137]          0.6133   0.1074     0.3978     0.5387     0.6216     0.689     0.807  1.0  3000
p[138]          0.7812   0.0396     0.6976     0.7551     0.7830     0.809     0.855  1.0   880
p[139]          0.5044   0.1531     0.2126     0.3975     0.5050     0.614     0.794  1.0   440
psi[1]          0.0218   0.0106     0.0067     0.0142     0.0200     0.027     0.049  1.0   720
psi[2]          0.0110   0.0062     0.0024     0.0064     0.0097     0.014     0.026  1.0  3000
psi[3]          0.0287   0.0102     0.0123     0.0214     0.0277     0.035     0.052  1.0  3000
[ ... ]
psi[137]        0.0355   0.0123     0.0161     0.0269     0.0340     0.043     0.064  1.0  2400
psi[138]        0.1542   0.0227     0.1114     0.1388     0.1535     0.169     0.200  1.0  1800
psi[139]        0.0221   0.0113     0.0063     0.0143     0.0200     0.028     0.049  1.0  3000
sd.lp           1.3407   0.1059     1.1442     1.2682     1.3356     1.407     1.557  1.0   120
sd.lpsi         1.9054   0.1236     1.6860     1.8170     1.9000     1.985     2.163  1.0  3000


We see that the species heterogeneity in the logit transform of detection probability (sd.lp) is estimated at 1.34, while that for occupancy probability (sd.lpsi) is estimated at 1.90.
	We can again estimate the number of species occurring at each site among the 139 species ever detected in 2007.

# Observed and estimated number of occupied sites for each species
cbind(obs.occu = obs.occ[obs.occ > 0], out6J$summary[271:409, c(1,3,7)])
     obs.occu       mean     2.5%     97.5%
50          4   5.144667   4.0000  10.00000
80          2   2.075667   2.0000   3.00000
390         7   7.185000   7.0000   8.00000
570         4   4.346667   4.0000   6.00000
720        56  61.401667  57.0000  68.00000
1050        1   1.671667   1.0000   6.00000
1080        8  26.398000   9.0000 101.00000
1090       73  89.359000  80.0000 102.00000
1100       74  84.556333  77.0000  94.00000
1110       12  34.804000  14.0000 102.00000
1130       27 118.264667  52.0000 243.00000
1150      146 158.188667 151.9749 167.00000
1200       12  26.577000  13.0000  64.00000
1420        2   3.760667   2.0000  14.00000

plot(obs.occ[obs.occ > 0], out6J$summary[271:409,1], xlab = "Observed occupancy estimate", ylab = "Estimated occupancy")
abline(0,1)
segments(obs.occ[obs.occ > 0], out6J$summary[271:409,3], obs.occ[obs.occ > 0], out6J$summary[271:409,7], col = "grey")
[image: ]


# Estimated occupancy and detection probability for each species
plot(out6J$summary[549:687,1], out6J$summary[410:548,1], xlab = "Occupancy estimate", ylab = "Detection estimate", xlim = c(0,1), ylim = c(0,1))
segments(out6J$summary[549:687,3], out6J$summary[410:548,1], out6J$summary[549:687,7], out6J$summary[410:548,1], col = "grey")
segments(out6J$summary[549:687,1], out6J$summary[410:548,3], out6J$summary[549:687,1], out6J$summary[410:548,7], col = "grey")

[image: ]
The length of the 95% CRI appears reduced overall compared to those under model 1.





12.5.3.3. Analysis of Binomial response as a random-effects model and with groups
$ to add: analysis that compares groups, among sites (e.g., regions of the country) and among species (e.g., some guilds). This is straightforward when no DA is done, but more complex for the analysis with DA, since the grouping factor is unknown for the unseen species and must be estimated (being a categorical individual covariate)

In the absence of any structure to be modelled in detection probability (i.e., among the replicate surveys), it is more efficient to aggregate the binary responses and model the sum of Bernoulli trials, i.e., to model a binomial response. We illustrate this here. The main thing to observe is the reduced approximate run times, which are about 30% smaller than for model 6. Note, however, that statistically the two models are equivalent; simply model 7 is more efficient computationwise. This is an illustration of the fact that the BUGS language allows the ecologists to tailor the analysis, or the implementation of the analysis, much more closely to the data set and the model at hand than what we could typically do when fitting a model using maximum likelihood.







	Here’s the model written in algebra, fit to the detection frequency  for species  at site . We may denote as  the binomial index, i.e., the number of surveys at site . There could also be a dependency of the index on species (i.e.,  could have an index ), but this is not the case in the analysis illustrated here.


Process model: 			

Observation model:			

Models of species heterogeneity:	

					


# Aggregate Bernoulli response to binomial response. Also need binomial index.
Y2 <- apply(Y, c(1,3), sum, na.rm = TRUE)
surveyOK <- !is.na(Y)
BinIndex <- apply(surveyOK, c(1,3), sum, na.rm = TRUE)[,1]

# Turn data from sites 131 and 89 into NAs (not surveyed in 2007)
Y2[c(89, 131),] <- NA
BinIndex[c(89, 131)] <- 1    # Turn them into 1, with NA response no problem

# Bundle data
win.data <- list(Y2 = Y2, BinIndex = BinIndex, nsite = nrow(Y2), nspec = ncol(Y2))

# Specify model in BUGS language
sink("model7.txt")
cat("
model {

# Priors
for(k in 1:nspec){
   lpsi[k] ~ dnorm(mu.lpsi, tau.lpsi)    # Hyperparams
   lp[k] ~ dnorm(mu.lp, tau.lp)
}
# Hyperpriors
mu.lpsi ~ dnorm(0,0.01) # Narrower prior to avoid WinBUGS ‘undef real result’
tau.lpsi <- pow(sd.lpsi, -2)
sd.lpsi ~ dunif(0,5)
mu.lp ~ dnorm(0,0.01)	# ditto
tau.lp <- pow(sd.lp, -2)
sd.lp ~ dunif(0,5)

# Ecological model for latent occurrence z (process model)
for(k in 1:nspec){
   logit(psi[k]) <- lpsi[k]   # Take outside of i loop
   for (i in 1:nsite) {
      z[i,k] ~ dbern(psi[k])
      p.eff[i,k] <- z[i,k] * p[k]
   }
}

# Observation model for observed data (detection frequencies Y2)
for(k in 1:nspec){
   logit(p[k]) <- lp[k]       # Take outside of i loop
   for (i in 1:nsite) {
      Y2[i,k] ~ dbin(p.eff[i,k], BinIndex[i]) # Sole change to model 2
   }
}

# Derived quantities
for(k in 1:nspec){
   occ.fs[k] <- sum(z[,k])       # Number of occupied sites among the 267
}
for (i in 1:nsite) {
   Nsite[i] <- sum(z[i,])       # Number of occurring species
}
}
",fill = TRUE)
sink()

# Initial values
zst <- apply(Y, c(1,3), max)	# Observed occurrence as starting values for z
zst[is.na(zst)] <- 1
inits <- function() list(z = zst)

# Parameters monitored
params <- c("mu.lpsi", "sd.lpsi", "mu.lp", "sd.lp", "psi", "p", "Nsite", "occ.fs")

# MCMC settings
ni <- 4000   ;   nt <- 2   ;   nb <- 2000   ;   nc <- 3

# Call WinBUGS from R (ART 28.4 min)
# out7 <- bugs(win.data, inits, params, "model7.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R (ART 12.4 min)
system.time(out7J <- jags(win.data, inits, params, "model7.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )

# Summarize posteriors
out7J <- out7J$BUGSoutput
print(out7J, dig = 3)
 [ ... ]
psi[137]        0.036   0.013     0.016     0.027     0.034     0.043     0.065 1.002  3000
psi[138]        0.155   0.022     0.113     0.139     0.154     0.170     0.200 1.002  1300
psi[139]        0.022   0.011     0.007     0.014     0.020     0.027     0.049 1.002  1400
sd.lp           1.317   0.101     1.142     1.247     1.310     1.378     1.532 1.027    81
sd.lpsi         1.906   0.124     1.677     1.817     1.900     1.986     2.160 1.004   630


12.5.3.4. Analysis of Binomial response under the Dorazio-Royle multi-species site-occupancy model
The inference in all previous models was restricted to those 139 species that were detected at least once during 2007. They did not extend the scope of inference explicitly to any other species that may have been exposed to sampling in principle, but happened to be missed. – The exception, in a certain sense, is model 6 (and 7), which treated the observed species as a random sample from a larger statistical "population" of species and was able to estimate certain quantities of that population, i.e., the hyperparameters of the random-effects Normal distributions.
	In the last 3 models in this chapter, we extend the scope of inference formally to all species that make up the metacommunity that is sampled by the MHB in Switzerland in 2007. This model will allow us to make inferences also about those species that were never seen anywhere during the sampling surveys and does not assume that the observed species are a random sample from the community, as do the simpler random effects models 6/7.
The preceding models will typically underestimate species richness at each site. Furthermore, they are not able to estimate the total size of the metacommunity, i.e., the number of all species present, regardless of whether they were ever seen or not. Furthermore, the previous approaches may give biased results with respect to the total metacommunity, because the species ever detected may be a biased sample from the total metacommunity. In contrast, the multi-species occupancy model of Dorazio and Royle (2005) does not suffer from these drawbacks. In its implementation using so-called parameter-expanded data augmentation (PX-DA; Royle et al. 2007; Royle and Dorazio 2011), or data augmentation for short, this model can be fitted straightforwardly in BUGS or JAGS. 












To make inferences about the unseen species in the metacommunity, we “imagine” a superpopulation of, say,  species (where  is larger than the total number of species () in the metacommunity) and then we estimate which member of  is a member of  also. That is, which of a number of  potentially occurring species actually occur in the area, from which the R sampled sites are a sample, during the surveys. We do this by first adding Null detection histories for a number of  additional, potential species ( is the number of observed species and  the number of zeroes) and second, by adding another hierarchical layer to the model, one which describes the sampling of the  occurring, “real” species from the total of  potential species. This sampling process is represented by a Bernoulli random variable , which is an indicator for a species that is part of the studied metacommunity.

Consequently, our hierarchical model now has three levels (note the slight change of the state process compared to above; it now includes ) and can be written in three conditional, that is, sequentially dependent probability statements:

1. Superpopulation process: 			

2. State process (occurrence):			

3. Observation process (detection):		


4. Models of species heterogeneity:		
							


Note, that now the index  runs from 1 to , i.e., up to the number of species in the full, augmented data set. Otherwise, the model of species heterogeneity is the same as for model 3.







Table 12–1 shows a conceptualization of the model with PX-DA. The observed data (dark grey shaded rectangle) contain , the detection frequencies of 139 observed species at 267 quadrats. To these are added 50 detection histories containing only zeroes (this is the data-augmentation part, represented by the medium grey shaded rectangle). The model enables inference about two latent structures, the true presence-absence matrix  (i.e., the -by-267 matrix containing the occurrence indicators ) and the “superpopulation indicators”  (both represented in yellow shading). Essentially, the aim of the modeling is to estimate the missing values (NAs) in the yellow arrays  and . 



Table 12–1: Concept of the Dorazio-Royle multi-species site-occupancy model for the Swiss MHB 2007 data set, with data augmentation by nz = 50 potential individuals. The example is shown for detection frequencies, analogous to model 4. Note that the matrices are transposed compared to the development in the chapter for simple layout reasons. This does not change anything in the concept of the model. Note that the presence-absence matrix  is shown here with fewer species than N. This is on purpose to clarify that N is the asymptote of the total number of species occurring at the sampled sites, as their number goes to infinity. The species actually occurring among the sampled sites will often be smaller than the total number of species that occur in the area of which the sampled sites are a random sample of some sort. 
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# Aggregate Bernoulli response to binomial response. Also need binomial index.
Y2 <- apply(Y, c(1,3), sum, na.rm = TRUE)
surveyOK <- !is.na(Y)
T <- apply(surveyOK, c(1,3), sum, na.rm = TRUE)[,1]


# Turn data from sites 131 and 89 into NAs (not surveyed in 2007)
Y2[c(89, 131),] <- NA
T[c(89, 131)] <- 1	# Turn them into 1, with NA response no problem

# Augment data set
nz <- 50		# Number of potential species in superpopulation
Y2aug <- cbind(Y2, array(0, dim=c(nsite, nz)))
Y2aug[c(89, 131),] <- NA  # Turn augmented 0 into NA

# Bundle data
win.data <- list(Y2 = Y2aug, T = T, nsite = nrow(Y2), nspec = ncol(Y2), nz = nz)


# Specify model in BUGS language
sink("model8.txt")
cat("
model {

# Priors
omega ~ dunif(0,1)
for(k in 1:(nspec+nz)){
   lpsi[k] ~ dnorm(mu.lpsi, tau.lpsi) #I(-16, 16)    # Hyperparams
   lp[k] ~ dnorm(mu.lp, tau.lp) #I(-16, 16) # Remove I(,) for JAGS
}
# Hyperpriors
mu.lpsi ~ dnorm(0,0.001)
tau.lpsi <- pow(sd.lpsi, -2)
sd.lpsi ~ dunif(0,5)
mu.lp ~ dnorm(0,0.001)
tau.lp <- pow(sd.lp, -2)
sd.lp ~ dunif(0,5)

# Superpopulation process
for(k in 1:(nspec+nz)){
   w[k] ~ dbern(omega)
}

# Ecological model for latent occurrence z (process model)
for(k in 1:(nspec+nz)){
   mu.psi[k] <- w[k] * psi[k]
   logit(psi[k]) <- lpsi[k]
   for (i in 1:nsite) {
      z[i,k] ~ dbern(mu.psi[k])
   }
}

# Observation model for observed data (detection frequencies Y2)
for(k in 1:(nspec+nz)){
   logit(p[k]) <- lp[k]
   for (i in 1:nsite) {
      p.eff[i,k] <- z[i,k] * p[k]
      Y2[i,k] ~ dbin(p.eff[i,k], T[i]) # Sole change to model 2
   }
}

# Derived quantities
for(k in 1:(nspec+nz)){
      occ.fs[k] <- sum(z[,k])       # Number of occupied sites among the 267
}
for (i in 1:nsite) {
      Nsite[i] <- sum(z[i,])       # Number of occurring species at each site
}
n0 <- sum(w[(nspec+1):(nspec+nz)]) # Number of unseen species
Ntotal <- sum(w[])                 # Total community size
}
",fill = TRUE)
sink()


# Initial values
nspec <- 139
zst <- apply(Y, c(1,3), max)	# Observed occurrence as starting values for z
zst[is.na(zst)] <- 1
zst <- cbind(zst, array(0, dim=c(nsite, nz)))
wst <- c(rep(1, nspec), rep(0, nz))
inits <- function() list(z = zst, w = wst, lpsi = rnorm(n = nspec+nz), lp = rnorm(n = nspec+nz))

# Parameters monitored
params <- c("mu.lpsi", "sd.lpsi", "mu.lp", "sd.lp", "psi", "p", "Nsite", "Ntotal", "omega", "n0")

# MCMC settings
ni <- 4000   ;   nt <- 2   ;   nb <- 2000   ;   nc <- 3

# MCMC test settings
#ni <- 250   ;   nt <- 2   ;   nb <- 50   ;   nc <- 3


# Call WinBUGS from R (ART 44 min)
#out8 <- bugs(win.data, inits, params, "model8.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

# Call JAGS from R (ART 17.4 min)
system.time(out8J <- jags(win.data, inits, params, "model8.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )

# Summarize posteriors
out8J <- out8J$BUGSoutput
print(out8J$summary, dig = 2)
                 mean       sd        2.5%        25%        50%        75%     97.5% Rhat n.eff
Nsite[1]      32.5817   1.7285    30.00000    31.0000    32.0000    34.0000    36.000  1.0  2700
Nsite[2]      36.3557   1.6485    33.97463    35.0000    36.0000    37.0000    40.000  1.0  1300
Nsite[3]      37.2977   1.6399    35.00000    36.0000    37.0000    38.0000    41.000  1.0   680
 [ ... ]
Nsite[265]    17.7627   2.3536    14.00000    16.0000    18.0000    19.0000    23.000  1.0  3000
Nsite[266]    47.1253   1.4124    45.00000    46.0000    47.0000    48.0000    50.000  1.0   830
Nsite[267]    53.2420   1.3835    51.00000    52.0000    53.0000    54.0000    56.000  1.0  1400
Ntotal       146.2487   3.8311   140.00000   143.0000   146.0000   148.0000   155.000  1.0   960
deviance   19016.5180 147.7474 18721.69214 18916.4848 19016.2067 19119.5938 19297.238  1.0   380
mu.lp          0.4858   0.1271     0.22935     0.4016     0.4885     0.5717     0.731  1.0  3000
mu.lpsi       -1.8635   0.2140    -2.30787    -2.0024    -1.8573    -1.7162    -1.456  1.0  3000
n0             7.2487   3.8311     1.00000     4.0000     7.0000     9.0000    16.000  1.0  1000
omega          0.7712   0.0365     0.69925     0.7464     0.7714     0.7959     0.844  1.0  1800
p[1]           0.5100   0.1538     0.19606     0.4082     0.5174     0.6224     0.784  1.0   790
p[2]           0.8464   0.1152     0.55906     0.7907     0.8753     0.9325     0.984  1.0  1100
p[3]           0.8174   0.0798     0.63256     0.7710     0.8283     0.8773     0.939  1.0  3000
[ ... ]
p[187]         0.5795   0.2566     0.08100     0.3705     0.6074     0.8007     0.958  1.0  1900
p[188]         0.5764   0.2553     0.08249     0.3750     0.6088     0.7952     0.957  1.0  2500
p[189]         0.5772   0.2531     0.08255     0.3829     0.6079     0.7910     0.956  1.0   710
psi[1]         0.0216   0.0117     0.00623     0.0137     0.0195     0.0269     0.050  1.0   610
psi[2]         0.0105   0.0061     0.00229     0.0059     0.0092     0.0136     0.025  1.0  3000
psi[3]         0.0285   0.0100     0.01279     0.0213     0.0272     0.0343     0.052  1.0  3000
[ ... ]
psi[187]       0.2199   0.2656     0.00075     0.0160     0.0957     0.3454     0.906  1.0  2400
psi[188]       0.2079   0.2587     0.00067     0.0127     0.0844     0.3312     0.891  1.0   310
psi[189]       0.2052   0.2554     0.00074     0.0154     0.0887     0.3019     0.904  1.0   370
sd.lp          1.3437   0.1095     1.15404     1.2670     1.3354     1.4155     1.575  1.0   190
sd.lpsi        2.0982   0.1752     1.78485     1.9759     2.0847     2.2129     2.480  1.0   570



This time, the estimates of species richness for each site (Nsite[i]) do include an estimate of those species that were never seen during the surveys in 2007. Consequently, we can now also estimate the total number of species in the larger area from which the 267 study quadrats were drawn from as a random sample (i.e., quantity , which is called Ntotal in the code).
	We also see that the species heterogeneity in the logit transform of detection probability (sd.lp) is estimated at 1.34, essentially identical to that under models 6 and 7, while that for occupancy probability (sd.lpsi) is now estimated at 2.10, compared to 1.91 under model 6 and 7. Thus, not accounting for the never-seen species (in model 6/7) lead us to underestimate
the species heterogeneity in occupancy probability by almost 10%. This confirms our a priori suspicion that the observed species do not represent an unbiased sample from the total number of species occurring in the metacommunity sampled by the Swiss breeding bird survey MHB.

# Plot posterior distribution of site-specific species richness (Nsite)
par(mfrow = c(3,3))
for(i in 1:267){
   plot(table(out8J$sims.list$Nsite[,i]), main = 
   paste("Quadrat", i), ylab = "", xlab = "Local species richness")
   abline(v = C[i], col = "grey", lwd = 4)
   browser()
}

[image: ]

# Plot posterior distribution of total species richness (Ntotal)
plot(table(out8J$sims.list$Ntotal), main = "", ylab = "", xlab = "Overall species richness")
abline(v = nspec, col = "grey", lwd = 4)
[image: ]




12.5.2.5 Analysis of Bernoulli response under the Dorazio-Royle multi-species site-occupancy model
To model covariate effects into the detection part of the Dorazio-Royle model, the response must be disaggregated, i.e., modelled in the original binary format as a Bernoulli random variable. Here we make this step explicit, by rewriting model 8 for a Bernoulli response. As in the pairs of models 6 and 7, models 8 and 9 are essentially identical. However, again, the aggregated analysis with the binomial response (model 8) is computationally more efficient by about 30%.

# Augment data set
nz <- 50		# Number of potential species in superpopulation
Yaug <- array(0, dim=c(nsite, nrep, nspec+nz))
Yaug[,,1:nspec] <- Y

# Bundle data
win.data <- list(Y = Yaug, nsite = dim(Y)[1], nrep = dim(Y)[2], nspec = dim(Y)[3], nz = nz)


# Specify model in BUGS language
sink("model9.txt")
cat("
model {

# Priors
omega ~ dunif(0,1)
for(k in 1:(nspec+nz)){
   lpsi[k] ~ dnorm(mu.lpsi, tau.lpsi) #I(-16, 16)    # Hyperparams
   lp[k] ~ dnorm(mu.lp, tau.lp) #I(-16, 16) # Remove I(,) for JAGS
}
# Hyperpriors
mu.lpsi ~ dnorm(0,0.001)
tau.lpsi <- pow(sd.lpsi, -2)
sd.lpsi ~ dunif(0,5)
mu.lp ~ dnorm(0,0.001)
tau.lp <- pow(sd.lp, -2)
sd.lp ~ dunif(0,5)

# Superpopulation process
for(k in 1:(nspec+nz)){
   w[k] ~ dbern(omega)
}

# Ecological model for latent occurrence z (process model)
for(k in 1:(nspec+nz)){
   mu.psi[k] <- w[k] * psi[k]
   logit(psi[k]) <- lpsi[k]
   for (i in 1:nsite) {
      z[i,k] ~ dbern(mu.psi[k])
   }
}

# Observation model for observed data (detection indicators Y)
for(k in 1:(nspec+nz)){
   logit(p[k]) <- lp[k]
   for (i in 1:nsite) {
      p.eff[i,k] <- z[i,k] * p[k]
      for(j in 1:nrep){
         Y[i,j,k] ~ dbern(p.eff[i,k])
      }
   }
}

# Derived quantities
for(k in 1:(nspec+nz)){
      occ.fs[k] <- sum(z[,k])       # Number of occupied sites among the 267
}
for (i in 1:nsite) {
      Nsite[i] <- sum(z[i,])       # Number of occurring species at each site
}
n0 <- sum(w[(nspec+1):(nspec+nz)]) # Number of unseen species
Ntotal <- sum(w[])                 # Total community size

}
",fill = TRUE)
sink()


# Initial values
zst <- apply(Y, c(1,3), max)	# Observed occurrence as starting values for z
zst[is.na(zst)] <- 1
zst <- cbind(zst, array(0, dim=c(nsite, nz)))
wst <- c(rep(1, nspec), rep(0, nz))
inits <- function() list(z = zst, w = wst, lpsi = rnorm(n = nspec+nz), lp = rnorm(n = nspec+nz))


# Parameters monitored
params <- c("mu.lpsi", "sd.lpsi", "mu.lp", "sd.lp", "psi", "p", "Nsite", "Ntotal", "omega", "n0")

# MCMC settings
ni <- 4000   ;   nt <- 2   ;   nb <- 2000   ;   nc <- 3

# Call JAGS from R (ART 26.1 min)
system.time(out9J <- jags(win.data, inits, params, "model9.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )
# Summarize posteriors
out9J <- out9J$BUGSoutput
print(out9J$summary, dig = 3)

To model species richness as a response to environmental or temporal patterns, could take the posterior means of Nsite[] along with their sd's and plug them into a second analysis, as for instance Tingley and Beissinger (2013) have done. However, have to properly take account of uncertainty. Can't simply weight by the reciprocal of the square of the posterior standard deviation. Better to use a Bayesian "meta-analysis". Do this here and show elevational gradient of estimated avian species richness in Switzerland (nice example!). Code partly taken from the paper by McCarthy and Masters (JAPPL, 2005).

N.pm <- out9J$summary[1:nsite, 1]       # Extract posterior means of Nsite
N.psd <- out9J$summary[1:nsite, 2]      # ... posterior sd's of Nsite
N.cri <- out9J$summary[1:nsite, c(3,7)] # ... CRL's of Nsite

elev <- data$ele[1:267]
plot(elev, N.pm, xlab = "Altitude (m a.s.l.)", ylab = "Estimated species richness", ylim = c(0, 70))
segments(elev, N.cri[,1], elev, N.cri[,2], col = "grey")
lines(smooth.spline(N.pm ~ elev, w = 1 / N.psd), col = "grey", lwd = 3)


# Bundle data
Note: use elevation standardised
pred.ele <- (seq(0,2750,,50) - mean.ele) / sd.ele
win.data <- list(ele = ele, N = N.pm, psd = N.psd, n = length(N.pm), pred.ele = pred.ele, npred = length(pred.ele))


# Define model in BUGS language
sink("meta.analysis.txt") 
cat(" 
model { 

# Priors 
alpha ~ dnorm(0, 0.0001)
beta1 ~ dnorm(0, 0.0001)
beta2 ~ dnorm(0, 0.0001)
beta3 ~ dnorm(0, 0.0001)
tau.site <- pow(sd.site, -2)
sd.site ~ dunif(0,10)      # SD of site heterogeneity

# Likelihood
for (i in 1:n){ 
   N[i] ~ dnorm(muN[i], tau.psd[i]) # Estimated N
   tau.psd[i] <- pow(psd[i], -2)    # 'Known' measurement error
   muN[i] <- alpha + beta1 * ele[i] + beta2 * pow(ele[i],2) + 
   beta3 * pow(ele[i],3) + eps.site[i]
   eps.site[i] ~ dnorm(0, tau.site)
}
# Predicted species richness at elevation gradient
for(i in 1:npred){
   Npred[i] <- alpha + beta1 * pred.ele[i] + beta2 * pow(pred.ele[i],2) + beta3 * pow(pred.ele[i],3)
}
} # end model 
",fill=TRUE) 
sink() 

# Initial values 
inits <- function() list(alpha = rnorm(1), beta1 = rnorm(1), beta2 = rnorm(1)) 

# Parameters monitored 
params <- c("alpha", "beta1", "beta2", "beta3", "sd.site", "Npred") 

# MCMC setting 
ni <- 12000   ;   nt <- 10   ;   nb <- 2000   ;   nc <- 3 

# Call WinBUGS (takes 0.3 min) and summarize posterior
out <- bugs(win.data, inits, params, "meta.analysis.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd()) 


# Add estimate from meta analysis
lines(seq(0,2750,,50), out$mean$Npred, col = "blue", lwd = 3)

[image: ]

Fig. XXX: Relationship between avian species richness in Switzerland and elevation. Symbols denote point estimates with 95% CRI from community model 9. Grey line is a spline smooth with weights equal to the reciprocal of the squared posterior standard deviations. Blue line is the cubic regression line estimated in the meta analysis that accounts for both estimation error (posterior sd's) and residual variation around the regression line.


12.5.2.6. Analysis of Bernoulli response under the Dorazio-Royle multi-species site-occupancy model with covariates on occupancy and detection probability
Typically, we will want to relate the occurrence of the species as well as their detection probability to covariates, either to estimate the strength of these relationships or simply to correct for any nuisance relationship (this latter mostly for detection). The Dorazio-Royle model allows one then to study not only the aggregate response of the community to such covariates (in the form of the mean and the variance hyperparameters for species heterogeneity), but, importantly, we can also inspect the species-specific relationships. This is a great advantage over simpler approaches that directly model species richness as a response; in such approaches, the ability to inspect species-specific relationships is lost.
	In algebra, this most complex of the models shown in this chapter can be written as this.

1. Superpopulation process: 			

2. State process (occurrence):			

3. Observation process (detection):		

4. Models of species heterogeneity:		

							

with						

							

							

							


So, occupancy and detection probability are regressed on a number of covariates and the intercepts and slopes of both regressions are species-specific, with a common prior distribution with hyperparameters that are estimated. As before, the index for species () runs from 1 to , i.e., up to the number of species in the full, augmented data set. 
We will see that with covariates, the total species richness is estimated at a much higher value than under the very simplistic models 4 and 5, which assumed that both occurrence and detection probability of a species was constant over all sites and all surveys. This makes intuitively sense: one of the “laws” of capture-recapture is that unmodelled heterogeneity in detection (A-R: what about occupancy ?), will lead to an underestimate of population size, and here, arguably, occupancy probability and therefore species richness. The current analysis accounts for much more heterogeneity among species, sites and surveys, and therefore is probably better able to accommodate such heterogeneity. Not surprisingly, the species-specific heterogeneity in the occupancy intercept will be estimated at a much higher value, as is the case for species richness ( both at each site and also Ntotal).



How do we find out whether we have augmented a data set enough ? There are basically two approaches. The first is the one that we choose in this chapter: make nz so large that the posterior of Ntotal is not affected (but not too large, because a larger data set ). This in essence places a non-informative, discrete uniform prior on Ntotal, i.e., Ntotal ~ DU(0, M). If we want to adopt this approach, then we typically choose nz by trial and error: we start by throwing in a couple of  all-zero detection histories, run the analysis and then inspect the posterior distribution of Ntotal. If its mass is piling up against the current value of , we repeat the analysis with a larger value of  and do this until the posterior distribution of Ntotal is no longer right-truncated. For the Swiss 2007 MHB data, after some trial and error, data augmentation by 250 potential species was found to be right. 
Another approach (and one that was taken by Dorazio et al. 2011 dynamic multispecies butterflies) and also Dorazio et al. (book chapter) is to fix M at a known value, thus effectively choosing an informative prior on Ntotal by fixing it at a known value of species richness in the larger area studied. We know that in Switzerland there are just under 200 breeding bird species, so we could have chosen nz=61, to make M=200.

# Augment data set
nz <- 250		# Number of potential species in superpopulation
Yaug <- array(0, dim=c(nsite, nrep, nspec+nz))
Yaug[,,1:nspec] <- Y

When modeling covariate effects, it can be crucial to scale them so that they are not too far away from zero on either side. Otherwise, numerical problems can appear, e.g., nonconvergence or spurious convergence. So we standardize all covariates by subtracting the mean and dividing by the standard deviation.

# Get covariates and standardise them
# Quadrat elevation and forest cover
ele <- data$ele[1:nsite]
(mean.ele <- mean(ele, na.rm = TRUE))
(sd.ele <- sd(ele, na.rm = TRUE))
ele <- (ele - mean.ele) / sd.ele
forest <- data$forest[1:nsite]
(mean.forest <- mean(forest, na.rm = TRUE))
(sd.forest <- sd(forest, na.rm = TRUE))
forest <- (forest - mean.forest) / sd.forest

# Survey date
DAT <- cbind(data$date071, data$date072, data$date073)[1:nsite,]  # Survey dates, vary by site and rep only
(mean.date <- mean(DAT, na.rm = TRUE))
(sd.date <- sd(c(DAT), na.rm = TRUE))
DAT <- (DAT - mean.date) / sd.date
DAT[is.na(DAT)] <- 0

Then, we fit the model. Note that the upper limits of the uniform priors for the species heterogeneity parameters (the standard deviations) were also chosen after some trial and error, so as to avoid to inject information.
	In our experience, one of the main practical challenges in this kind of models is to get to grips with modeling of the data in a multidimensional array (a kind of “box”). Also, sometimes some lines of code must be moved around in and outside of some of 2-3 loops to avoid defining a quantity repeatedly (i.e., the ‘multiple definition of XXXX’ trap in WinBUGS). This requires a very clear understanding of the “box” in which we have put the data: which dimension stands for what index of the data. Note that we can loop over the dimensions of the array in the order we like. However, clearly, each index of the array has a fixed meaning: one is for sites, another for replicate surveys and one for species. Which is which is defined by the way in which we build this array in the first place.

	Saving all species-specific parameters, including those for the  potential species, will result in huge results files that will cost us a lot of disk space. To minimize used disk space, at the end of the BUGS program, we write the parameter estimates for the observed species plus one potential species into new data structures and then save only these.

# Bundle data
win.data <- list(Y = Yaug, nsite = dim(Y)[1], nrep = dim(Y)[2], nspec = dim(Y)[3], nz = nz, ele = ele, forest = forest, DAT = DAT)


# Specify model in BUGS language
sink("model10A.txt")
cat("
model {

# Priors
omega ~ dunif(0,1)
for(k in 1:(nspec+nz)){
   lpsi[k] ~ dnorm(mu.lpsi, tau.lpsi)    # Hyperparams
   betalpsi1[k] ~ dnorm(mu.betalpsi1, tau.betalpsi1)
   betalpsi2[k] ~ dnorm(mu.betalpsi2, tau.betalpsi2)
   betalpsi3[k] ~ dnorm(mu.betalpsi3, tau.betalpsi3)
   lp[k] ~ dnorm(mu.lp, tau.lp)
   betalp1[k] ~ dnorm(mu.betalp1, tau.betalp1)
   betalp2[k] ~ dnorm(mu.betalp2, tau.betalp2)
}

# Hyperpriors
mu.lpsi ~ dnorm(0,0.01)
tau.lpsi <- pow(sd.lpsi, -2)
sd.lpsi ~ dunif(0,8)
mu.betalpsi1 ~ dnorm(0,0.01)
tau.betalpsi1 <- pow(sd.betalpsi1, -2)
sd.betalpsi1 ~ dunif(0,5)
mu.betalpsi2 ~ dnorm(0,0.01)
tau.betalpsi2 <- pow(sd.betalpsi2, -2)
sd.betalpsi2 ~ dunif(0,3)
mu.betalpsi3 ~ dnorm(0,0.01)
tau.betalpsi3 <- pow(sd.betalpsi3, -2)
sd.betalpsi3 ~ dunif(0,3)
mu.lp ~ dnorm(0,0.01)
tau.lp <- pow(sd.lp, -2)
sd.lp ~ dunif(0,3)
mu.betalp1 ~ dnorm(0,0.01)
tau.betalp1 <- pow(sd.betalp1, -2)
sd.betalp1 ~ dunif(0,3)
mu.betalp2 ~ dnorm(0,0.01)
tau.betalp2 <- pow(sd.betalp2, -2)
sd.betalp2 ~ dunif(0,3)

# Likelihood
# Ecological model for true occurrence (process model)
for(k in 1:(nspec+nz)){
   w[k] ~ dbern(omega)
   for (i in 1:nsite) {
      logit(psi[i,k]) <- lpsi[k] + betalpsi1[k] * ele[i] + betalpsi2[k] * pow(ele[i],2) + betalpsi3[k] * forest[i]
      mu.psi[i,k] <- w[k] * psi[i,k]
      z[i,k] ~ dbern(mu.psi[i,k])
   }
}

# Observation model for replicated detection/nondetection observations
for(k in 1:(nspec+nz)){
   for (i in 1:nsite){
      for(j in 1:nrep){
         logit(p[i,j,k]) <- lp[k] + betalp1[k] * DAT[i,j] + betalp2[k] * pow(DAT[i,j],2)
         p.eff[i,j,k] <- z[i,k] * p[i,j,k]
         Y[i,j,k] ~ dbern(p.eff[i,j,k])
      }
   }
}

# Derived quantities
for(k in 1:(nspec+nz)){
   occ.fs[k] <- sum(z[,k])         # Number of occupied sites among the 267
}
for (i in 1:nsite) {
   Nsite[i] <- sum(z[i,])          # Number of occurring species at each site
}
n0 <- sum(w[(nspec+1):(nspec+nz)]) # Number of unseen species
Ntotal <- sum(w[])                 # Total community size

# Vectors to save (S for ‘save’; discard posterior samples for 
# all minus 1 of the potential species to save disk space)
lpsiS[1:(nspec+1)] <- lpsi[1:(nspec+1)]
betalpsi1S[1:(nspec+1)] <- betalpsi1[1:(nspec+1)]
betalpsi2S[1:(nspec+1)] <- betalpsi2[1:(nspec+1)]
betalpsi3S[1:(nspec+1)] <- betalpsi3[1:(nspec+1)]
lpS[1:(nspec+1)] <- lp[1:(nspec+1)]
betalp1S[1:(nspec+1)] <- betalp1[1:(nspec+1)]
betalp2S[1:(nspec+1)] <- betalp2[1:(nspec+1)]
}
",fill = TRUE)
sink()


# Initial values
zst <- apply(Yaug, c(1,3), max)# Observed occurrence as starting values for z
zst[is.na(zst)] <- 1
wst <- c(rep(1, nspec), rep(0, nz))
inits <- function() list(z = zst, w = wst, lpsi = rnorm(n = nspec+nz), betalpsi1 = rnorm(n = nspec+nz), betalpsi2 = rnorm(n = nspec+nz), betalpsi3 = rnorm(n = nspec+nz), lp = rnorm(n = nspec+nz), betalp1 = rnorm(n = nspec+nz), betalp2 = rnorm(n = nspec+nz))

# Parameters monitored
params <- c("mu.lpsi", "sd.lpsi", "mu.betalpsi1", "sd.betalpsi1", "mu.betalpsi2", "sd.betalpsi2", "mu.betalpsi3", "sd.betalpsi3", "mu.lp", "sd.lp", "mu.betalp1", "sd.betalp1", "mu.betalp2", "sd.betalp2", "Nsite", "Ntotal", "omega", "n0", "lpsiS", "betalpsi1S", "betalpsi2S", "betalpsi3S", "lpS", "betalp1S", "betalp2S")


# MCMC settings
ni <- 15000   ;   nt <- 10   ;   nb <- 5000   ;   nc <- 3
#ni <- 12; nt <- 2; nb <- 2; nc <- 2 # Test settings: ART 146 sec

# Call JAGS from R (ART 803 min)
system.time(out10JA <- jags(win.data, inits, params, "model10A.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb) )


# Summarize posteriors
out10J <- out10J$BUGSoutput
print(out10J, dig = 3)

> print(out10J, dig = 3)
Inference for Bugs model at "model10.txt", fit using jags,
 3 chains, each with 15000 iterations (first 5000 discarded), n.thin = 10
 n.sims = 3000 iterations saved
                  mu.vect sd.vect      2.5%       25%       50%       75%     97.5%  Rhat n.eff
Nsite[1]           33.080   1.704    30.000    32.000    33.000    34.000    37.000 1.001  3000
Nsite[2]           36.208   1.529    34.000    35.000    36.000    37.000    40.000 1.003   690
Nsite[3]           37.015   1.590    34.000    36.000    37.000    38.000    40.000 1.004   600
[ ... ]
Nsite[265]         13.078   1.338    11.000    12.000    13.000    14.000    16.000 1.002  1700
Nsite[266]         46.577   1.189    45.000    46.000    46.000    47.000    49.000 1.001  3000
Nsite[267]         53.090   1.318    51.000    52.000    53.000    54.000    56.000 1.007   310
Ntotal            195.154  29.328   160.000   175.000   188.000   206.000   278.000 1.016   180
betalp1S[1]        -0.393   0.561    -1.523    -0.759    -0.396    -0.012     0.692 1.001  3000
betalp1S[2]        -0.071   0.654    -1.366    -0.503    -0.060     0.360     1.174 1.003   960
betalp1S[3]        -0.305   0.416    -1.117    -0.590    -0.308    -0.033     0.529 1.001  3000
[ ... ]
betalp1S[138]       0.172   0.231    -0.270     0.011     0.175     0.324     0.634 1.004   600
betalp1S[139]       0.209   0.535    -0.850    -0.151     0.202     0.565     1.276 1.001  3000
betalp1S[140]       0.112   0.697    -1.228    -0.353     0.112     0.561     1.521 1.001  3000
betalp2S[1]         0.305   0.441    -0.561     0.012     0.295     0.594     1.193 1.001  3000
betalp2S[2]         0.059   0.482    -0.907    -0.263     0.048     0.375     1.028 1.001  3000
betalp2S[3]        -0.245   0.350    -0.930    -0.472    -0.242    -0.016     0.448 1.001  3000
[ ... ]
betalp2S[138]      -0.275   0.220    -0.707    -0.427    -0.277    -0.128     0.165 1.001  3000
betalp2S[139]      -0.502   0.442    -1.418    -0.796    -0.487    -0.192     0.322 1.002  1500
betalp2S[140]      -0.166   0.525    -1.178    -0.521    -0.169     0.192     0.858 1.001  3000
betalpsi1S[1]      -3.505   1.405    -6.506    -4.412    -3.419    -2.520    -1.010 1.003   920
betalpsi1S[2]      -2.142   1.319    -5.042    -2.963    -2.032    -1.168     0.129 1.001  2200
betalpsi1S[3]      -2.638   1.076    -4.898    -3.325    -2.550    -1.858    -0.797 1.002  2000
[ ... ]
betalpsi1S[138]     1.003   0.284     0.474     0.807     0.996     1.186     1.574 1.001  2700
betalpsi1S[139]    -3.975   1.586    -7.407    -4.962    -3.875    -2.836    -1.160 1.002  1700
betalpsi1S[140]    -0.519   2.231    -4.996    -2.009    -0.482     0.972     3.817 1.001  3000
betalpsi2S[1]      -0.554   0.626    -1.797    -0.985    -0.553    -0.121     0.640 1.001  3000
betalpsi2S[2]      -0.906   0.653    -2.248    -1.345    -0.899    -0.460     0.373 1.002  1800
betalpsi2S[3]      -0.777   0.589    -1.983    -1.155    -0.758    -0.380     0.319 1.001  3000
[ ... ]
betalpsi2S[138]    -0.329   0.263    -0.861    -0.503    -0.322    -0.150     0.172 1.002  1100
betalpsi2S[139]    -0.227   0.630    -1.435    -0.661    -0.234     0.198     1.031 1.002  1200
betalpsi2S[140]    -0.938   0.697    -2.267    -1.409    -0.929    -0.477     0.415 1.001  3000
betalpsi3S[1]       0.150   0.493    -0.898    -0.157     0.166     0.480     1.098 1.004  2000
betalpsi3S[2]      -0.954   0.723    -2.457    -1.419    -0.914    -0.457     0.375 1.001  3000
betalpsi3S[3]      -0.154   0.419    -1.041    -0.423    -0.142     0.135     0.613 1.003   730
[ ... ]
betalpsi3S[138]     0.937   0.218     0.521     0.792     0.935     1.078     1.388 1.003  1900
betalpsi3S[139]    -0.861   0.625    -2.199    -1.261    -0.855    -0.430     0.277 1.002  1700
betalpsi3S[140]    -0.033   0.974    -1.941    -0.680    -0.021     0.621     1.934 1.001  3000
lpS[1]             -0.168   0.708    -1.562    -0.645    -0.146     0.319     1.183 1.001  3000
lpS[2]              2.076   0.968     0.347     1.402     2.027     2.689     4.159 1.001  3000
lpS[3]              1.953   0.717     0.643     1.460     1.925     2.405     3.454 1.001  3000
[ ... ]
lpS[138]            1.556   0.315     0.975     1.334     1.547     1.774     2.194 1.000  3000
lpS[139]            0.561   0.705    -0.810     0.083     0.570     1.054     1.902 1.001  3000
lpS[140]            0.656   1.303    -2.041    -0.167     0.658     1.532     3.184 1.001  3000
lpsiS[1]           -6.403   1.407    -9.503    -7.296    -6.282    -5.394    -3.965 1.003   810
lpsiS[2]           -6.164   1.372    -9.313    -6.968    -6.001    -5.180    -3.920 1.003   910
lpsiS[3]           -4.827   0.924    -6.872    -5.413    -4.740    -4.156    -3.272 1.001  2200
[ ... ]
lpsiS[138]         -1.934   0.318    -2.577    -2.144    -1.927    -1.718    -1.339 1.001  3000
lpsiS[139]         -7.695   1.741   -11.477    -8.792    -7.539    -6.472    -4.731 1.001  3000
lpsiS[140]         -5.134   4.893   -14.797    -8.458    -5.319    -1.689     4.612 1.003   680
mu.betalp1          0.138   0.071     0.000     0.091     0.136     0.186     0.279 1.001  3000
mu.betalp2         -0.176   0.057    -0.291    -0.214    -0.175    -0.139    -0.065 1.001  2400
mu.betalpsi1       -0.614   0.204    -1.040    -0.745    -0.608    -0.478    -0.227 1.002  1000
mu.betalpsi2       -0.905   0.083    -1.064    -0.959    -0.905    -0.849    -0.744 1.001  3000
mu.betalpsi3       -0.032   0.089    -0.205    -0.091    -0.032     0.028     0.140 1.001  2200
mu.lp               0.658   0.126     0.415     0.572     0.656     0.745     0.906 1.001  3000
mu.lpsi            -4.006   1.024    -6.659    -4.508    -3.817    -3.290    -2.550 1.019   150
n0                 56.154  29.328    21.000    36.000    49.000    67.000   139.000 1.012   200
omega               0.501   0.080     0.394     0.447     0.486     0.537     0.722 1.014   190
sd.betalp1          0.700   0.063     0.589     0.655     0.697     0.741     0.838 1.001  3000
sd.betalp2          0.519   0.050     0.430     0.483     0.516     0.551     0.623 1.002  1800
sd.betalpsi1        2.343   0.170     2.029     2.224     2.335     2.457     2.691 1.001  3000
sd.betalpsi2        0.692   0.076     0.550     0.639     0.689     0.740     0.851 1.006   390
sd.betalpsi3        0.968   0.074     0.836     0.914     0.965     1.019     1.121 1.001  3000
sd.lp               1.287   0.104     1.107     1.215     1.279     1.352     1.511 1.002  1100
sd.lpsi             4.462   0.611     3.478     4.044     4.371     4.796     5.979 1.013   200
deviance        25277.556 146.291 24993.525 25175.430 25277.674 25375.858 25564.159 1.005   460

Let's check whether the uniform priors on the random-effects standard deviation hyperparameters are sufficiently wide to be vague. The upper limit is 3 for all except for sd.lpsi, where it is 8. For the latter parameter and also for sd.betalpsi1 this choice may have resulted in a somewhat informative prior. We check this visually.

par(mfrow = c(1,2))
hist(out10J$BUGSoutput$sims.list$sd.betalpsi1, breaks = 100, xlim = c(0,3),
col = "grey", main = "Posterior of sd.betalpsi1", xlab = "")
abline(v = 3, col = "grey", lwd = 3)
hist(out10J$BUGSoutput$sims.list$sd.lpsi, breaks = 100, xlim = c(0,8), col = "grey", main = "Posterior of sd.lpsi1", xlab = "")
abline(v = 8, col = "grey", lwd = 3)
[image: ]
So our choice of prior may have been somewhat informative for sd.betalpsi1, but not for sd.lpsi1. Repeat the analysis with U(0, 5) for the former.

par(mfrow = c(1,2))
hist(out10JA$BUGSoutput$sims.list$sd.betalpsi1, breaks = 100, xlim = c(0,5),
col = "grey", main = "Posterior of sd.betalpsi1", xlab = "")
abline(v = 5, col = "grey", lwd = 3)
hist(out10JA$BUGSoutput$sims.list$sd.lpsi, breaks = 100, xlim = c(0,8), col = "grey", main = "Posterior of sd.lpsi1", xlab = "")
abline(v = 8, col = "grey", lwd = 3)
[image: ]
All was fine with out vague prior for sd.betalpsi1.


out10J <- out10J$BUGSoutput

So after hours of waiting for JAGS to complete this analysis, we can thus claim this: The answer is 195. That is, our model says that the data say there are about 195 breeding birds species in the area that is sampled by the 265 km2 quadrats surveyed in Switzerland in 2007.

What does such a number mean ? Can one ever give a single, stable number ? Who knows ...

But, this estimate can be used as an informal Goodness of fit test of the model, because it agrees almost unbelievably well with what we believe is true.


However, this model gives much, MUCH more.
Summarize community responses and show individual responses
-find some way to compare the inferences under all the models. For instance, plot site-specific species richness for all, compare, obviously, Ntotal, compare response to elevationa nd forets

We reiterate at this point that the possible inferences from this model are extremely broad and include both community quantities (e.g., total and site-specific species richness) and species-specific quanities, such as the covariate relationships for all the species. We next give a couple of possible illustrations of what the model tells us about the Swiss breeding bird metacommunity.
	Importantly, one of the most important quantities in the model is the z matrix, i.e., the indicator matrix that contains the information about the presence or absence of every species  in the metacommunity at each sampled site. Based on this matrix, a host of other quantities can be estimated, for instance species accumulation curves and similarity metrics; see Dorazio et al. (2006) and Dorazio et al. (2012; book chapter) for some illustrations. However, saving the MCMC samples from large z matrices can result in very large files, so it is best to only include z in the parameters.to.save if it is really needed. (Later editions of the chapter will contain an illustration of estimation of z, along with some of the quantities that are based on it, such as similarities among sites.)
	Here we first illustrate the site-specific estimates of species richness (Nsite), followed by the estimate of overall species richness (Ntotal).

# Plot posterior distribution of site-specific species richness (Nsite)
par(mfrow = c(3,3))
for(i in 1:267){
   plot(table(out10J$sims.list$Nsite[,i]), main = 
   paste("Quadrat", i), ylab = "", xlab = "Local species richness")
   abline(v = C[i], col = "grey", lwd = 3)
   browser()
}

[image: ]

This figure shows that the model allows one to estimate species richness even at unsurveyed sites, such as quadrat 89 which was not surveyed in 2007.

# Plot posterior distribution of total species richness (Ntotal)
hist(out10J$sims.list$Ntotal, breaks = 100, main = "", ylab = "", xlab = "Overall species richness", xlim = c(139, 139+250), col = "grey")
abline(v = 139, col = "grey", lwd = 3)
abline(v = out10J$mean$Ntotal, col = "blue", lwd = 3)
[image: ]

The model tells us that there are around 195 species in the area from which the 267 MHB sampling quadrats were drawn randomly, but that there is considerably uncertainty in the estimate of Ntotal (the 95% CRI is 160–278; see posterior summary above). Thus, very gratifyingly, this estimate matches well the known number of breeding bird species, which is just short of 200.
Now let’s look at species-specific inferences and look at the parameter estimates of the covariate effects.

plot(out10J$summary[269:407,1], 1:139, xlim = c(-3, 3), xlab = "Parameter estimate", ylab = "Species number", main = "Effect of date (linear) on detection")
abline(v = 0, lwd = 1, col = "black")
segments(out10J$summary[269:407,3], 1:139, out10J$summary[269:407,7], 1:139, col = "grey", lwd = 1)
sig1 <- (out10J$summary[269:407,3]<0 & out10J$summary[269:407,7]<0) + (out10J$summary[269:407,3]>0 & out10J$summary[269:407,7]>0)
segments(out10J$summary[269:407,3][sig1==1], (1:139)[sig1==1], out10J$summary[269:407,7][sig1==1], (1:139)[sig1==1], col = "blue", lwd = 2)

[image: ]
A total of 32 species among the 139 observed have a “significant” effect of date (linear) on detection probability, in the sense that the 95% credible interval of the parameter estimate does not cover 0 (these are the blue lines). The overall effect of date (linear), mu.betalp1, is estimated at 0.138, with a 95% CRI of 0.000–0.279.

plot(out10J$summary[409:547,1], 1:139, xlim = c(-3, 3), xlab = "Parameter estimate", ylab = "Species number", main = "Effect of date (squared) on detection")
abline(v = 0, lwd = 1, col = "black")
segments(out10J$summary[409:547,3], 1:139, out10J$summary[409:547,7], 1:139, col = "grey", lwd = 1)
sig2 <- (out10J$summary[409:547,3]<0 & out10J$summary[409:547,7]<0) + (out10J$summary[409:547,3]>0 & out10J$summary[409:547,7]>0)
segments(out10J$summary[409:547,3][sig2==1], (1:139)[sig2==1], out10J$summary[409:547,7][sig2==1], (1:139)[sig2==1], col = "blue", lwd = 2)
[image: ]

A total of 26 species among the 139 observed have a “significant” effect of date (squared) on detection probability (these are the blue lines). The overall effect of date (squared), mu.betalp2, is estimated at -0.176, with a 95% CRI of -0.291– -0.065. A total of 44 species have either a significant linear or a significant squared effect of date (or both) on detection probability.

mu.betalp1          0.138   0.071     0.000     0.091     0.136     0.186     0.279 1.001  3000
mu.betalp2         -0.176   0.057    -0.291    -0.214    -0.175    -0.139    -0.065 1.001  2400

sum((sig1 + sig2) > 0)
[1] 44

plot(out10J$summary[549:687,1], 1:139, xlim = c(-8, 8), xlab = "Parameter estimate", ylab = "Species number", main = "Effect of elevation (linear) on occupancy")
abline(v = 0, lwd = 1, col = "black")
segments(out10J$summary[549:687,3], 1:139, out10J$summary[549:687,7], 1:139, col = "grey", lwd = 1)
sig3 <- (out10J$summary[549:687,3]<0 & out10J$summary[549:687,7]<0) + (out10J$summary[549:687,3]>0 & out10J$summary[549:687,7]>0)
segments(out10J$summary[549:687,3][sig3==1], (1:139)[sig3==1], out10J$summary[549:687,7][sig3==1], (1:139)[sig3==1], col = "blue", lwd = 2)
[image: ]
A total of 112 species among the 139 observed have a “significant” effect of elevation (linear) on occupancy probability (blue lines). The overall effect of elevation (linear), mu.betalpsi1, is estimated at -0.614, with a 95% CRI of -1.040– -0.227. 

plot(out10J$summary[689:827,1], 1:139, xlim = c(-3, 3), xlab = "Parameter estimate", ylab = "Species number", main = "Effect of elevation (squared) on occupancy")
abline(v = 0, lwd = 1, col = "black")
segments(out10J$summary[689:827,3], 1:139, out10J$summary[689:827,7], 1:139, col = "grey", lwd = 1)
sig4 <- (out10J$summary[689:827,3]<0 & out10J$summary[689:827,7]<0) + (out10J$summary[689:827,3]>0 & out10J$summary[689:827,7]>0)
segments(out10J$summary[689:827,3][sig4==1], (1:139)[sig4==1], out10J$summary[689:827,7][sig4==1], (1:139)[sig4==1], col = "blue", lwd = 2)
[image: ]
A total of 66 species among the 139 observed have a “significant” effect of elevation (squared) on occupancy probability (blue lines). The overall effect of elevation (squared), mu.betalpsi2, is estimated at -0.905, with a 95% CRI of -1.064– -0.744. A total of 123 of the 139 observed species species have either a significant linear or squared effect of elevation of occupancy probability.

plot(out10J$summary[829:967,1], 1:139, xlim = c(-4, 4), xlab = "Parameter estimate", ylab = "Species number", main = "Effect of forest (linear) on occupancy")
abline(v = 0, lwd = 1, col = "black")
segments(out10J$summary[829:967,3], 1:139, out10J$summary[829:967,7], 1:139, col = "grey", lwd = 1)
sig5 <- (out10J$summary[829:967,3]<0 & out10J$summary[829:967,7]<0) + (out10J$summary[829:967,3]>0 & out10J$summary[829:967,7]>0)
segments(out10J$summary[829:967,3][sig5==1], (1:139)[sig5==1], out10J$summary[829:967,7][sig5==1], (1:139)[sig5==1], col = "blue", lwd = 2)

[image: ]

A total of 69 species among the 139 observed have a “significant” effect of forest cover on occupancy probability (blue lines). Importantly, the overall effect of forest cover, mu.betalpsi3, is not significantly different from zero and is estimated at -0.032, with a 95% CRI of -0.205– 0.140. So focusing on the aggregate response of a community to some environmental variable may mask important species-specific responses to that variable.

Finally, we plot the estimated covariate relationships for the 139 observed species.

# Survey date on detection probability
range(cbind(data$date071, data$date072, data$date073)[1:nsite,], na.rm = TRUE)
original.pred.date <- 1:120
pred.date <- (original.pred.date - mean.date) / sd.date
pred.p <- array(NA, dim = c(length(pred.date), 139))
for(i in 1:length(pred.date)){
   pred.p[i,] <- plogis(out10J$summary[970:1108,1] + out10J$summary[269:407,1] * pred.date[i] + out10J$summary[409:547,1] * pred.date[i]^2)
}

plot(original.pred.date, plogis(out10J$mean$mu.lp + out10J$mean$mu.betalp1 * pred.date + out10J$mean$mu.betalp2 * pred.date[i]^2), ylim = c(0,1), lwd = 3, col = "black", type = "l", xlab = "Date (1 = 1 April)", ylab = "Detection probability")
for(i in 1:139){
   lines(original.pred.date, pred.p[,i], col = i, lwd = 1)
}
[image: ]

# Elevation on occupancy probability
range(data$ele[1:nsite], na.rm = TRUE)
original.pred.ele <- seq(from=250, to=2750, length.out = 120)
pred.ele <- (original.pred.ele - mean.ele) / sd.ele
pred.psi <- array(NA, dim = c(length(pred.ele), 139))
for(i in 1:length(pred.ele)){
   pred.psi[i,] <- plogis(out10J$summary[1110:1248,1] + out10J$summary[549:687,1] * pred.ele[i] + out10J$summary[689:827,1] * pred.ele[i]^2)
}

plot(original.pred.ele, plogis(out10J$mean$mu.lpsi + out10J$mean$mu.betalpsi1 * pred.ele + out10J$mean$mu.betalpsi2 * pred.ele[i]^2), ylim = c(0,1), lwd = 3, col = "black", type = "l", xlab = "Elevation (m)", ylab = "Occupancy probability")
for(i in 1:139){
   lines(original.pred.ele, pred.psi[,i], col = i, lwd = 1)
}

[image: ]
# Forest cover on occupancy probability
original.pred.forest <- 1:100
pred.forest <- (original.pred.forest - mean.forest) / sd.forest
pred.psi <- array(NA, dim = c(length(pred.forest), 139))
for(i in 1:length(pred.forest)){
   pred.psi[i,] <- plogis(out10J$summary[1110:1248,1] + out10J$summary[829:967,1] * pred.forest[i])
}

plot(original.pred.forest, plogis(out10J$mean$mu.lpsi + out10J$mean$mu.betalpsi3 * pred.forest), ylim = c(0,1), lwd = 3, col = "black", type = "l", xlab = "Forest cover (%)", ylab = "Occupancy probability")
for(i in 1:139){
   lines(original.pred.forest, pred.psi[,i], col = i, lwd = 1)
}
[image: ]

If we compare this with what we have learned about the community using the traditional approach of directly modeling the observed species richness (models 1 and 2), we see that the multi-species occupancy approach provides infinitely richer inferences, namely both about the response of each individual species as well as about the response of the entire community. This approach also teaches us to think about species richness as a derived quantity, being a function of the occurrences of the species making up that community.
	While it is perhaps gratifying that the estimate of Ntotal in our analysis with covariates (model 10) came out so close to what we know truth to be, we would perhaps not like to put too much emphasis on the actual value of Ntotal. The metacommunity size Ntotal can be an elusive quantity. Its estimate is also likely to be affected by the curse of Link (2003): being affected by the choice of parametric description of heterogeneity among species (logit-normal distributions in our case), it is likely to be different for different descriptions of this heterogeneity and we have not really any data-driven way to choose among different such descriptions. We think that the logit-normal is a very plausible way to specify that heterogeneity, being a traditional way to express random variability in Bernoulli response models and quite flexible. However, we would not fight wars about the actual value of Ntotal.
	In contrast, the site-specific number of species (Nsite) is a nice quantity and can probably be believed quite a bit, especially when the estimate of Ntotal is not too outrageously different from what we believe truth to be.
	Nevertheless, we see as the main advantage of the Dorazio-Royle model not so much the ability to estimate total species richness, but more its role as a synthesizing framework for modeling patterns in occurrence and detection of all the species in an entire metacommunity. 
	More on such things ... must also say more on species richness, regional species richness, as sum of species predicted to occur on a particular geographical domain.

12.5. Other community models
(1) “abundance-based” instead of “incidence-based”: collect together Nmixture models for replicated counts and use step function to get at species richness (which is all species that have local abundance greater than 0): --- >> models of Richard Chandler
- they should have less problems perhaps with sensitivity to random effects distribution ? BEcayse there is more information and they use it ???
(2) Royle-Nichols-formulation of site-specific heterogeneity in detection: estimate abundance, and species richness, from “incidence-based” data (models of Yuichi Yamaura)
Other stuff ???

12.6. Summary and outlook
The DR is a great model
Interpretation of Ntotal needs care, and should not be the main target of inference
Open models – even greater, but a PAIN to fit (take so long). See other chapter for Norwegian birds. See work by Dorazio et al. (2011) and also Russell, Zipkin et al.


12.6. Exercises
1. Turn model 10, which now has a binary response, into a model with binomial data distribution. Hint: you will no longer be able to fit the effects of date then.
2. Run model 10 with an upper bound of Ntotal of 200. Look at the posterior of Ntotal and also compare other estimates with those from model 6.

[bookmark: _GoBack]# Do the above with some other model, because it takes too long for model 10 to complete
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