Chapter 3
Hierarchical models: linear models, generalized linear models and
random effects

Written by Marc Kéry, Sep 2013; this is material for a draft chapter of a book by Kéry and Royle.
Version November 2013

Three essential statistical concepts are introduced here, and all three are typically present in
hierarchical model: linear models, generalised linear models and random effects. We will illustrate
all of them using one toy data set where we imagine we had measured wing span and body length
and recorded the sex of a total of nine blue-eyed hooktail dragonflies (Onychogomphus uncatus;
Fig. 1) in three populations. The objective of our analysis consists in investigating the relationships
between wing span (the response), and population, sex and body length (three explanatory
variables). The former two are factors with three and two levels, respectively, i.e., categorical
explanatory variables in which numbers have no numerical meaning; they are mere labels or
names. In contrast, wing length is a continuous explanatory variable, or covariate, where the
numbers do have a quantitative meaning. Importantly, however, when fitting linear models, R and
other stats packages internally do not make a difference between categorical and continuous
explanatory variables (although the former must be declared a factor). Rather, all linear models are
represented exactly as a multiple linear regression. Effects of factors are specified using two or
more indicator or dummy variables that contain only Os and 1s and that code for the presence or
absence of an effect in the expected response of each dragonfly.

Fig. 1: Male blue-eyed hooktail (Onychogomphus uncatus), Aragon, Spain, 2013 (Photo: M. Kéry)

Here are the data and a plot of them (Fig. 2).



# Define and plot data

pop <- factor(rep(c(l, 1, 1, 2, 2, 2, 3, 3, 3), 10))

wing <- rep(c(10.82, 10.56, 11.84, 12.09, 11.74, 13.51, 11.39, 13.04, 12.85), 10)
length <- rep(c(6.77, 8.27, 9.20, 6.88, 7.69, 8.96, 6.88, 8.15, 9.20), 10)

sex <- factor(rep(c(1,2,1,2,1,2,1,2,1), 10)) # Assume males are 1, females 2

cbind(pop, wing, length, sex) # Note that sex 1 = male and sex 2 = females
pop wing length sex

[1,] 110.82 6.77 1
[2,] 1 10.56 8.27 2
[3,] 111.84 9.20 1
[4,] 2 12.09 6.88 2
[5,] 2 11.74 7.69 1
[6,] 2 13.51 8.96 2
[7,] 311.39 6.88 1
[8,] 3 13.04 8.15 2
[9,] 3 12.85 9.20 1

plot(length[sex == 1], wing[sex == 1], col = c('red"”, "red", "blue"™, "‘green™,
"green™), xlim = ¢(6.5, 9.5), ylim = ¢c(10.5, 13.5), cex = 1.5, Ilwd = 2,
frame._plot = FALSE, las = 1, pch = 17, xlab = "Body length”, ylab = "Wing span')
points(length[sex == 2], wing[sex == 2], col = c('red”, "blue™, "blue™, "green",
green™), cex = 1.5, pch = 16)

135 7 L

13.0

125

12.0 7

Wing span

115 7

11.0 7

105 —

[ T T T T T 1
6.5 7.0 7.5 8.0 8.5 9.0 9.5

Body length

Fig. 2: Relationship between wing span, body length, sex and population in the O. uncatus toy data
set. Colors code for the three populations; circles denote females and triangles males.
3.1 Linear models

In a linear model, effects of covariates on a response appear in a purely additive fashion. That is,
the model is linear in the parameters, but does not necessarily represent a straight line when



shown as a graph. For instance, models with polynomial terms do not translate into a straight-line
graph. A linear model can be described in many different ways, for instance:

(1) in words, e.g., when we say something like "pop and Iength act additively ...",

(2) using specific names or labels for least-squares techniques which imply a linear model of a
certain form, e.g., "t-test", "linear regression", "ANOVA" or "ANCOVA",

(3) in graphs, e.g., using lines and bars,
. 2
(4) in algebra, e.g., y; ~ Normal(a; + f*X,,0°),
(5) using matrix algebra, suchas y=Xf+¢,
(6) as a system of equations,
(7) in the R model definition language, e.g. Im(wing ~ pop + length),

(8) and finally, using the BUGS language, e.g., mu[i] <- alpha[pop[i]] + beta *
length[i]-

In our statistical modeling, most of us have become accustomed to defining certain types of linear
models using click-and-point techniques in many statistical packages or using a slick formula
definition language. Especially the latter has undoubtedly advantages, because it allows one to
define a large range of linear models quickly and error-free. The drawbacks are that it is easy to fit
linear models without actually understandig them, or what the parameter estimates mean. In
addition, some non-standard linear models may not be fitted or only in a very complicated way.
When fitting models in BUGS software, no such shortcuts to defining linear (or nonlinear) models
are available, so you must know exactly what kind of model you fit how and in what
parameterisation. Therefore, we will now first look at how to describe a certain linear model in the
different ways listed above. Then, we give a summary of some typical linear models that can be
fitted for factors and continuous explanatory covariates. We will also show how to combine a factor
and a continuous covariate, and two factors, in additive and interactive ways.

We will next fit a linear model where pop and length act in an additive fashion on wing
span, namely according to the model underlying a technique that used to be called a "main-effects
analysis of covariance (ANCOVA)". When plotted as a graph, this model is represented by three
parallel straight lines for our data set, one for the dragonflies in each population (see also Fig. 3).
We can fit this model in R by issuing the following commands:

summary(fm <- Im(wing ~ pop + length))

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 6.4801 1.7334 3.738 0.0135 *
pop2 1.5079 0.4854 3.107 0.0267 *
pop3 1.3552 0.4828 2.807 0.0377 *
length 0.5685 0.2103 2.703 0.0426 *
[---1
Residual standard error: 0.5913 on 5 degrees of freedom
Multiple R-squared: 0.782, Adjusted R-squared: 0.6512

F-statistic: 5.979 on 3 and 5 DF, p-value: 0.04151



How many parameters does our model have ? Where are the estimates of these parameters
presented in the R output ? What do these parameters mean ? Let's look at the description of this
model in algebra. We can write the model just fitted as follows.

wing; = u+a  + f*length, + ¢, with &, ~ Normal (0,0 *)

Here, wing, is the response of unit (data point, individual dragonfly, row in the data set) i and
length, is the value of the continuous explanatory variable length for dragonfly 1. The intercept
4 is a constant shared by the response of all nine dragonflies, while «; is a vector of length three,

corresponding to the number of levels in the factor pop, which contains the effects of each
population. For population 1, we have ¢, for population 2 &, and population 3 «,. Parameter S

is the expected change in wing span per unit-change in body length, while &, is the unexplained

"rest" in wing span, which is not accounted for by population membership or body length of
dragonfly i, i.e., it is the residual. For all individuals, the &; are assumed to be independent draws

from a single normal distribution with a common variance parameter that is estimated.
This model is overparameterised or parameter-redundant, i.e., we try to estimate one too
many parameters. Specifically, we cannot estimate both the intercept 4 and a full parameter

vector a of length three. Rather, one of the population effects &; has to be set to zero to make

the model identifiable. Customarily in R, the parameter corresponding to the first level of a factor is
set to zero, i.e., the constraint a; =0 is enforced. As a consequence, the intercept becomes the

intercept of the regression line of dragonflies in population 1, i.e., the expected wing span of a
(hypothetical) dragonfly of length zero in population 1. The remaining two elements of the
parameter vector « , which are not fixed but estimated, become the differences between the
intercepts of the regression lines in population 2 and 3, relative to the intercept in population 1
(this is why only estimates for pop2 and pop3 are shown in the R output above). Hence, in this
parameterisation of the model, population 1 serves as a baseline or reference and the effects of the
population factor represent comparisons with that population. This parameterisation of the effects
of the factor pop can be called the treatment contrast or effects parameterisations.

There are other ways to write what is essentially the same linear model, and these are
called different parameterisations of the model. One of them can be written as this:

wing; = ; + #*length, + &, with &, ~ Normal (0,0 ?)

Here, everything is the same as before (except that there is no longer a ), only the meaning of the
parameters «; representing the effects of the factor pop has changed somewhat. Now, all three

elements of this parameter vector are estimable, since there is no longer a separate intercept (u),
and they represent directly the intercepts of the three regression lines, i.e., the expected wing
spans of a dragonfly at length zero in population 1-3. This parameterisation of the effects of the
factor pop can be called the means parameterisations. It is fit in R as follows, namely by
"subtracting the intercept":

summary(fm <- Im(wing ~ pop-1 + length))



Coefficients:
Estimate Std. Error t value Pr(c|t])

popl 6.4801 1.7334 3.738 0.01346 *

pop2 7.9879 1.6847 4.742 0.00514 **
pop3 7.8353 1.7328 4.522 0.00627 **
length 0.5685 0.2103 2.703 0.04264 *

L.--1

Residual standard error: 0.5913 on 5 degrees of freedom
Multiple R-squared: 0.9987, Adjusted R-squared: 0.9976
F-statistic: 928.3 on 4 and 5 DF, p-value: 2.319e-07

This is exactly the same model as before: the parameter estimates are either the same (for
popl, length and the residual standard error, the latter being the square root of the variance in the
equations) or they can be obtained by adding two of the parameters in the former
parameterisation. That is, the value of pop2 here is obtained by adding the value of the intercept
and of pop2 in the previous parameterisation (i.e., 6.4801 + 1.5079 = 7.988) and that of pop3 here
by adding the value of the intercept and of pop3 (i.e., 6.4801 + 1.3552 = 7.8353).

Different algebraic ways to write this model are the following:

(1) wing; ~ Normal(a ; + #*length;,c ?)

(2) wing; ~ Normal(u;,0 %), with u; =a ; + f*length,

It is very important that you know how to write your linear models in algebra, because we
will see below how a model written in the BUGS language very much resembles its representation
in algebra, so much so, indeed, that once you have written it in algebra, you have almost written it
in BUGS ! Furthermore, BUGS software can be sensitive to the parameterisation chosen, one may
work well and the other not, hence, it is a good thing to be able to switch between different
parameterisations of a model and try out which works best.

We have mentioned above that the intercept is the expected wing span of a dragonfly of
length zero. This is really nonsensical, and a much more sensible model is obtained when we
regress wing span not on body length, but on centered body length, i.e., a transformation of original
body length obtained by subtracting mean body length. In this way, the intercept is the expected
wing span of a dragonfly of the average observed body length, which is much more meaningful
parameter. Moreover, centering covariates can be required for numerical reasons both for
maximum likelihood fits and for Bayesian MCMC analyses. Sometimes, we even have to scale them,
i.e., center them and then divide the result by some amount, for instance, the covariate standard
deviation.

In statistics books, you are likely to see all of linear models described in matrix algebra, for
instance as Yy = X/ + ¢. What does this mean ? Of course, matrices (and vectors) are simply a

manner in which numbers are stored in an orderly way in an array. Hence, here y is a vector of
length nine containing the responses, i.e., the wing span of each of the nine dragonflies. X/ is the

design matrix (also called model or X matrix) of the fitted model, X, which is matrix-multiplied by
the parameter vector £, and & is another vector containing the residuals. To understand what this

means, it is useful to write this out with the numbers of our data set plugged in. We will do this first
for the model in the effects parameterisation and then for the means parameterisation. You will
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see that the structure of the linear model is exactly defined by the design matrix. Moreover, the
structure of the design matrix determines the interpretation of the parameters fitted.

So for the effects parameterisation, we have

1082) (1 0 0 6.77 &
1056| |1 0 0 827 g,
11.84] |1 0 0 9.20 ,
1200| [11 0 688] || |e
1174 =1 1 0 7.69 |x| “?|+| & |, with &, ~ Normal(0,52)
1351] |11 0 896| |7 |
1139| |1 01 88| P/ |,
1304| |1 0 1 815 &,
1285) |1 0 1 9.20 g,

From left to right, we have response vector, design matrix, parameter vector and residual vector.
The design matrix contains indicator variables for the effects of factors and the measured covariate
values for continuous explanatory variables. The design matrix (also called model matrix or X
matrix) multiplied with the parameter vector produces another vector, u; above, which is the

expected wing span for each dragonfly. For dragonfly 1, it is given by 1* 4+ 0*a, + 0%, +6.77* 33,
while for dragonfly 9, it is 1* 1+ 0%, +1*a, +9.20* . With a fitted model, we can obtain these
expected wing lengths "by hand" as follows:

model .matrix(~pop+length) %*% fm$coef # %*% denotes matrix multiplication
[.1]
10.32863
11.18134
11.71002
11.89904
12.35950
13.08146
11.74639
12.46835
13.06525

O©CO~NOUTAWNPE

We can get the same using the predict function.

predict(fm)
1 2 3 4 5
10.32863 11.18134 11.71002 11.89904 12.35950
6 7 8 9

13.08146 11.74639 12.46835 13.06525

For the means parameterisation of the model, we have



1082) (1 0 0 6.77 gl
1056| |1 0 0 827 :,
11.84] |1 0 0 9.20 ,
1200 |0 1 0 e8| || |e
11.74|=|0 1 0 769 |x| “* |+] & |, with &, ~ Normal(0,0 ?)
1351 [0 1 0 896| || |
1139| [0 01 e8| P/ |,
13.04| |0 0 1 815 &,
1285) (0 0 1 9.20 £

Now, the expected wing span of dragonfly 1 is still given by 1*¢o, +0*«, +0* ¢, +6.77* 3, which is
the same as before, except for the small semantic change that we have now called the intercept in
population 1 ¢, instead of x. In contrast, for dragonfly 9 we get 0* ¢, +0* e, +1*; +9.20* S and

so we see that the intercept of the regression line in population 3 is now given by «,, rather than
by £+, as in the effects parameterisation of the model.

As a side-comment: the least-squares model fitting criterion chooses the values of the
parameter vector such that the sum of the squared residuals becomes minimal (thence the name
least squares). It does not make any distributional assumptions about the residuals. However, the
parameter estimates are numerically equivalent to the more general maximum likelihood criterion.

The design matrix lies at the heart of a linear model and it is imperative that we obtain an
understanding of it when fitting linear models. In R, there is the useful model .matrix function,
which allows to print the design matrix for any linear model specified in R's model definition
language. This can be very useful to understand a model or can even be useful when fitting it in
BUGS, for instance, by clarifying to us how a model looks like. Let's look at the design matrices of
the two parameterisations of the main-effects ANCOVA model.

# Effects or treatment contrast parameterisation
model .matrix(~ pop + length)
(Intercept) pop2 pop3 length

1 1 0 0 6.77
2 1 0 0 8.27
3 1 0 0 9.20
4 1 1 0O 6.88
5 1 1 0 7.69
6 1 1 0O 8.96
7 1 0 1 6.88
8 1 0 1 8.15
9 1 0 1 9.20

# Means parameterization

model .matrix(~ pop-1 + length)
popl pop2 pop3 length

6.77

8.27

9.20

6.88

7.69
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8.96
6.88
8.15
9.20
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The form of the design matrix determines the interpretation of the parameters. Table 1 gives an
overview of different linear models that can be fitted for two covariates, one of which is a factor.
Importantly, we also discuss the case of an interaction between pop and length, which is
represented graphically by a bundle of non-parallel regression lines, and for which we here give the
design matrices.

model .matrix(~ pop*length) # effects parameterisation
(Intercept) pop2 pop3 length pop2:length pop3:length
0

1 1 0 0 6.77 0.0 0.00
2 1 0 0 8.27 0.00 0.00
3 1 0 0 9.20 0.00 0.00
4 1 1 0O 6.88 6.88 0.00
5 1 1 0 7.69 7.69 0.00
6 1 1 0 8.96 8.96 0.00
7 1 0 1 6.88 0.00 6.88
8 1 0 1 8.15 0.00 8.15
9 1 0 1 9.20 0.00 9.20

model .matrix(~ pop*length-1-length) # means parameterisation
popl pop2 pop3 popl:length pop2:length pop3:length
7 0

1 1 0 0 6.7 0.0 0.00
2 1 0 0 8.27 0.00 0.00
3 1 0 0 9.20 0.00 0.00
4 0 1 0 0.00 6.88 0.00
5 0 1 0 0.00 7.69 0.00
6 0 1 0 0.00 8.96 0.00
7 0 0 1 0.00 0.00 6.88
8 0 0 1 0.00 0.00 8.15
9 0 0 1 0.00 0.00 9.20

Note in Table 1 the similarity between the BUGS code and the algebraic description of a model.
Thus, when you know how to write a model in algebra, you are almost there at writing it in the
BUGS language. Nevertheless, here we won't go into more detail in terms of the BUGS language,
because we will see so many examples later and especially, in the next chapter/module.

As a final topic in linear models, we will briefly look at how effects of two factors are
combined. For one factor and one continuous covariate, as just shown, this is reasonably simple:
the columns in the design matrix are simply combined. However, for two factors, we typically have
to resolve some aliasing when fitting two factors, that is, we have to drop some columns in the
design matrix, which correspond to redundant parameters in the parameter vector (i.e.,
parameters that cannot be estimated). This can be somewhat difficult to understand at first, so
when fitting models with two or more factors in BUGS, it can be very helpful to inspect their design
matrix in R, using model .matriXx, where we can simply fit such models by specifying them as
A+B or A*B. Let's do this for the two factors in our analysis, pop (with three levels) and sex (with
two). We will fit the models which used to be called "two-way ANOVA with main effects" and "two-
way ANOVA with interaction effects".

model .matrix(~ pop+sex) # main-effects 2-way ANOVA
8



(Intercept) pop2 pop3 sex2
1
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The meaning of the parameters associated with the first through the last column of the design
matrix are the following: the intercept is the expected wing span of a dragonfly with level 1 for both
factors, that is, a male in population 1. The other three parameters are the difference for a male in
population 2 and 3, respectively, and for a female.

model .matrix(~ pop+sex-1) # main-effects 2-way ANOVA
popl pop2 pop3 sex2
0
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Here, the parameters associated with the first three columns in the design matrix directly
correspond to the expected wing span of a male in populations 1, 2 and 3, respectively, and the last
parameter is the difference between females and males.

Next, let's look at the design matrix of an interactive model. The following three design
matrices are all different parameterisations of an interaction-effects 2-way ANOVA, which estimate
a separate expected wing span for the six groups corresponding to the pairwise combination of all
levels of the two factors pop and sexX. Perhaps the last one is the easiest to understand in terms of
the meaning of the parameters.

model _matrix(~ pop*sex) # interaction-effects 2-way ANOVA
(Intercept) pop2 pop3 sex2 pop2:sex2 pop3:sex2
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model .matrix(~ pop*sex-1) # interaction-effects 2-way ANOVA
popl pop2 pop3 sex2 pop2:sex2 pop3:sex2
1 0 0 0 0
2 1 0 0 1 0
3 1 0 0 0 0

o OO0Oo
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model _matrix(~ pop:sex-1) # interaction-effects 2-way ANOVA
popl:sexl pop2:sexl pop3:sexl popl:sex2 pop2:sex2 pop3:sex2
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Table 1: Syntax for specifying different linear models in the R and BUGS model definition languages, when pop is a factor (i.e., a categorical
explanatory variable) with three levels (indexed by j) and length is a covariate (i.e., a continuous explanatory variable). The factor levels
of pop can be numbers or letters (or names) in R, but they must be alphanumeric with the first level a 1 in the BUGS language. Individuals
are indexed by i in BUGS (i.e., i = 1...9). Models 6 and 7 can also be reparameterised similar to the move from model 2 to 3, but this is not
shown here. The full number of parameters in the fitted model is one higher, because it includes the variance also.

No. Model in R Model in Model in BUGS Traditional name Number of Meaning
algebra of technique based | parameters
on that linear
model
1 1 a alpha "Model of the 1 Constant term (intercept) only
mean"
2 pop a. alpha[pop[i]] One-way ANOVA 3 Three constants, one for each population (called the level
! of the factor). Called a t-test if factor has only two levels.
3 pop-1 u+a, mu + alphal[pop[i]] One-way ANOVA 3 "Subtract the intercept"; this is a mere
! reparameterisation of model 2. with an intercept (= the
value for the first population) and two constants that are
the differences between the values of population 2 and 1
and 3 and 1. In BUGS, the first level of the vector alpha
must be manually set to zero to avoid
overparameterisation. In R this is done automatically.
4 length a+B*x alpha + beta * Simple linear 2 An intercept plus a slope, common to all three
' length[i] regression populations (i.e., no effect of pop)
5 length-1 B*X, beta * length[i] Simple linear 1 "Subtract the intercept": this is NOT a mere
regression through reparameterisation of model 4. Regression through the
the origin origin; not usually a meaningful model.
6 | pop+length | + X alpha[pop[i]] + Main-effects 4 One separate intercept for each population and a
! ' beta * length[i] ANCOVA common slope
7 | pop*length a, + j*Xi alpha[pop[i]] + Interaction-effects 6 Three separate intercepts and three separate slopes.

beta[pop[i]] *
length[i]

ANCOVA

That is, fully separate regression of wing on length for
each population.
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3.2 Generalised linear models

Generalised linear models (GLMs) carry over the concept of a linear effect of covariates to response
variables that are not necessarily (but can be) normal. In GLMs, the linear effect of covariates is
applied not to the expected response directly, but to a transformation of the expected response.
That transformation is called the link function. Generally, we can write this as follows, by describing
a GLM in terms of three things. For response Y;, we can write:

1. Random part of the response: a statistical distribution f with mean

y;i ~ f(w)

2. A link function g, which is applied to the mean z;:
9(u) =,

3. Systematic part of the response: called the linear predictor (7, ), e.g.
m=a+pB*x

By combining elements 2 and 3, we can define a GLM succinctly in just two lines:
yi ~ (1)
9(u)=a+pB*x

This is exactly the way in which GLMs are specified in the BUGS language and this is the reason why
BUGS is so great if you want to really understand GLMs. The GLM concept gives you considerable
creative freedom to combine the three components of a GLM, but there are typically pairs of
response distributions and link functions that go together particularly well. These link functions are
called canonical link functions and are the identity link for normal responses (77, = £ ), the log link

for Poisson responses (7, =log( 4 )) and the logit link for binomial responses (

n, =10g(;)/10g(1- 14 )). Together, these three standard GLMs make up a vast number of

statistical methods used in population ecology and elsewhere; for an overview, see Kéry (2010).

The broad scope of the GLM is one reason for the great importance of the GLM for you. The
other one, which we will see many times later in the book, is that the GLM represents the main
building block for hierarchical models. Many of the most exciting ecological models for inference
about populations can be viewed simply as a sequence of coupled GLMs (Royle and Dorazio, 2008;
Kéry and Schaub, 2012).

Poisson GLM

For an illustration of a Poisson GLM, we can treat the integer part of the wing span variable as a
count, for instance, imagining that it represented the number of some parasite counted on each
dragonfly, and then use our toy data set to fit a Poisson GLM. Writing the truncated wing span
variable of individual i as C;, we can then define the "main-effects ANCOVA" linear model within the
Poisson GLM as follows.

12



1. Random part of the response (statistical distribution):
C, ~ Poisson(4,)

2. Link of random and systematic part (log link function):
log(4) =7,

3. Systematic part of the response (linear predictor 7, ):
1, =a; + p*length

Here, A is the expected count (the mean response) for dragonfly i on the arithmetic scale, 7, is

the expected count on the log link scale (i.e., the linear predictor), length, is the length of dragonfly
I and a and g are the two parameters (a being vector-value) of the log-linear regression of the

counts on the factor pop and the covariate length.

We fit this model in R. In the next chapter/module, we will see how to fit Poisson and other
GLMs in the BUGS language. Essentially, we will see once again how writing the model in algebra
will almost directly lead to BUGS code for the same model.

C, ~ Poisson(4.)
log(4) = &; + B*length

count <- trunc(wing) # Keeps only the integer part of a number
summary(fm <- gIm(count ~ pop-1 + length, family = poisson))

g?éz%ormula = count ~ pop - 1 + length, family = poisson)

L---1

Coefficients:

Estimate Std. Error z value Pr(>|z])
popl 2.00479 0.87703 2.286 0.0223 *
pop2 2.16420 0.84882 2.550 0.0108 *
pop3 2.15454 0.87371 2.466 0.0137 *
length 0.04081 0.10571 0.386 0.6994

L---1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 315.0174 on 9 degrees of freedom
Residual deviance: 0.2483 on 5 degrees of freedom
AIC: 46.82

Number of Fisher Scoring iterations: 3

Bernoulli GLM (= logistic regression for binary response)

We use a Bernoulli distribution to describe patterns in coin-flip like processes or the
outcomes thereof. The Bernoulli is also important because the perhaps more commonly
encountered Binomial distribution with trial size N is the sum of N Bernoulli outcomes. For our
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example data set, we can model the event that the parasite load is 12 or greater as a so-called
"success" (coded as 1) an the converse as a "failure" (coded as 0). We call high. load the
indicator for a parasite load greater than 12; it contains a 1 if a dragonfly has more than 12
parasites and a 0 if it has between 0 and 12 parasites. Our Bernoulli GLM for the occurrence of a
high parasite load in relationship to population and body length is then:

high.load, ~ Bernoulli(p;)
logit(p,) =log [%} =a; + f*length

Here, p, is the expected proportion of dragonflies with high load on the probability scale. This is

the mean response at the level of each individual dragonfly. The linear model is applied to the logit
transformation of that expected response.

high.load <- wing>12
summary(fm <- gIm(high.load ~ pop-1 + length, family = binomial))

Call:
gIlm(formula = high.load ~ pop - 1 + length, family = binomial)
[---1
Coefficients:
Estimate Std. Error z value Pr(>|z])
popl -33.074 5443.139 -0.006 0.995
pop2 -11.471 10.550 -1.087 0.277
pop3 -11.822 10.879 -1.087 0.277
length 1.592 1.403 1.135 0.257

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 12.4766 on 9 degrees of freedom
Residual deviance: 5.7571 on 5 degrees of freedom
AIC: 13.757

Number of Fisher Scoring iterations: 18

Binomial GLM (= logistic regression)

The Binomial distribution is customarily adopted as a model for random variables that can be
considered as a sum of N independent Bernoulli trials, where N is called the sample or trial size, or
the binomial denominator. We will see Binomial random variables many times throughout this
book (for instance, in the next chapter), hence, here we are not going to spend more time on them,
or on how they are fitted using R or BUGS.

3.3 Random effects

Any random effects model is already a hierarchical model, so there is some overlap between the
three concepts in this chapter. As we have seen, a hierarchical model is a nested sequence of two
or more random variables, of which one is typically observed and the other(s) unobserved or at
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least only partly observed. We call random effects the realisations of those "higher-level", un- or
only partly observed random variables. At the data level, that is, for the observed random variable,
we may adopt a Normal distribution or any other distribution for a GLM, e.g., a Poisson or a
Bernoulli or Binomial. We illustrate this here for a Normal model and afterwards for a Poisson GLM.
For the unobserved random variable, that is, for the random effects, in the vast majority of cases a
normal distribution is assumed, but not always. For instance, in occupancy models, we have binary
random effects which are given a Bernoulli distribution and in N-mixture models, discrete random
effects assumed to follow a Poisson or similar distribution.

Random effects for a normal data distribution: Normal GLMM
The distribution assumed for the observed random variable, that is, for the data, is often called the
data distribution. We will use our toy dragonfly example to illustrate a random effects version of
the linear regression model and, especially, the topic of shrinkage. After that, we do the same for
the Poisson version of the model.

Here, we revisit the ANCOVA example from section 3.1 and (re-create) the figure from
before, but now without keeping track of the sex of the nine individuals. This is a Normal-normal
mixed or hierarchical model.

# Plot data without distinguishing sex

plot(length, wing, col = rep(c('red”, "blue™, "green™), each = 3), xlim = c(6.5,
9.5, ylim = c(10.5, 13.5), cex = 1.5, lwd = 2, frame.plot = FALSE, las = 1, pch
= 16, xlab = "Body length", ylab = "Wing span'™)

The model adopted in section 3.1. assumed a linear relationship between wing span and length
with a different baseline in each population and with residuals &, coming from a zero-mean normal

distribution with variance o 2.

mass; =a ; + f*length, + &, with &, ~ Normal (0,0 ?)

In this model, the population effects (the « j ) are estimated as completely unrelated numbers. If

we assume that they have something in common, are "exchangeable", that is, similar but not
identical, we can make the assumption that they are draws from a common distribution with
(hyper-) parameters to be estimated. That is, we can add to the above model the following
assumption:
2
a; ~Normal(x,,,o0 )

This line is the only difference between a fixed-effects version of the "ANCOVA" or clustered
regression model and a random-effects version of it. We use R to fit both models and plot the
resulting regression lines (Fig. 3-1). For the random-effects model we use the REML method, a
variant of maximum likelihood that is better suited for mixed models, and fit the model with the
function Imer in the R package Ime4, which we need to load first.

# Fit fixed-effects model, print regression parameter estimates and plot
regression lines

summary(Im <- Im(wing ~ pop-1 + length))

abline(Im$coef[1], Im$coef[4], col = "red”, Iwd = 3, Ity = 2)
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abline(Im$coef[2], Im$coef[4], col
abline(Im$coef[3], Im$coef[4], col

= "blue", Iwd = 3, Ity = 2)

= "green”, Iwd = 3, Ity = 2)

# Fit mixed model, print random effects and plot regression lines
library(Ime4)

summary(Imm <- Imer(wing ~ length + (1]pop)))

ranef(Imm)

abline((Imm@fixef[1]+ranef(Imm)$pop)[1,], Imm@Fixef[2], col
abline((Imm@fixef[1]+ranef(Imm)$pop)[2,]1, Imm@Fixef[2], col "blue"™, Iwd = 3)
abline((Imm@fixef[1]+ranef(Imm)$pop)[3,]1, Imm@Fixef[2], col "green, lwd = 3)
abline(Imm@fixef[1], Imm@fixef[2], col = "black™, Iwd = 5, Ity = ""dashed")

"red", Iwd = 3)

135

13.0

125

12.0
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115

11.0

105

Body length

Fig. 3: Anillustration of the shrinkage of random-effects parameters towards their common mean,
i.e., the mean hyperparameter of their prior distribution. The dashed lines are the least-squares
lines of best fit, which are equivalent to the line of best fit under a fixed-effects ANCOVA linear
model (i.e., the population-specific intercepts « ; are estimated as unrelated parameters). The

solid lines are the corresponding random-effects estimates; that is, the population-specific
intercepts are estimated subject to the condition « ; ~ Normal (u,,02). The random-effects lines

are pulled in towards the grand mean, u,, which is represented by the black dashed line. Colors

blue, green and red code for the three populations.

Here are the parameter estimates under this model. The estimates of the mean and the variance of
the random population effects are 7.5023 and 0.57208. We see that the random-effects regression
lines are less extreme than the fixed-effects regression lines. This is shrinkage in action.

When parameters are estimated as random rather than fixed effects, they are no longer
estimated as fully independent numbers, rather, their estimates are correlated somewhat. The
reason for that is that they are assumed to be draws from a common distribution with
(hyper)parameters that are estimated. That is, the random- and the fixed-effects estimates of a
model that is otherwise the same, are not identical ! Random-effects estimates are always less
extreme than are fixed-effects estimates. They are pulled in towards their mean (i.e., the mean
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hyperparameter of the distribution assumed for the random effects). In a Normal-Normal random
effects model such as here, the degree of shrinkage, or pulling in towards the grand mean, depends

on the ratio between the population variance aﬁ and the residual variance o 2. If the population

variance 05 is relatively large, not much shrinkage happens, while if the residual variance o ? is

relatively large, the degree of shrinkage is large. Fixed-effects estimates can be describes as
random-effects estimates with infinite population variance aj.

summary(Imm <- Imer(wing ~ length + (1]pop)))
Linear mixed model fit by REML
Formula: wing ~ length + (1 | pop)
AlIC BIC logLik deviance REMLdev
28.33 29.12 -10.16 19.15 20.33
Random effects:

Groups Name Variance Std.Dev.
pop (Intercept) 0.57208 0.75636
Residual 0.34963 0.59130

Number of obs: 9, groups: pop, 3

Fixed effects:

Estimate Std. Error t value
(Intercept) 7.5023 1.7475 4.293
length 0.5600 0.2101 2.666

Correlation of Fixed Effects:

(Intr)
length -0.962

We could also treat the slopes as realisations from a random variable. This would result in the
following model (note that now the slope £ is indexed by j, that is, it can vary by population).

mass; =a ; + £, *length; + &,

o ; ~ Normal (u,, 02 # Intercepts defined as random effects
B; ~ Normal (yﬂ,af,) # Slopes defined as random effects
£; ~ Normal(0,5 ?) # same old residual "random effects"

Another way of describing this model is that we fit three separate normal distributions, of which
one has the mean fixed at zero. We can fit this model in R as follows. (Note that the strange
notation specifies a model with random intercepts and random slopes, but without a correlation
parameter). For our minute data set, this complex model does not make sense, but we fit it here
simply for illustration.

summary(Imm <- Imer(wing ~ length + (1]pop) + (O+length]pop)))
Linear mixed model fit by REML
Formula: wing ~ length + (1 | pop) + (0O + length | pop)
AlIC BIC logLik deviance REMLdev
29.9 30.89 -9.95 18.66 19.9
Random effects:
Groups Name Variance Std.Dev.
pop (Intercept) 1.6756e-14 1.2944e-07
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pop length 9.3751e-03 9.6825e-02
Residual 3.1655e-01 5.6263e-01
Number of obs: 9, groups: pop, 3

Fixed effects:

Estimate Std. Error t value
(Intercept) 7.4317 1.6122 4.61
length 0.5694 0.2078 2.74

Correlation of Fixed Effects:
(intr)
length -0.957

One consequence of the sharing of information among random effects with the same prior
distribution is that the aliasing observe in some fixed-effects models is resolved; that is, all
parameters can be estimated. For instance, when fitting two factors as fixed effects such as sex and
pop here, not all effects of all factor levels can be estimated, but rather, some have to be set to 0 to
avoid an overparameterised model. This is no longer the case when these effects are treated as
random. This is shown in the following random-effects, main-effects two-way ANOVA.

summary(Imm <- Imer(wing ~ (1]pop) + (1]sex)))
> summary(Imm <- Imer(wing ~ (1]pop) + (1]sex)))
Linear mixed model fit by REML
Formula: wing ~ (1 | pop) + (1 | sex)
AlIC BIC logLik deviance REMLdev
32.15 32.93 -12.07 24.35 24.15
Random effects:

Groups Name Variance Std.Dev.
pop (Intercept) 0.38061 0.61694
sex (Intercept) 0.00000 0.00000
Residual 0.71713 0.84684

Number of obs: 9, groups: pop, 3; sex, 2

Fixed effects:
Estimate Std. Error t value
(Intercept) 11.9822 0.4545 26.36

We can obtain estimates of the random effects using the raneT function. Uncertainty intervals are
not straightforward to get using a non-bayesian approach. Perhaps with the boostrap ?

ranef(Imm)
$pop
(Intercept)
1 -0.5582674
2 0.2852760
3 0.2729914

$sex
(Intercept)
0

1
2 0
OK, this is kind of pointless, because the sex effect is (correctly) estimated at zero, so we can't really

see that in principle, they could be estimated when treated random.
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Random effects for a Poisson data distribution: Poisson GLMM

Here we do the analogous thing for the Poisson version of our model, that is, we fit a Poisson
generalised linear mixed model (GLMM). We only illustrate the random-intercepts model, which is
this:

C, ~ Poisson(4)
log(4) = &; + B*length
a; ~Normal(u,,02)

summary(Imm <- glmer(count ~ length + (1]pop), Family = poisson))
Generalized linear mixed model fit by the Laplace approximation
Formula: count ~ length + (1 | pop)
AlIC BIC logLik deviance

6.776 7.367 -0.3878 0.7755

Random effects:

Groups Name Variance Std.Dev.

pop (Intercept) O 0

Number of obs: 9, groups: pop, 3

Fixed effects:

Estimate Std. Error z value Pr(>|zl])
(Intercept) 2.15232 0.84536 2.546 0.0109 *
length 0.03558 0.10454 0.340 0.7336

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 < ~ 1

Correlation of Fixed Effects:
(Intr)
length -0.993

We note that the model has not converged, or else, has had difficulty in estimating the variance of
the random intercepts, because we obtain an estimate on the boundary of the parameter space, at
0. This is not surprising, since GLMMSs with non-normal responses are more difficult to fit than
normal GLMMs and especially, because we have only three groups (populations). If we created a
version of our data set that was, say, 10 or 100 times larger, we would probably be able to get
estimates under this model (you might want to try this as an exercise).

Summary

This completes our introduction to hierarchical models, which most typically are simply a
combination of two or more GLMs; one for an observed random variable and the other(s) for
unobserved random variable(s). Known structure in these GLMs can be accommodated with
covariates or possibly with more complex modeling (e.g., distance-related variance-covariance
matrices; this is not shown here, but see spatial modeling chapter). If you understand linear
models, GLMs and random effects, you are in really good shape for much of the applied statistical
analyses that are required for a modern ecologist. In this chapter, we have only looked at some of
the simplest, traditional hierarchical models, or generalised linear mixed models (GLMM). They
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could be called Normal-Normal mixed model or Normal-Poisson mixed model. That is, as in far
more than 90% of the cases in applied statistical analysis in ecology, the distribution for the
unobserved random variable, i.e., for the random effects, was assumed to be a normal. In most
instances of HMs in this book, however, we will not have such traditional GLMMs, but rather will
encounter non-standard GLMMs with random effects that have a more complicated structure, e.g.,
they will be assumed to come from a Bernoulli or Poisson distribution. This is perhaps surprising at
first and may strike you as strange; but nevertheless, the principle of hierarchical modeling, that a
complex model is built as a series of simpler models, typically GLMs, is retained also for these (more
interesting ?) models.

Exercises
1. Fit random-effects two-way main-effects ANOVA sex + pop to a 10 times greater data set and see
whether estimates are obtained by Ime ?

# Define and plot data (10 times larger data set than the toy data set)

pop <- factor(rep(c(1, 1, 1, 2, 2, 2, 3, 3, 3), 10))

wing <- rep(c(10.82, 10.56, 11.84, 12.09, 11.74, 13.51, 11.39, 13.04, 12.85), 10)
length <- rep(c(6.77, 8.27, 9.20, 6.88, 7.69, 8.96, 6.88, 8.15, 9.20), 10)

sex <- factor(rep(c(1,2,1,2,1,2,1,2,1), 10)) # Assume males are 1, females 2
cbind(pop, wing, length, sex) # Note that sex 1 = male and sex 2 = females

library(Ime4)

summary(Imm <- Imer(wing ~ (1]pop) + (1]sex)))
ranef(Imm)

Yes, it seems we can.
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