Analysis of N-mixture abundance and
site-occupancy species distribution models using WinBUGS, JAGS and unmarked

[image:]
An illustration of the effects of imperfect detection in species distribution models: Species distribution map produced with a conventional species distribution which ignores imperfect detection, such as a GLM, a GAM, boosted regression trees or MaxEnt (top), a map produced with a site-occupancy model which does not ignore imperfect detection (middle) and the difference between the two, representing the bias incurred by ignoring imperfect detection, for the dragonfly Aeshna cyeanea in Switzerland (from Kéry et al., 2010a)

Marc Kéry & Michael Schaub
USGS Patuxent Wildlife Research Center
Laurel, MD 20708
8–12 July 2013

All material in the remainder of this document is taken directly from a new book:
Bayesian Population Analysis using WinBUGS - a hierarchical perspective
by Marc Kéry & Michael Schaub; Academic Press, 2012; see www.vogelwarte.ch/bpa

[image: Description: Kéry_Schaub_Cover]

Specifically, the following material is taken from the BPA book chapters 12 and 13 on Nmix and on site-occupancy modeling, and contains an appendix with WinBUGS tips and a partial list of BPA book references.

Two slight changes were made to chapters 12 and 13 as they appear in the BPA book:
1. R code is added to fit the Nmix and site-occ models using functions in the highly useful (non-Bayesian) R package unmarked (Fiske & Chandler, 2011).
2. In chapter 13, BUGS code is added for fitting dynamic occupancy models to data in the ‘vertical’ format. This can save much time when analysing large and unbalanced data sets, as they often occur when fitting site-occupancy models to opportunistic data (Tingley & Beissinger, 2009; Kéry et al. 2010a, b; van Strien et al., 2011).
3. Plus, there are a couple others sneaking in

[bookmark: _Toc252874943]Table of contents in final two chapters
12. Estimation of abundance from counts in metapopulation designs using the binomial-mixture model	4
12.1. Introduction	4
12.2. Generation and analysis of simulated data	9
12.2.1. The simplest case with constant parameters	9
Interlude: Getting ML estimates with unmarked	11
12.2.2. Introducing covariates	14
Interlude: Getting ML estimates with unmarked	19
12.3. Analysis of real data: Open-population binomial-mixture model	23
12.3.1. Simple Poisson model	25
12.3.2. Zero-inflated Poisson binomial-mixture model (ZIP binomial-mixture model)	28
12.3.3. Binomial-mixture model with overdispersion in both abundance and detection	31
12.4. Summary and outlook	36
12.5. Exercises	37
13. Estimation of occupancy and species distributions from detection/nondetection data in metapopulation designs using site-occupancy models	38
13.1. Introduction	38
13.2. What happens when p<1 and constant and p is not accounted for in a species distribution model?	42
13.3. Generation and analysis of simulated data for single-season occupancy	44
13.3.1. The simplest possible site-occupancy model	44
Interlude: Getting Maximum likelihood estimates with the R package unmarked	46
13.3.2. Site-occupancy models with covariates	49
Interlude: Getting Maximum likelihood estimates with the R package unmarked	54
13.4. Analysis of real data set: Single-season occupancy model	57
Interlude: Getting Maximum likelihood estimates with the R package unmarked	66
13.5. Dynamic (multi-season) site-occupancy models	67
13.5.1. Generation and analysis of simulated data	70
Interlude: Getting Maximum likelihood estimates with the R package unmarked	75
13.5.2. Dynamic occupancy modeling in a real data set	80
Interlude: Fitting dynamic occupancy models to data in the vertical format	85
13.6. Multistate occupancy models	90
13.7. Summary and outlook	98
13.6. Exercises	99
References	101
Appendix 1: A list of WinBUGS tricks	106

[bookmark: _Toc296678234][bookmark: _Toc308638300][bookmark: _Toc261944318][bookmark: _Toc275788386][bookmark: _Toc252875010][bookmark: _Toc252876105][bookmark: _Toc252876422][bookmark: _Toc252876971][bookmark: _Toc252877307][bookmark: _Toc261944329][bookmark: _Toc275788397][bookmark: _Toc252875016][bookmark: _Toc252876116][bookmark: _Toc252876433][bookmark: _Toc252876982][bookmark: _Toc252877318]
12. Estimation of abundance from counts in metapopulation designs using the binomial-mixture model

Key words: abundance estimation, Bayesian p-value, binomial-mixture model, butterfly, detection probability, metapopulation design, N-mixture model, Poisson-log-normal, Poisson-Binomial, population size, posterior predictive distribution, zero-inflated Poisson

Non-print abstract: This chapter introduces the binomial (or N-) mixture model for joint modeling of abundance and detection from spatially and temporally replicated counts. This model is highly relevant for inference about abundance in many monitoring programs and ecological studies alike. This hierarchical model combines a Poisson or similar distribution as a description of the spatio- or spatio-temporal variation in the latent abundance state with a binomial distribution as a description of the imperfect observation process. Both the state and the observation submodels are generalized linear models, hence, effects of covariates or latent structure, such as spatial autocorrelation, can be modeled in the usual way. We illustrate with a simulated data set and show how even opposing effects of a single covariate can be estimated adequately, e.g., when a covariate has a negative effect on abundance, but a positive on detection. In sharp contrast, traditional modeling approaches such as Poisson regression are completely lost in this situation. We also apply the model to data from an open butterfly population and illustrate the use of posterior predictive checking and Bayesian p-values as a goodness-of-fit assessment. Due to its flexible model definition language, WinBUGS is very well suited to fit binomial-mixture models.

[bookmark: _Toc296678235][bookmark: _Toc308638301]12.1. Introduction
The last two chapters of this book deal with the modeling of abundance and occurrence in a metapopulation design. We show how a sort of nonstandard generalized linear mixed model (GLMM), a logistic regression with Poisson or with Bernoulli random effects, can be used to estimate population size or species occurrence in systems of spatial replicate populations. At least some of them must be surveyed more than once during a short period, i.e., replication is required in space and in time. Short means that the dynamics of the collection of populations (extinction, colonization, or emigration and immigration, as well as survival and recruitment) must be negligible over the time period over which replicate surveys are conducted. We call the design of studies with such systems of spatial replicate populations with temporally replicated samples a metapopulation design (Royle, 2004c; Kéry and Royle, 2010). The system of spatial replicates may or may not be inhabited by a metapopulation in the biological sense (Hanski, 1994; Hanski, 1998).

In chapters 4 and 5 we used two variants of hierarchical model that attempt to partition the observed data into contributions from the dynamics of the true ecological state and from an observation process. These models are useful, because failure to distinguish between the two processes that generate the observed data will often lead to severely biased inferences, e.g., about the presence or magnitude of density dependence. However, absent any further information (e.g., covariates informative about the observation process), these models cannot account for patterns in detection probability (see Link and Sauer, 1998 for good examples of such covariate modeling as a partial remedy for imperfect and patterned detection probability). The models in chapters 4 and 5 are unable in principle to fully correct for the observation error. We have shown that with a single count per time interval, this framework simply models the expectation , where is population size and is the average detection probability. What in these models is called ‘observation error’ is simply the ups and downs around of the observed counts due to binomial sampling error. Therefore, such hierarchical models have been called implicit hierarchical models (Royle and Dorazio, 2008): the product is not a quantity with an explicit biological meaning.

In the present chapter, we extend these implicit hierarchical models for counts to become explicit hierarchical models for counts so that the two main parameters have the interpretation of local abundance and of detection probability . The binomial (also called N-) mixture model of Royle (2004c) jointly estimates local abundance and detection probability (Dodd and Dorazio, 2004; Royle, 2004a; Royle, 2004c; Kéry et al., 2005; Dorazio, 2007; Royle and Dorazio, 2008; Wenger and Freeman, 2008; Joseph et al., 2009; Kéry et al., 2009a; Kéry and Royle, 2010; Post van der Burg et al., 2011). It takes as input spatially and temporally replicated counts of independent individuals within a period of closure, and yields estimates of the parameters of the ecological and the observation process. The parameters of the ecological process describe the spatial or spatio-temporal variation in latent abundance. Abundance is a latent state because it is incompletely observed owing to detection error. The observation process is the process of detecting (or overlooking) individuals and is described by a binomial process as we have seen so many times.

The binomial-mixture model has great appeal since it allows us to estimate abundance, corrected for imperfect detection, from fairly ‘cheap’ data: simple counts without any extra information, such as individual identification or distance measurements. Therefore, this model may be more widely applicable than capture-recapture methods or distance sampling. What the model does require, though, is replication in two dimensions, both spatially (at >10-20 sites, say) and temporally within a period of closure (at least two observations per site, though not necessarily at every site). Hence, it requires counts for a number of sites and temporal replicates .
Conceptually, such replicated counts arise from two distinct processes, one ecological and another observational. Accordingly, the binomial-mixture model for a single period of closure (‘season’) can be written succinctly in just two lines:

			1. Ecological process yields latent state

		2. Observation process yields observations

First, the spatial variation of local abundance at site , , for a collection of sites is described with by a Poisson distribution with mean . Second, the observed counts (given) at site and during replicate survey are described by a binomial distribution with sample size and detection probability . This model is sometimes also called a Poisson-binomial-mixture model.
If we think of it, few things could be more natural than making these two distributional assumptions. The Poisson is the standard distribution assumed for spatial or temporal variation in abundance (McCullagh and Nelder, 1989) and the binomial distribution underlies a vast array of capture-recapture models as a formal description of the coin-flip-like detection process of individuals (Williams et al., 2002; see also section 1.3.). Thus, the binomial-mixture model can be called a hierarchical Poisson regression, since the basic model for abundance is Poisson, but there is a logistic regression attached to account for imperfect detection. Several important extensions are possible, among them the adoption of distributions other than the Poisson for abundance or the binomial for detection, the introduction of covariates, and the relaxation of the independence of detection and of the closure assumption. We next briefly sketch each one in turn.
First, we could specify distributions other than a Poisson for the ecological part of the model, for instance a negative binomial (Royle, 2004b; Royle, 2004c; Kéry et al., 2005; Joseph et al., 2009), or a zero-inflated Poisson (Wenger and Freeman, 2008; Joseph et al., 2009). We will see a zero-inflated Poisson in Section 12.3.2, and the Poisson log-normal as an alternative to a negative binomial distribution in Section 12.3.3.

Second, since the binomial-mixture model consists simply of two linked GLMs, it is natural to introduce the effects of covariates via a log- and a logit-link function, respectively, for abundance and detection. This means that neither the mean local abundance nor detection probability need to be constant; indeed, they rarely ever are! Rather, we can specify covariate relationships such as these:

 and

In the first case, mean abundance at site , on the scale of the natural logarithm, is a linear function of site-specific covariate (‘site covariate’), with intercept and slope . Thus, the binomial-mixture model allows one to model habitat relationships in abundance while accounting for detection error; for examples see Kéry (2008), Webster et al. (2008), Chandler et al. (2009a), Chandler et al. (2009b) and Schlossberg et al. (2010). In the second case, the logit transform of detection probability at site during survey is a logit-linear function of the site- and survey-specific covariate (‘survey covariate’), with intercept and slope . Of course, a site covariate () is also possible for detection.

Similarly, for abundance or detection latent structure can be added by the introduction of random effects on the scale of the linear predictor. These account for additional variation in abundance or detection that is not accounted for by the nominal distributional assumptions along with the specified covariates. For instance, we can model extra-Poisson dispersion in the latent abundance parameters by specifying the following Poisson-log-normal binomial-mixture model (only linear predictor shown):

,

with
This modeling can be seen as a sort of correction for overdispersion in abundance (see also Section 4.2). Its result will be similar to the adoption of a negative-binomial distribution instead of a Poisson. Random effects can likewise be introduced into the linear predictor for detection. Both will account for the increased uncertainty in parameter estimates owing to the effects of unmodeled covariates by spreading out the posterior distributions and, hence, increasing uncertainty intervals. We see an example in section 12.3.3.

Third, the model assumes that all individuals in each local population behave and are detected independently. This assumption may be violated for animals that live in groups, so that when one individual in a group is detected, others in the same group are more likely to be detected as well. An extension of the basic binomial-mixture model to this situation has recently been described by Martin et al. (2011).

Fourth, the model as described so far is for static situations where replicate counts are available for a single, closed population of size at each site . This ideal will be impossible to attain in many situations, and indeed, in many cases, changes in abundance, for instance trends, are the focus of the modeling. The binomial-mixture model can easily be extended to dynamic situations, e.g., to several breeding seasons , provided that data are available in the so-called robust design (Williams et al., 2002), with temporal replicate observations within each of multiple seasons. We then model counts from site , replicate and season , and estimate different parameters for each season in the ecological process and possibly also for the observation process. The abundance parameters may be related to each other across years, for instance to model a trend (Royle and Dorazio, 2008 p. 4ff; Kéry et al., 2009a; Kéry and Royle, 2010). We will see an example of this in section 12.3. In principle, it would also be possible to model dynamic (autoregressive) population models, such as the Ricker or Gompertz equations (Dennis et al., 2006), or models in Chapter 5, within a binomial-mixture framework, but this has not been done so far.
Key assumptions of the model are the following:
1.

The ecological state is constant during the period over which replicate surveys are conducted (the traditional closure assumption). Its violation will lead to inflated abundance estimates. In benign cases this may mean that estimates the size of some superpopulation, i.e., the number of all individuals that ever use a sample site during the surveys. In severe cases, though, estimates may no longer be meaningful.
2.

Detection probability is constant for all individuals present at time and equal to .The model does not require individual identification, but isn’t able to accommodate individual variation in detection probability either. In analogy to closed models (chapter 6), intuition suggests that individual heterogeneity in detection probability at site during period leads to a negative bias in the abundance estimator (see Efford and Dawson (2009) for the special case of distance-related heterogeneity in detection).
3.

The distribution of abundance is adequately described by the chosen parametric form (e.g., a Poisson, possibly with covariates and latent effects). Similarly, detection probability is modeled adequately by the chosen parametric distribution (including possible covariates and other model structure). Especially the assumption about is likely to be more difficult to meet than the analogous assumption in the site-occupancy models in chapter 13. Effects of deviations of the data from the parametric model assumptions are hard to gauge, but posterior predictive checks (section 12.3.) enable one to diagnose whether a model fits adequately.
4. There are no false-positives such as double counts. The effect of the violation of this assumption has not been studied so far, but is likely to induce a positive bias in the abundance estimator.
In section 12.2., we first generate and analyze data from a single season (i.e., period of closure). In section 12.3., we look at real-world data from multiple seasons in an insect species. A season may be one annual breeding season (for instance for birds or reptiles, Kéry et al., 2005; Kéry et al., 2009a) or a single day, as in our insect example. We will fit a progression of increasingly complex models and see examples of zero-inflation and overdispersion correction. We will revisit (after their introduction in chapter 7) an important and very general technique for goodness-of-fit assessment called a posterior predictive check (or Bayesian p-value).

[bookmark: _Toc296678236][bookmark: _Toc308638302]12.2. Generation and analysis of simulated data
[bookmark: _Toc296678237][bookmark: _Toc308638303]12.2.1. The simplest case with constant parameters
To see the conceptual simplicity and beauty of the binomial-mixture model, we first look at the simplest possible case, where both the ecological and the observation process are described by an intercept only. To generate count data y under this Null model for R = 200 spatial replicates (sites) and T = 3 temporal replicates, we execute the following R commands:

Determine sample sizes (spatial and temporal replication)
R <- 200
T <- 3

Create structure to contain counts
y <- array(dim = c(R, T))

Sample abundance from a Poisson(lambda = 2)
N <- rpois(n = R, lambda = 2)

Sample counts from a Binomial(N, p = 0.5)
for (j in 1:T){
 y[,j] <- rbinom(n = R, size = N, prob = 0.5)
 }

Look at realization of biological and observation processes
cbind(N, y)

We have assumed a mean abundance per site of 2 and mean detection per individual of 0.5. Note that in this model, the detection parameter refers to each individual, while in the site-occupancy model (chapter 13) it refers to the collection of all individuals inhabiting a site, i.e., to an occupied site. Now, we will try to recover these parameter values when fitting the model in WinBUGS. Note how similar the BUGS code for this model is to the hierarchical way the data were created. Also note that for this class of models, initial values for the latent states (the Ns) must sometimes be close to the solution, otherwise WinBUGS may not achieve convergence or only do so very slowly. As our best guess, we choose the observed maximum count at each site, increased by 1, to save WinBUGS from having to update a Binomial with index 0.

Specify model in BUGS language
sink("model.txt")
cat("
model {

Priors
lambda ~ dgamma(0.005, 0.005) # Standard vague prior for lambda
lambda ~ dunif(0, 10) # Other possibility
p ~ dunif(0, 1)

Likelihood
Biological model for true abundance
for (i in 1:R) {
 N[i] ~ dpois(lambda)
 # Observation model for replicated counts
 for (j in 1:T) {
 y[i,j] ~ dbin(p, N[i])
 } # j
 } # i
}
",fill = TRUE)
sink()

Bundle data
win.data <- list(y = y, R = nrow(y), T = ncol(y))

Initial values
Nst <- apply(y, 1, max) + 1	# This line is important
inits <- function() list(N = Nst)

Parameters monitored
params <- c("lambda", "p")

MCMC settings
ni <- 1200
nt <- 2
nb <- 200
nc <- 3

Call WinBUGS from R (BRT 0.1 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
lambda 1.97 0.14 1.72 1.88 1.97 2.07 2.28 1.04 66
p 0.52 0.03 0.46 0.50 0.52 0.54 0.58 1.07 35
deviance 1073.47 27.64 1023.00 1054.00 1074.00 1091.00 1131.52 1.06 38

This looks good. There is a fair amount of sampling variance and so repeated realizations of the analysis will yield fairly variable estimates.

To run the analysis in JAGS, do this. We have already defined most of the objects needed by JAGS, so we only do the necessary changes:

Load R2jags
library(R2jags)

Call JAGS from R and time run
system.time(out <- jags(win.data, inits, params, "model.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))

Look at convergence in time-series plots
traceplot(out)

Summarize posteriors
print(out)

May look at correlation of estimates
plot(out$BUGSoutput$sims.list$lambda, out$BUGSoutput$sims.list$p, xlab = "Posterior draws of lambda", ylab = "Posterior draws of p", main = "Data-generating values in red")
abline(v = 2, col = "red", lwd = 2)
abline(h = 0.5, col = "red", lwd = 2)

[image:]

[bookmark: _Toc308638304]And another interlude: Getting ML estimates with unmarked
Here we show how to use the R package unmarked to get maximum likelihood estimates for the same model. We first load the package.

library(unmarked)

The function to fit N-mixture models in unmarked is called pcount() (for point count, which is a protocol that is often used to produce replicated count data that are adequate for fitting N-mixture models). We inspect the syntax of that function first.

?pcount

Some important function arguments are K, mixture and se. R evaluates the likelihood by summing over all possible values that abundance could take for your data set. So if K is chosen too low, then this will affect the estimates. Be sure to make K at least twice the maximum of the observed counts. Mixture defines the parametric distribution that is assumed for the latent abundances among sites. The other values, "NB" and "ZIP", define a negative-binomial and a zero-inflated Poisson distribution. se can be set to FALSE, and then the variance-covariance matrix is not computed, only the point estimates (MLEs) are. For very large data sets and in an exploratory mode of analysis (for example, when using AIC for model selection), it may not be necessary to get SE’s for all models, and this can save time.

To carry out an analysis in unmarked, we first have to put all the data that we want to analyse in a special data frame, called an unmarkedFrame.

?unmarkedFramePCount

umf <- unmarkedFramePCount(y = y)
summary(umf)
> summary(umf)
unmarkedFrame Object

200 sites
Maximum number of observations per site: 3
Mean number of observations per site: 3
Sites with at least one detection: 165

Tabulation of y observations:
 0 1 2 3 4 5 6 <NA>
 224 216 100 42 16 1 1 0

Normally (also see next section), we would also want to fit covariates into the model and these would have to be specified already in the function that creates the unmarked data frame for the Nmix model. However, here, we are only fitting a model with two constants, and no covariates are required. There is much more to be learned about this function (for instance, the arguments K, mixture or engine), but here we simply give a quick introduction to the function.

(fm <- pcount(~1 ~1, umf, K=20))
> (fm <- pcount(~1 ~1, umf, K=20))

Call:
pcount(formula = ~1 ~ 1, data = umf, K = 20)

Abundance:
 Estimate SE z P(>|z|)
 0.688 0.0734 9.37 7.13e-21

Detection:
 Estimate SE z P(>|z|)
 0.0667 0.125 0.533 0.594

AIC: 1449.393

These estimates are on the log and the logit scale, respectively. Therefore, to compare them with the values of the parameters with which we simulated the data set (= 2 and p = 0.5), we can apply the inverse link function.

exp(0.688)
plogis(0.0667)
> exp(0.688)
[1] 1.989732
> plogis(0.0667)
[1] 0.5166688

Note that the parameter estimates are hidden way down the tree structure of the R object created by the function. To get the estimates for the abundance model, do this:

fm@estimates@estimates$state@estimates

And for those of the detection model, do this:

fm@estimates@estimates$det@estimates

(I must say, that I find quite confusing the R convention to have both @ and $ signs in the address. But that’s the way it is ...)

Alternatively, we can apply the backTransform() function. In it, we must specify whether we want to apply it to the parameter(s) of the state or of the detection model.

backTransform(fm, type = "state")
> backTransform(fm, type = "state")
Backtransformed linear combination(s) of Abundance estimate(s)

 Estimate SE LinComb (Intercept)
 1.99 0.146 0.688 1

Transformation: exp

backTransform(fm, type = "det")
> backTransform(fm, type = "det")
Backtransformed linear combination(s) of Detection estimate(s)

 Estimate SE LinComb (Intercept)
 0.517 0.0313 0.0667 1

Transformation: logistic

We remind ourselves of the Bayesian posterior means for the analysis of the same data set …

print(out, 2)

… and find the usual numerical similarity between the Bayesian and the maximum likelihood estimates.

[bookmark: _Toc296678238][bookmark: _Toc308638305]12.2.2. Introducing covariates
Next, we simulate more complex data for a single season. We introduce a single covariate that acts on both the ecological and on the observation process. We model the effect of the covariate on the scale of the log and the logit, respectively, as is customary for generalized linear models. This example illustrates a so-called site covariate, i.e., a covariate that varies by site only, but not among individual surveys (this would be called a survey or sampling covariate). Sampling covariates may be weather condition or survey duration, i.e., something that may affect detection, but not abundance. For sampling covariates, see the exercises at the end of this chapter. OpenBUGS (Examples > Ecology examples > Lizards) also contains an example of a binomial-mixture model with covariates for both abundance and detection.

Define function for generating binomial-mix model data
data.fn <- function(R = 200, T = 3, xmin = -1, xmax = 1, alpha0 = 1, alpha1 = 3, beta0 = 0, beta1 = -5){

R: number of sites at which counts were made (= number of spatial reps)
T: number of times that counts were made at each site
(= number of temporal reps)
xmin, xmax: define range of the covariate X
alpha0 and alpha1: intercept and slope of log-linear regression
relating abundance to the site covariate A
beta0 and beta1: intercept and slope of logistic-linear regression
of detection probability on A

 y <- array(dim = c(R, T))	# Array for counts

 # Ecological process
 # Covariate values: sort for ease of presentation
 X <- sort(runif(n = R, min = xmin, max = xmax))

 # Relationship expected abundance – covariate
 lam <- exp(alpha0 + alpha1 * X)

 # Add Poisson noise: draw N from Poisson(lambda)
 N <- rpois(n = R, lambda = lam)
 table(N) # Distribution of abundances across sites
 sum(N > 0) / R # Empirical occupancy
 totalN <- sum(N) ; totalN

 # Observation process
 # Relationship detection prob – covariate
 p <- plogis(beta0 + beta1 * X)

 # Make a ‘census’ (i.e., go out and count things)
 for (i in 1:T){
 y[,i] <- rbinom(n = R, size = N, prob = p)
 }

 # Naïve regression
 naive.pred <- exp(predict(glm(apply(y, 1, max) ~ X + I(X^2), family = poisson)))

 # Plot features of the simulated system
 par(mfrow = c(2, 2))
 plot(X, lam, main = "Expected abundance", xlab = "Covariate", ylab = "lambda", las = 1, type = "l", col = "red", lwd = 3, frame.plot = FALSE)
 plot(X, N, main = "Realised abundance", xlab = "Covariate", ylab = "N", las = 1, frame.plot = FALSE, col = "red", cex = 1.2)
 plot(X, p, ylim = c(0, 1), main = "Detection probability", xlab = "Covariate", ylab = "p", type = "l", col = "red", lwd = 3, las = 1, frame.plot = FALSE)
 plot(X, naive.pred, main = "Actual counts \n and naïve regression", xlab = "Covariate", ylab = "Relative abundance", ylim = c(min(y), max(y)), type = "l", lty = 2, lwd = 4, col = "blue", las = 1, frame.plot = FALSE)
points(rep(X, T), y, col = "black", cex = 1.2)

 # Return stuff
 return(list(R = R, T = T, X = X, alpha0 = alpha0, alpha1 = alpha1, beta0 = beta0, beta1 = beta1, lam = lam, N = N, totalN = totalN, p = p, y = y))
 }

We execute this function once to generate one data set and produce an overview of the simulation.

data <- data.fn()
str(data)

Fig. 12-1 contains pictures of the main features of this stochastic system and its observation, i.e., the data set generated. Abundance has a positive relation with the covariate (top two panels). In contrast, detection probability has a negative relationship with that same covariate (bottom left). The result of this is that the observed counts (bottom right) suggest an intermediate optimum value of the covariate for abundance, and this false impression is confirmed by fitting a quadratic covariate effect in a Poisson regression of the max count at each site. The dashed blue line shows the prediction from that naïve analysis.
Next we use a binomial-mixture model to see whether we can tease apart the opposing effects of the covariate on the ecological state and on the observation of that state or, in plain English, whether we can recover estimates of the two GLM regressions that resemble the known input values. We are also interested in an estimate of the total population size across all surveyed plots, which, in our simulated data, was 1956.

[image:]
Fig. 12-1: Features of the ecological and of the observation process that generated our data set and a conventional (naïve) analysis of counts in relation to an environmental covariate (dashed blue line in bottom right panel): (a) Expected abundance, (b) realized abundance, (c) detection probability, (d) actual counts and naïve regression. The truth is shown in red and observed data in black. See text and R code for further explanations.

Specify model in BUGS language
sink("model.txt")
cat("
model {

Priors
alpha0 ~ dunif(-10, 10)
alpha1 ~ dunif(-10, 10)
beta0 ~ dunif(-10, 10)
beta1 ~ dunif(-10, 10)

Likelihood
Ecological model for true abundance
for (i in 1:R){
 N[i] ~ dpois(lambda[i])
 log(lambda[i]) <- alpha0 + alpha1 * X[i]

 # Observation model for replicated counts
 for (j in 1:T){
 y[i,j] ~ dbin(p[i,j], N[i])
 p[i,j] <- exp(lp[i,j])/(1+exp(lp[i,j]))
 lp[i,j] <- beta0 + beta1 * X[i]
 } #j
 } #i

Derived quantities
totalN <- sum(N[])
}
",fill = TRUE)
sink()

Bundle data
y <- data$y
win.data <- list(y = y, R = nrow(y), T = ncol(y), X = data$X)

Initial values
Nst <- apply(y, 1, max) + 1	# Important to give good inits for latent N
inits <- function() list(N = Nst, alpha0 = runif(1, -1, 1), alpha1 = runif(1, -1, 1), beta0 = runif(1, -1, 1), beta1 = runif(1, -1, 1))

Parameters monitored
params <- c("totalN", "alpha0", "alpha1", "beta0", "beta1")

MCMC settings
ni <- 22000
nt <- 20
nb <- 2000
nc <- 3

May attempt first with shorter MCMC settings
ni <- 2200 ; nt <- 1 ; nb <- 1 ; nc <- 3

Call WinBUGS from R (BRT 4 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out, 2)
Inference for Bugs model at "model.txt", fit using WinBUGS,
 3 chains, each with 22000 iterations (first 2000 discarded), n.thin = 20
 n.sims = 3000 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
totalN 1418.316 492.789 790.000 1067.750 1317.000 1638.000 2682.125 1.087 29
alpha0 0.909 0.129 0.679 0.818 0.903 0.991 1.178 1.047 48
alpha1 2.565 0.327 1.974 2.334 2.547 2.774 3.260 1.078 31
beta0 0.246 0.192 -0.151 0.122 0.251 0.379 0.602 1.032 71
beta1 -4.802 0.377 -5.552 -5.060 -4.796 -4.546 -4.095 1.061 38
deviance 787.942 16.840 756.997 776.400 787.350 799.000 823.102 1.030 72

We recover estimates that appear unbiased. The estimate of total population size is fairly imprecise, but will often, and here does, contain the true value (1956) within its 95% CRI. The sum of the maximum counts at each site, a conventional estimator of total population size, is only 232 individuals (type sum(apply(data$y, 1, max))). It is remarkable that the binomial-mixture model gets so close to the truth! Let’s look at further inferences and plot the posterior distribution for the four regression parameters (Fig. 12.2).
Typically, an ecologist would want estimates of abundance for each site also. Within the Bayesian framework, this is trivial: just add N to the list of quantities monitored!

Plot posteriors
par(mfrow = c(2, 2))
hist(out$sims.list$alpha0, col = "gray", main = "", xlab = "alpha0", las = 1)
abline(v = data$alpha0, lwd = 3, col = "red")
hist(out$sims.list$alpha1, col = "gray", main = "", xlab = "alpha1", las = 1)
abline(v = data$alpha1, lwd = 3, col = "red")
hist(out$sims.list$beta0, col = "gray", main = "", xlab = "beta0", las=1)
abline(v = data$beta0, lwd = 3, col = "red")
hist(out$sims.list$beta1, col = "gray", main = "", xlab = "beta1", las = 1)
abline(v = data$beta1, lwd = 3, col = "red")

[image:]
Fig. 12-2: Posterior distributions for the two log- and logit-linear regressions of expected abundance and detection probability on a covariate. The red lines show the values used for these parameters in the simulation of the data.

How well can the naïve and the binomial-mixture analysis recover the covariate relationship? Fig. 12-3 shows that for the conventional model, the answer is: not very well! In contrast, the binomial-mixture model does a good job at recovering the true positive relationship between abundance and the covariate.

Plot predicted covariate relationship with abundance
plot(data$X, data$N, main = "", xlab = "Covariate", ylab = "Abundance", las = 1, ylim = c(0, max(data$N)), frame.plot = FALSE)
lines(data$X, data$lam, type = "l", col = "red", lwd = 3)
GLM.pred <- exp(predict(glm(apply(data$y, 1, max) ~ X + I(X^2), family = poisson, data = data)))
lines(data$X, GLM.pred, type = "l", lty = 2, col = "blue", lwd = 3)
Nmix.pred <- exp(out$mean$alpha0 + out$mean$alpha1 * data$X)
points(data$X, Nmix.pred, type = "l", col = "blue", lwd = 3)
[image:]
Fig. 12-3: Relationship between abundance and covariate in a simulated system. The red line shows truth, with realized abundance at 200 sites in black. The blue lines show the estimates under a binomial-mixture model (solid line) and under a conventional non-hierarchical Poisson regression (dashed).

[bookmark: _Toc308638306]Next interlude: Getting ML estimates with unmarked
Here we show how to use the R package unmarked to get maximum likelihood estimates for the same model with covariates. We first load the package.

library(unmarked)

We first create the unmarked data frame for the pcount function

umf <- unmarkedFramePCount(y = y, siteCovs = data.frame(X = data$X))
summary(umf)
unmarkedFrame Object

200 sites
Maximum number of observations per site: 3
Mean number of observations per site: 3
Sites with at least one detection: 132

Tabulation of y observations:
 0 1 2 3 4 5 6 <NA>
 296 190 78 27 6 2 1 0

Site-level covariates:
 X
 Min. :-0.98526
 1st Qu.:-0.55854
 Median :-0.03792
 Mean :-0.00722
 3rd Qu.: 0.56461
 Max. : 0.99291

Model fitting is simple and the models (for the state, i.e., for abundance, and for detection) are defined in exactly the same syntax as one is used for the R functions lm() or glm(), for instance. For fun, we also time the model fitting, to emphasize how much faster MLE often is compared to a Bayesian solution using MCMC.
When fitting the model we have to make a choice of the summation limit K in the pcount function. The max count observed is only six, however, it turns out that K must be set to more than twice that in order to not truncate the likelihood function. You can easily diagnose when K is set too low: just run the model with increasing values of K and see at which the estimates no longer change. You will notice that increasing K increases the computation time, so setting it at some very high value (e.g., K = 500) for every analysis is not a good idea.
For this data set it turns out that K = 70 is about right.

system.time(
 (fm <- pcount(~X ~X, umf, engine = "C", K=70))
)

> system.time(
+ (fm <- pcount(~X ~X, umf, K=20))
+)
 User System verstrichen
 8.18 0.00 8.20

That is about 8 sec compared to 4 minutes in the Bayesian analysis ! Let’s look at the estimates.

summary(fm)
> summary(fm)

Call:
pcount(formula = ~X ~ X, data = umf, K = 70, engine = "C")

Abundance (log-scale):
 Estimate SE z P(>|z|)
(Intercept) 0.909 0.127 7.17 7.28e-13
X 2.552 0.332 7.69 1.44e-14

Detection (logit-scale):
 Estimate SE z P(>|z|)
(Intercept) 0.248 0.187 1.33 1.85e-01
X -4.794 0.384 -12.47 1.04e-35

AIC: 1047.31
Number of sites: 200
optim convergence code: 0
optim iterations: 57
Bootstrap iterations: 0

We compare the estimates under the naïve Poisson model with those from the N-mixture model fit by Bayesian and likelihood methods in a graph. We can get predictions (of abundance or of detection) in unmarked conveniently using the function predict(), which returns MLEs, standard errors and 95% confidence intervals.

MLEs <- predict(fm, type = "state")
head(MLEs)
> head(MLEs)
 Predicted SE lower upper
1 0.2008113 0.05253054 0.1202599 0.3353167
2 0.2039586 0.05297017 0.1225959 0.3393188
3 0.2077888 0.05349786 0.1254497 0.3441714
4 0.2109414 0.05392627 0.1278074 0.3481512
5 0.2116679 0.05402424 0.1283518 0.3490665
6 0.2146418 0.05442242 0.1305846 0.3528064

When simulating the data set, we had ordered the covariates values. Therefore, we don’t need to bother reordering the predictions but can plot them directly.

Plot predicted covariate relationship with abundance
plot(data$X, data$N, main = "", xlab = "Covariate", ylab = "Abundance", las = 1, ylim = c(0, max(data$N)), frame.plot = FALSE)
lines(data$X, data$lam, type = "l", col = "red", lwd = 3)
GLM.pred <- exp(predict(glm(apply(data$y, 1, max) ~ X + I(X^2), family = poisson, data = data)))
lines(data$X, GLM.pred, type = "l", lty = 2, col = "blue", lwd = 3)
Nmix.pred <- exp(out$mean$alpha0 + out$mean$alpha1 * data$X)
points(data$X, Nmix.pred, type = "l", col = "blue", lwd = 3)
lines(data$X, MLEs[,1], type = "l", lty = 2, col = "green", lwd = 3)
legend(-0.95, 50, c('Truth', 'Naïve estimate', 'Posterior mean', 'MLE'), col=c("red", "blue", "blue", "green"), lty = c(1,2,1,1), lwd = 3, cex = 1.2)

[image:]

We see again that the Bayesian posterior means and the MLEs are often numerically almost indistinguishable.

More interlude: Analysis with JAGS
Running the same analysis in JAGS and time the run
library(R2jags)
system.time(outJAGS <- jags(win.data, inits, params, "model.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))

Look at trace plots and summarize posteriors
traceplot(outJAGS)
print(outJAGS, 2)

Typically, the intercepts of the two model subcomponents (abundance, detection) are quite strongly correlated with each other (W.A. Link, pers. comm.). A correlation of 1 between two estimates means that they are not separately identifiable. So let’s check this here.

May look at correlation of estimates
plot(outJAGS$BUGSoutput$sims.list$alpha0, outJAGS$BUGSoutput$sims.list$beta0, xlab = "Detection intercept (logit scale)", ylab = "Abundance intercept (logit scale)", main = "Can abundandance be estimated \nseparately from detection ?")

[image:]

Correlation coefficient not soooo bad !?
cor(outJAGS$BUGSoutput$sims.list$alpha0, outJAGS$BUGSoutput$sims.list$beta0)
[1] -0.8470275

Plot predicted covariate relationship with abundance
plot(data$X, data$N, main = "", xlab = "Covariate", ylab = "Abundance", las = 1, ylim = c(0, max(data$N)), frame.plot = FALSE)
lines(data$X, data$lam, type = "l", col = "red", lwd = 3)
GLM.pred <- exp(predict(glm(apply(data$y, 1, max) ~ X + I(X^2), family = poisson, data = data)))
lines(data$X, GLM.pred, type = "l", lty = 2, col = "blue", lwd = 3)
Nmix.pred <- exp(out$mean$alpha0 + out$mean$alpha1 * data$X)
points(data$X, Nmix.pred, type = "l", col = "blue", lwd = 3)
Nmix.pred.jags <- exp(outJAGS$BUGSoutput$mean$alpha0 + outJAGS$BUGSoutput$mean$alpha1 * data$X)
points(data$X, Nmix.pred.jags, type = "l", col = "orange", lwd = 3)
lines(data$X, MLEs[,1], type = "l", lty = 2, col = "green", lwd = 3)
legend(-0.95, 50, c('Truth', 'Naïve estimate', 'Post. mean BUGS', 'Post. mean JAGS', 'MLE'), col=c("red", "blue", "blue", "orange", "green"), lty = c(1,2,1,1,1), lwd = 3, cex = 1.2)

[image:]
NOTE: This figure is based on Markov chains that haven’t converged in the analysis with WinBUGS and JAGS !

[bookmark: _Toc296678239][bookmark: _Toc308638307]12.3. Analysis of real data: Open-population binomial-mixture model
Frequently, counts are made at two temporal scales. That is, one does not only have count data from a single period of closure, but in addition from several seasons. For instance, for birds we may have repeated samples within a breeding season (visits within a year are secondary occasions) that are repeated across several years (years are primary occasions). In capture-recapture this sampling design is called the robust design (Williams et al., 2002): a population is repeatedly sampled over a short period, during which the population is considered to be closed, and these sampling sessions are repeated over a longer period, over which the population is considered to be open. The primary occasions may also consist of (much) shorter time intervals than years if the population dynamics of the study organism is fast relative to the duration of a study.
In our real world example we will estimate population size of a butterfly, the silver-washed fritillary (Fig. 12-4), over an entire summer. The information for application of the binomial-mixture model comes from the fact that each of 95 sites was surveyed twice along a 2.5 km transect on each of 4–7 survey days (Kéry et al., 2009a; Kéry et al., 2009b; Dorazio et al., 2010). Survey days are separated by at least two weeks and butterflies are rather short-lived, hence, it would not be sensible to assume a constant population size at each site over repeated days or even during the entire summer. Hence, we shall consider each day a primary occasion and model different parameters for each day. The two replicate observations of each transects within a day represent the secondary occasions between which the populations are assumed constant. We will apply the open-population binomial-mixture model of Dorazio and Royle (2008), Kéry et al. (2009a) and Kéry and Royle (2010) to estimate population size during each day.

We denote as the count from site (), within-day temporal replicate and day . Note that both and index temporal replicates, but the population is assumed to be static over the former and allowed to change over the latter. In program R we format the counts into a 3-dimensional array, since this is convenient for the modeling. In our experience, one of the most difficult things about statistical modeling in WinBUGS is to keep track of the dimensions of multi-dimensional arrays, including putting data into such arrays in the first place. So expect some time to learn how to do this, either in a clumsy way like we do here or using R functions like those in the reshape package.

[image: Description: 5529]

Fig. 12-4: Silver-washed fritillary Argynnis paphia, Switzerland, 2005 (Photo: T. Marent)

We will revisit posterior predictive distributions and Bayesian p-values in this example, introduced in section 7.10., a very general method of checking the goodness-of-fit of a model fit using Bayesian posterior sampling (see Gelman et al., 1996; Gelman et al., 2004; Kéry, 2010). The posterior predictive distribution is the distribution of replicate data sets or statistics computed from data sets, given the model, its parameter values and the observed data set. We do a posterior predictive check of whether the model used to analyze the observed data fits them, in the sense that the model, with the estimated parameters, could plausibly have generated data such as the data set that we actually observed. The idea behind a posterior predictive check is rather similar to a parametric bootstrap: use the parameter values estimated from the actual data set under a given model to generate new data sets. Then, calculate some discrepancy measure for the new data set (e.g., chi-squared) and repeat that many times to get the reference distribution for that discrepancy measure for a model that fits. Then, compare the fit of the model to the actual data with that reference distribution. For example, we see where the, say, chi-squared test statistic computed for the actual data set falls within the distribution of chi-squared statistics that was computed for the replicate data sets.
We load the data, put them into a 3D array and look at some summary statistics.

Get the data and put them into 3D array
bdat <- read.table("fritillary.txt", header = TRUE)
y <- array(NA, dim = c(95, 2, 7))	# 95 sites, 2 reps, 7 days

for(k in 1:7){
 sel.rows <- bdat$day == k
 y[,,k] <- as.matrix(bdat)[sel.rows, 3:4]
 }
y # Look at data set in 3D layout
str(y)

Have a look at raw data
day.max <- apply(y, c(1, 3), max, na.rm = TRUE) # Max count each site and day
day.max
site.max <- apply(day.max, 1, max, na.rm = TRUE) # Max count each site
site.max
table(site.max) # Frequency distribution of max counts
plot(table(site.max))
table(site.max>0) # Observed occupancy is only 56%

Sum of observed max as conventional estimator of total abundance
max1 <- apply(y, c(1, 3), max)
obs.max.sum <- apply(max1, 2, sum, na.rm = TRUE)

obs.max.sum
[1] 4 0 15 32 99 85 63

Very few butterflies were observed during the first day and none during the second day.

[bookmark: _Toc296678240][bookmark: _Toc308638308]12.3.1. Simple Poisson model
We start with the simplest binomial-mixture model that appears to make sense in this case. It has time-specific, constant parameters for both abundance and detection probability. Note that in the computation of the chi-squared discrepancy measure for the posterior predictive check, a small constant (0.5) is added in the denominator to avoid possible divisions by zero.

Specify model in BUGS language
sink("Nmix0.txt")
cat("
model {

Priors
for (k in 1:7){
 alpha.lam[k] ~ dnorm(0, 0.01)
 p[k] ~ dunif(0, 1)
 }

Likelihood
Ecological model for true abundance
for (k in 1:7){ # Loop over days (7)
 lambda[k] <- exp(alpha.lam[k])
 for (i in 1:R){ # Loop over R sites (95)
 N[i,k] ~ dpois(lambda[k]) # Abundance

 # Observation model for replicated counts
 for (j in 1:T){ # Loop over temporal reps (2)
 y[i,j,k] ~ dbin(p[k], N[i,k]) # Detection

 # Assess model fit using Chi-squared discrepancy
 # Compute fit statistic E for observed data
 eval[i,j,k] <- p[k] * N[i,k] 	# Expected values
 E[i,j,k] <- pow((y[i,j,k] - eval[i,j,k]),2) / (eval[i,j,k] + 0.5)
 # Generate replicate data and compute fit stats for them
 y.new[i,j,k] ~ dbin(p[k], N[i,k])
 E.new[i,j,k] <- pow((y.new[i,j,k] - eval[i,j,k]),2) / (eval[i,j,k] + 0.5)

 } #j
 } #i
 } #k

Derived and other quantities
for (k in 1:7){
 totalN[k] <- sum(N[,k])	# Total pop. size across all sites
 mean.abundance[k] <- exp(alpha.lam[k])
 }
fit <- sum(E[,,])
fit.new <- sum(E.new[,,])
}
",fill = TRUE)
sink()

Bundle data
R = nrow(y)
T = ncol(y)
win.data <- list(y = y, R = R, T = T)

Initial values
Nst <- apply(y, c(1, 3), max) + 1
Nst[is.na(Nst)] <- 1
inits <- function(){list(N = Nst, alpha.lam = runif(7, -1, 1))}

Parameters monitored
params <- c("totalN", "mean.abundance", "alpha.lam", "p", "fit", "fit.new")

MCMC settings
ni <- 10000
nt <- 8
nb <- 2000
nc <- 3

Call WinBUGS from R (BRT 1 min)
out0 <- bugs(win.data, inits, params, "Nmix0.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out0, dig = 3)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
totalN[1] 35.133 59.426 4.000 8.000 15.000 32.000 233.148 1.090 49
totalN[2] 0.162 0.902 0.000 0.000 0.000 0.000 2.000 1.132 330
totalN[3] 20.003 5.097 15.000 17.000 19.000 22.000 34.000 1.002 1800
totalN[4] 39.511 5.117 33.000 36.000 38.000 42.000 52.000 1.003 2400
totalN[5] 135.943 13.689 115.000 126.000 134.000 144.000 168.000 1.001 3000
totalN[6] 99.653 6.869 90.000 95.000 99.000 103.000 116.000 1.004 750
totalN[7] 90.296 10.605 74.000 83.000 89.000 96.000 115.000 1.001 3000
mean.abundance[1] 0.371 0.631 0.030 0.088 0.163 0.348 2.447 1.077 56
mean.abundance[2] 0.003 0.010 0.000 0.000 0.000 0.001 0.023 1.001 3000
mean.abundance[3] 0.211 0.071 0.109 0.165 0.201 0.245 0.389 1.002 1900
mean.abundance[4] 0.415 0.086 0.271 0.356 0.407 0.465 0.608 1.001 3000
mean.abundance[5] 1.430 0.191 1.091 1.299 1.415 1.549 1.843 1.001 3000
mean.abundance[6] 1.048 0.128 0.820 0.960 1.040 1.127 1.316 1.003 930
mean.abundance[7] 0.952 0.151 0.686 0.850 0.939 1.041 1.277 1.001 3000
[...]
p[1] 0.212 0.167 0.012 0.077 0.170 0.312 0.625 1.070 60
p[2] 0.485 0.291 0.017 0.229 0.489 0.731 0.972 1.003 1300
p[3] 0.545 0.124 0.282 0.465 0.552 0.634 0.766 1.002 3000
p[4] 0.600 0.087 0.416 0.543 0.605 0.661 0.761 1.002 1700
p[5] 0.515 0.057 0.401 0.475 0.518 0.556 0.619 1.001 3000
p[6] 0.653 0.054 0.539 0.619 0.656 0.692 0.750 1.002 1500
p[7] 0.550 0.068 0.416 0.505 0.552 0.597 0.677 1.001 3000
fit 147.924 15.887 121.000 136.675 146.400 157.625 183.102 1.001 3000
fit.new 97.796 11.908 76.427 89.490 97.220 104.900 123.000 1.002 3000
deviance 765.186 42.162 689.300 735.575 763.400 792.200 855.505 1.001 2700

We note that the estimates for the first two days, when very few or no butterflies were observed, are very imprecise and entirely driven by the priors, respectively: the 95% CRI for p at time 2 extends almost from 0 to 1. We look at the posterior predictive check of goodness-of-fit for this model (Fig. 12-5a).

Evaluation of fit
plot(out0$sims.list$fit, out0$sims.list$fit.new, main = "", xlab = "Discrepancy actual data", ylab = "Discrepancy replicate data", frame.plot = FALSE)
abline(0, 1, lwd = 2, col = "black")
[image:]

Fig. 12-5: Posterior predictive checks of model adequacy of two binomial-mixture models fit to the Swiss fritillary data; (a) Null model, (b) model with random effects in abundance and detection (see section 12.3.3.).

mean(out0$sims.list$fit.new > out0$sims.list$fit)
 [1] 0

mean(out0$mean$fit) / mean(out0$mean$fit.new)
[1] 1.512573

The model does not fit well at all (Fig. 12-5a). Indeed, there is a ‘lack-of-fit ratio’ of 1.51. This informal quantity compares the mean of the fit statistic for the actual data with that for the perfect data sets and thus gives a numerical expression of how bad the lack of fit is. What could be wrong? The fritillary was never detected at 42 sites and detected at least once at 53; yielding an observed occupancy of 56%. It may well be that a Poisson distribution for the spatial variation in abundance is not flexible enough to account for that many zeroes. Therefore we will next model abundance with a zero-inflated Poisson distribution (Wenger and Freeman, 2008; Joseph et al., 2009).

[bookmark: _Toc296678241][bookmark: _Toc308638309]12.3.2. Zero-inflated Poisson binomial-mixture model (ZIP binomial-mixture model)
The ZIP binomial-mixture model appears like a sensible model for these data. It divides the sites into those that are suitable and those that are not. A Poisson distribution for abundance is assumed for suitable sites only. To obtain a ZIP binomial-mixture model, we simply add another hierarchical layer to the model. This additional layer is binary: we decide by a coin-flip whether a site is suitable in principle or not. Only if a site is suitable in principle will Nature roll her Poisson die to determine the actual number of butterflies living there. Here is the resulting hierarchical model:

Level 1 (suitability of site): 				

Level 2 (realized abundance at): 			

Level 3 (observed count at):			

We have three main structural parameters (, ,), one for each level in the model hierarchy. We could model each of them as a function of covariates via a GLM link function. In our case, we don’t have any covariates, so we simply fit group effects, i.e., estimate a separate parameter for abundance and detection at every time period.

To describe the model in the BUGS language we want to define the latent suitability indicators first, that is, in the outermost loop of the likelihood definition. Thus, we simply flip the order in which we loop over the dimensions of the site-by-rep-by-day data array .

Specify model in BUGS language
sink("Nmix1.txt")
cat("
model {

Priors
omega ~ dunif(0, 1)
for (k in 1:7){
 alpha.lam[k] ~ dnorm(0, 0.01)
 p[k] ~ dunif(0, 1)
 }

Likelihood
Ecological model for true abundance
for (i in 1:R){ # Loop over R sites (95)
 z[i] ~ dbern(omega) # Latent suitability state
 for (k in 1:7){ # Loop over survey periods (seasons)
 N[i,k] ~ dpois(lam.eff[i,k]) # Latent abundance state
 lam.eff[i,k] <- z[i] * lambda[i,k]
 log(lambda[i,k]) <- alpha.lam[k]
 # Observation model for replicated counts
 for (j in 1:T){ # Loop over temporal reps (2)
 y[i,j,k] ~ dbin(p[k], N[i,k]) # Detection
 # Assess model fit using Chi-squared discrepancy
 # Compute fit statistic for observed data
 eval[i,j,k] <- p[k] * N[i,k]
 E[i,j,k] <- pow((y[i,j,k] - eval[i,j,k]),2) / (eval[i,j,k] + 0.5)
 # Generate replicate data and compute fit stats for them
 y.new[i,j,k] ~ dbin(p[k], N[i,k])
 E.new[i,j,k] <- pow((y.new[i,j,k] - eval[i,j,k]),2) / (eval[i,j,k]+0.5)
 } #j
 } #k
 } #i

Derived and other quantities
for (k in 1:7){
 totalN[k] <- sum(N[,k])	# Estimate total pop. size across all sites
 mean.abundance[k] <- exp(alpha.lam[k])
 }
fit <- sum(E[,,])
fit.new <- sum(E.new[,,])
}
",fill = TRUE)
sink()

Bundle data
R = nrow(y)
T = ncol(y)
win.data <- list(y = y, R = R, T = T)

Initial values
Nst <- apply(y, c(1, 3), max) + 1
Nst[is.na(Nst)] <- 1
inits <- function(){list(N = Nst, alpha.lam = runif(7, -1, 1))}

Parameters monitored
params <- c("omega", "totalN", "alpha.lam", "p", "mean.abundance", "fit", "fit.new")

MCMC settings
ni <- 30000
nt <- 15
nb <- 15000
nc <- 3

Call WinBUGS from R (BRT 3 min)
out1 <- bugs(win.data, inits, params, "Nmix1.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out1, dig = 3)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
omega 0.561 0.050 0.464 0.527 0.561 0.594 0.655 1.001 3000
totalN[1] 21.063 31.485 4.000 7.000 11.000 21.000 99.025 1.050 57
totalN[2] 0.145 0.756 0.000 0.000 0.000 0.000 2.000 1.068 300
totalN[3] 21.074 6.506 15.000 17.000 19.000 23.000 38.000 1.005 1000
totalN[4] 40.953 7.002 33.000 36.747 39.000 43.000 59.000 1.003 1900
totalN[5] 154.783 23.744 122.000 139.000 151.000 166.000 212.000 1.003 760
totalN[6] 105.251 9.486 91.975 99.000 104.000 110.000 128.000 1.002 3000
totalN[7] 91.561 14.688 72.000 81.000 89.000 98.000 129.025 1.002 2500
 [...]
p[1] 0.235 0.170 0.017 0.096 0.197 0.342 0.647 1.043 63
p[2] 0.479 0.295 0.016 0.212 0.474 0.736 0.970 1.001 3000
p[3] 0.527 0.132 0.262 0.437 0.535 0.624 0.766 1.006 580
p[4] 0.585 0.094 0.384 0.526 0.591 0.651 0.748 1.001 3000
p[5] 0.458 0.067 0.322 0.415 0.459 0.504 0.582 1.003 1000
p[6] 0.621 0.060 0.496 0.582 0.623 0.665 0.725 1.001 3000
p[7] 0.503 0.079 0.338 0.452 0.507 0.558 0.651 1.001 2400
 [...]
fit 147.329 16.573 119.900 135.700 145.800 157.000 184.500 1.003 780
fit.new 97.575 11.791 76.604 89.475 96.855 105.000 122.902 1.003 990
deviance 751.830 38.437 680.582 725.000 749.800 775.825 834.300 1.004 610

Under this model, the deviance is somewhat improved (here, from 765 to 752). The proportion of suitable sites, omega, is estimated identically with the proportion of sites at which the butterfly was ever detected. But does this model fit?

Evaluation of fit
plot(out1$sims.list$fit, out1$sims.list$fit.new, main = "", xlab = "Discrepancy actual data", ylab = "Discrepancy replicate data", frame.plot = FALSE)
abline(0, 1, lwd = 2, col = "black")
mean(out1$sims.list$fit.new > out1$sims.list$fit)
 [1] 0
mean(out1$mean$fit) / mean(out1$mean$fit.new)
[1] 1.509898

Unfortunately, the model still does not fit the data according to our chosen discrepancy measure, which is much greater for the actual data set than for the replicate data sets (i.e., the reference distribution of the test statistic). The Bayesian p-value, the proportion of symbols above the 1:1 line in the figure, is equal to zero. Compared to the model without zero-inflation, the lack-fit-ratio has barely gone down (from 1.513 to 1.510). Hence, a zero-inflated binomial-mixture model is not flexible enough to capture the variability in the system adequately.

[bookmark: _Toc296678242][bookmark: _Toc308638310]12.3.3. Binomial-mixture model with overdispersion in both abundance and detection
Finally, we drop zero-inflation and instead try a model that accounts for extra Poisson dispersion in both abundance and detection. The introduction of latent (random) effects into either or both linear predictors can be seen as sort of overdispersion correction and it increases the uncertainty in the estimates. Thus, as in overdispersion correction in capture-recapture for instance (Burnham and Anderson, 2002), we buy a fitting model by losing precision in our estimates.

Level 1 (realized abundance at):			

GLM for level 1:					

Level 1b (random site effects):			

Level 2 (observed count at):			

GLM for level 2:					

Level 2b (random survey effects):			

So we combine a naturally hierarchical model with two additional hierarchical levels, one for the sites in the ecological process and another for the individual surveys in the observation process. We assume the presence of ‘residual’ site- and site-day-replicate-specific contributions to abundance () and detection probability (), respectively. By specifying a Poisson-log-normal (Millar, 2009) model for the ecological state description,we account for the fact that there may be extra-Poisson dispersion in the distribution used to model spatio-temporal variation in the latent abundance parameters. Similarly, observation conditions may vary among sites, days, and replicates, and the random effect adequately accounts for that additional variability. As is customary for this type of modeling, we assume a Normal distribution for both random noise terms. Note that for the extra variability in detection (delta), we could model , or . Our treatment here is consistent with the published analyses in Kéry et al. (2009a) and Kéry and Royle (2010) as well as with an unpublished study by L. Tanadini and M. Kéry.

Specify model in BUGS language
sink("Nmix2.txt")
cat("
model{

Priors
for (k in 1:7){
 alpha.lam[k] ~ dnorm(0, 0.1)
 beta[k] ~ dnorm(0, 0.1)
 }

Abundance site and detection site-by-day random effects
for (i in 1:R){
 eps[i] ~ dnorm(0, tau.lam) # Abundance noise
 }
tau.lam <- 1 / (sd.lam * sd.lam)
sd.lam ~ dunif(0, 3)
tau.p <- 1 / (sd.p * sd.p)
sd.p ~ dunif(0, 3)

Likelihood
Ecological model for true abundance
for (i in 1:R){ # Loop over R sites (95)
 for (k in 1:7){ # Loop over days (7)
 N[i,k] ~ dpois(lambda[i,k]) # Abundance
 log(lambda[i,k]) <- alpha.lam[k] + eps[i]

 # Observation model for replicated counts
 for (j in 1:T){ # Loop over temporal reps (2)
 y[i,j,k] ~ dbin(p[i,j,k], N[i,k]) # Detection
 p[i,j,k] <- 1 / (1 + exp(-lp[i,j,k]))
 lp[i,j,k] ~ dnorm(beta[k], tau.p) # random delta defined implicitly

 # Assess model fit using Chi-squared discrepancy
 # Compute fit statistic for observed data
 eval[i,j,k] <- p[i,j,k] * N[i,k]
 E[i,j,k] <- pow((y[i,j,k] - eval[i,j,k]),2) / (eval[i,j,k]+0.5)
 # Generate replicate data and compute fit stats for them
 y.new[i,j,k] ~ dbin(p[i,j,k], N[i,k])
 E.new[i,j,k] <- pow((y.new[i,j,k] - eval[i,j,k]),2) / (eval[i,j,k]+0.5)
 } #j
 ik.p[i,k] <- mean(p[i,,k])
 } #k
 } #i

Derived and other quantities
for (k in 1:7){
 totalN[k] <- sum(N[,k]) # Estimate total pop. size across all sites
 mean.abundance[k] <- mean(lambda[,k])
 mean.N[k] <- mean(N[,k])
 mean.detection[k] <- mean(ik.p[,k])
 }
fit <- sum(E[,,])
fit.new <- sum(E.new[,,])
}
",fill = TRUE)
sink()

Bundle data
R = nrow(y)
T = ncol(y)
win.data <- list(y = y, R = R, T = T)

Initial values
Nst <- apply(y, c(1, 3), max) + 1
Nst[is.na(Nst)] <- 1
inits <- function(){list(N = Nst, alpha.lam = runif(7, -3, 3), beta = runif(7, -3, 3), sd.lam = runif(1, 0, 1), sd.p = runif(1, 0, 1))}

Parameters monitored
params <- c("totalN", "alpha.lam", "beta", "sd.lam", "sd.p", "mean.abundance", "mean.N", "mean.detection", "fit", "fit.new")

Models with lots of random effects always need much longer to enable the Markov chains to mix properly. Hence, we greatly increase the number of MCMC iterations (obviously, we did this after some initial experimenting). We also increase the thinning rate to avoid having to save huge results files.

MCMC settings
ni <- 350000
nt <- 300
nb <- 50000
nc <- 3

Call WinBUGS from R (BRT 215 min)
out2 <- bugs(win.data, inits, params, "Nmix2.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

We get done after almost 4 hours. First, we evaluate the fit of the model (Fig. 12-5 b): it does fit now!

Evaluation of fit
plot(out2$sims.list$fit, out2$sims.list$fit.new, main = "", xlab = "Discrepancy actual data", ylab = "Discrepancy replicate data", frame.plot = FALSE, xlim = c(50, 200), ylim = c(50, 200))
abline(0, 1, lwd = 2, col = "black")
mean(out2$sims.list$fit.new > out2$sims.list$fit)
[1] 0.505
mean(out2$mean$fit) / mean(out2$mean$fit.new)
[1] 0.999935

Summarize posteriors
print(out2, dig = 2)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
totalN[1] 94.48 163.99 5.00 13.00 35.00 95.00 593.05 1.01 370
totalN[2] 120.22 461.11 0.00 0.00 2.00 18.00 1762.90 1.36 25
totalN[3] 225.13 381.69 19.00 45.00 101.00 234.25 1537.05 1.06 55
totalN[4] 55.89 26.21 34.00 41.00 48.00 61.00 126.02 1.00 1100
totalN[5] 830.35 575.54 204.97 395.00 640.50 1119.25 2353.15 1.02 180
totalN[6] 128.36 30.90 96.00 109.00 121.00 138.00 209.00 1.01 390
totalN[7] 158.64 86.42 83.00 107.00 131.00 178.00 402.05 1.00 630
 [...]
sd.lam 1.87 0.23 1.46 1.70 1.84 2.01 2.37 1.00 1000
sd.p 1.05 0.21 0.70 0.91 1.03 1.17 1.50 1.00 980
mean.abundance[1] 1.00 1.73 0.04 0.14 0.37 1.00 6.30 1.01 340
mean.abundance[2] 1.27 4.86 0.00 0.01 0.03 0.18 18.73 1.07 48
mean.abundance[3] 2.37 4.01 0.18 0.48 1.07 2.46 16.44 1.06 55
mean.abundance[4] 0.59 0.29 0.31 0.43 0.52 0.66 1.38 1.00 1100
mean.abundance[5] 8.72 6.06 2.10 4.16 6.78 11.68 24.91 1.02 190
mean.abundance[6] 1.35 0.35 0.93 1.14 1.29 1.48 2.18 1.01 420
mean.abundance[7] 1.67 0.92 0.83 1.13 1.38 1.88 4.32 1.00 760
mean.N[1] 0.99 1.73 0.05 0.14 0.37 1.00 6.24 1.01 370
mean.N[2] 1.27 4.85 0.00 0.00 0.02 0.19 18.55 1.36 25
mean.N[3] 2.37 4.02 0.20 0.47 1.06 2.47 16.18 1.06 55
mean.N[4] 0.59 0.28 0.36 0.43 0.51 0.64 1.33 1.00 1100
mean.N[5] 8.74 6.06 2.16 4.16 6.74 11.78 24.77 1.02 180
mean.N[6] 1.35 0.33 1.01 1.15 1.27 1.45 2.20 1.01 390
mean.N[7] 1.67 0.91 0.87 1.13 1.38 1.87 4.23 1.00 630
mean.detection[1] 0.12 0.14 0.00 0.02 0.06 0.16 0.49 1.01 310
mean.detection[2] 0.23 0.32 0.00 0.01 0.04 0.39 0.99 1.06 62
mean.detection[3] 0.14 0.14 0.01 0.04 0.08 0.19 0.52 1.06 55
mean.detection[4] 0.47 0.14 0.18 0.38 0.48 0.56 0.71 1.01 810
mean.detection[5] 0.14 0.08 0.03 0.07 0.12 0.18 0.34 1.02 200
mean.detection[6] 0.51 0.10 0.29 0.45 0.52 0.58 0.69 1.01 460
mean.detection[7] 0.34 0.11 0.12 0.27 0.35 0.43 0.55 1.00 610
fit 121.41 18.67 88.48 108.60 120.20 133.22 161.41 1.01 240
fit.new 121.42 19.04 86.02 108.07 120.60 134.20 161.40 1.01 240
deviance 640.44 49.86 540.00 607.37 641.30 674.42 737.21 1.01 250

We note that convergence for some quantities associated with day 2 (when no fritillaries were observed at all) is less good. This illustrates the fact that often, though not always, lack of identifiability is associated with lack of convergence.
Since we have a fitting model now, we produce some plots of the estimates. In particular, we compare the mean count per day with the estimated mean abundance of the fritillary on each day. For mean daily abundance, we use the posterior median as our measure of central tendency, since the posterior is highly skewed (you can check that by typing hist(out2$sims.list$mean.abundance[,4], breaks = 40)).

max.day.count <- apply(y, c(1, 3), max, na.rm = TRUE)
max.day.count[max.day.count == "-Inf"] <- NA
mean.max.count <- apply(max.day.count, 2, mean, na.rm = TRUE)
mean.max.count

par(mfrow = c(2, 1))
plot(1:7, mean.max.count, xlab = "Day", ylab = "Mean daily abundance", las = 1, ylim = c(0, 16), type = "b", main = "", frame.plot = FALSE, pch = 16, lwd = 2)
lines(1:7, out2$summary[24:30,5], type = "b", pch = 16, col = "blue", lwd = 2)
segments(1:7, out2$summary[24:30,3], 1:7, out2$summary[24:30,7], col = "blue")

plot(1:7, out2$summary[38:44,1], xlab = "Day", ylab = "Detection probability ", las = 1, ylim = c(0, 1), type = "b", col = "blue", pch = 16, frame.plot = FALSE, lwd = 2)
segments(1:7, out2$summary[38:44,3], 1:7, out2$summary[38:44,7], col = "blue")

[image:]
Fig. 12-6: Abundance and detection of silver-washed fritillary in the Swiss biodiversity monitoring program under a binomial-mixture model with random effects in the linear predictors of both abundance and detection. Top: Mean daily abundance per transect (black: raw counts, blue: posterior median with 95% CRI, upper bound on day 5 (23) truncated. Bottom: Detection probability per individual fritillary during each of two passes on a transect.

In Fig. 12-6, we see well that we now have a model that fits the fritillary counts, but that the fit comes at the expense of much less precision. Indeed, the Bayesian credible intervals are huge; much larger at any rate than under the two simpler models. This uncertainty around the estimates is a direct consequence of the introduction of the two sets of random effects. Thus, a refined analysis might try to get rid of one or both of them by introducing covariates that are informative about that variation in abundance or detection.

12.4. Fully dynamic version of an open N-mixture model
Dail and Madsen, Biometrics, 2011: explicit demographic model (population dynamics model)

Data: (un)replicated counts for a number of sites (indexed i) and over a number of time steps (typically years, indexed t). Can have within-year replication (indexed k):

Initial condition: 		Ni1 ~ Poisson(λ)
Survival process:		Sit ~ Binomial(Nit-1, ω)
Recruitment process:		Git ~ Poisson(Nit-1 * γ)
Annual population size:	Nit = Sit + Git
Observation model: 		yitk ~ Binomial(Nit, p)
· Sit: latent variable, survivors
· Git: latent variable, recruits
· ω: apparent survival rate
· γ: recruitment rate

Following code from Richard Chandler

---------------------------- Dail-Madsen Model -------------------------
Simulate data under the so-called "constant" model
Basic birth-death process but birth rate isn't affected by
abundance in previous year. Not realistic, but it is easy to extend

lam <- 3
omega <- 0.5
gamma <- 2
p <- 0.8

nSites <- 100
nYears <- 20
y <- N <- matrix(NA, nSites, nYears)
S <- G <- matrix(NA, nSites, nYears-1)

N[,1] <- rpois(nSites, lam)
for(t in 2:nYears) {
 S[,t-1] <- rbinom(nSites, N[,t-1], omega)
 G[,t-1] <- rpois(nSites, gamma)
 N[,t] <- S[,t-1] + G[,t-1]
}
y[] <- rbinom(nSites*nYears, N, p)

plot(1:nYears, colSums(N), xlab="Year", ylab="Population size",
 type="o")

Analyse in JAGS (WinBUGS does NOT work)
sink(file="dm_const.txt")
cat("
model {
#lambda ~ dunif(0, 5) # Fine for JAGS, but WinBUGS chokes
#gamma ~ dunif(0, 5) # Fine for JAGS, but WinBUGS chokes
lambda ~ dgamma(0.001, 0.001)
gamma ~ dgamma(0.001, 0.001)
omega ~ dunif(0, 1)
p ~ dunif(0, 1)
for(i in 1:nSites) {
 N[i,1] ~ dpois(lambda)
 y[i,1] ~ dbin(p, N[i,1])
 for(t in 2:nYears) {
 S[i,t-1] ~ dbin(omega, N[i,t-1])
 G[i,t-1] ~ dpois(gamma)
 N[i,t] <- S[i,t-1] + G[i,t-1]
 y[i,t] ~ dbin(p, N[i,t])
 }
 }
}
", fill=TRUE)
sink()

library(rjags)

Bundle data
dat.const <- list(nSites=nSites, nYears=nYears, y=y)

Initial values
Note, JAGS will throw an error if the initial values aren't in agreement
with the data. It helps to start N at large values
Ni <- N+2
Si <- S
Si[] <- 2
Gi <- Ni[,-1]-Si
Ni[,-1] <- NA
init.const <- function() list(lambda=runif(1, 2, 4),
 gamma=runif(1, 1, 3),
 N=Ni,
 omega=runif(1, 0.4, 0.6),
 S=Si, G=Gi,
 p=runif(1, 0.5, 1))
Parameters to save
pars.const <- c("lambda", "gamma", "omega", "p")

Compile model
jm.const <- jags.model("dm_const.txt", dat.const, init.const,
 n.chains=2, n.adapt=500)

Posterior samples
ps.const <- coda.samples(jm.const, pars.const, n.iter=1000)

plot(ps.const)
summary(ps.const)

Fit the model in unmarked
library(unmarked)
umf.const <- unmarkedFramePCO(y=y, numPrimary=nYears)
fm.const <- pcountOpen(~1, ~1, ~1, ~1, umf.const, dynamics="constant",
 K=50, control=list(trace=TRUE))

Compare JAGS and unmarked
mle.const <- as.numeric(coef(fm.const))

compare.const <- cbind(Actual=c(lambda=lam, gamma=gamma, omega=omega, p=p),
 JAGS=colMeans(as.matrix(ps.const))[c(2,1,3,4)],
 unmarked=c(exp(mle.const[1:2]),
 plogis(mle.const[3:4])))

print(compare.const, digits=3)
[bookmark: _GoBack]cat("\n*** This is f#%^#%%^# unbelievable ! ***\n")

[bookmark: _Toc296678243][bookmark: _Toc308638311]12.4. Summary and outlook

Abundance is the key numerical descriptor of a central concept in ecology, the population. Since we virtually always overlook individuals, we must usually estimate and can’t directly observe it. Classical capture-recapture methods (Williams et al., 2002, and chapters 6 and 10), distance sampling (Buckland et al., 2001) and spatial capture-recapture methods young (Royle and Young, 2008; Borchers and Efford, 2008; Royle et al., 2011) are well developed and can be applied to data from a single site or also to data from multiple sites. However, they are costly, in the sense that extra-information in the form of individual identification or accurate distance or location measurements is needed. Frequently, ecologists are interested in abundance within a metapopulation design, where the size of a collection of local populations is needed. When replicate counts are conducted over a reasonably short period of time, the binomial-mixture model (or N-mixture model) is useful for estimation of abundance based on such relatively cheap count data. This model is an extension of the Poisson models in chapters 3 and 4 to account for imperfect detection. The binomial-mixture model is a powerful model with a big scope of application in ecology and management, such as monitoring. However, we saw that it can be difficult to find models that fit the data. Furthermore, the standard Bayesian AIC-analog, DIC, should not be used for hierarchical models such as this mixture model (Millar, 2009). Hence, in the Bayesian framework model selection can be a challenge. A somewhat ad hoc alternative might then consist in doing model selection in the frequentist framework using AIC, e.g., using functions in the new R package unmarked (Fiske and Chandler 2011), and then fit the best model in the Bayesian framework.
Recently, an exciting generalization of the binomial-mixture model to fully open metapopulation designs has been developed by Dail and Madsen (2011); see Chandler and King (2011) for an application. This model describes the openness of local populations between successive sample periods as a function of parameters for local survival and recruitment and hence, achieves two things at the same time: providing a framework of estimating abundance, corrected for detection, without any period of closure and estimating two key parameters of population dynamics from comparatively ‘cheap’ data. This model is an important conceptual advance for attempts at making inferences about population abundance from counts of unmarked individuals. This opens up exciting possibilities for the study of spatial population dynamics. Unfortunately, the model has so far resisted to all attempts at fitting it in WinBUGS (D. Dail, R. Chandler, A. Royle, pers. comm.), but it can be fitted using maximum likelihood in the R package unmarked (Fiske and Chandler, 2011).
All previous applications of open-population binomial-mixture models have been more or less naive in terms of the modeled biological process. That is, explicit population dynamics models such as the Ricker model for density-dependence or a dynamics description in terms of survival and recruitment processes await to be couched within the framework of binomial-mixture models. Such an integration of large-scale population dynamics modeling within an estimation framework for the latent states appears to have much promise for population ecology (Buckland et al., 2007; Hooten et al., 2007; see also Pagel and Schurr, 2011). It would open up the avenue towards the study of spatial population dynamics.

Abundance is the key state variable in ecology, so when possible we would always try to model abundance rather than simply the occurrence (distribution, ‘presence/absence’) of an organism in a metapopulation. However, there may be doubts about the validity of the closure assumption (i.e., whether remains constant over replicates). In this case it may be adequate to reduce count data to detection/nondetection data and use another variant of a hierarchical metapopulation model called a site-occupancy model. This is the topic of the final main chapter in this book.

[bookmark: _Toc296678244][bookmark: _Toc308638312]12.5. Exercises
1. With hierarchical models such as the binomial-mixture model, we have several kinds of covariates: here, we have covariates that vary among sites (‘site covariates’) and those that vary among individual surveys (‘sampling covariates’). It is important in practice to know how to fit both kinds. Invent a sampling covariate in the example of Section 12.2.2 and fit it also to see how this works.
2.
In the fritillary data, fit a simpler binomial-mixture model than the one in section 12.3.3. with detection random effects specific to day and site (i.e., drop the index j in the). See whether that model also fits.
3. In the fritillary data, fit a more complex binomial-mixture model by introducing (in addition to the random site-day-rep effect) a random site effect in the linear predictor for detection in the model in section 12.3.3. Compare the estimates under the model in section 12.3.3. and those in exercises 2 and 3. Explain

[bookmark: _Toc308638313]
13. Estimation of occupancy and species distributions from detection/nondetection data in metapopulation designs using site-occupancy models

Key words: Bernoulli-Bernoulli mixture, butterfly, detection probability, distribution, false-positive error, incidence, metapopulation model, multistate model, occurrence, population dynamics, presence/absence, site-occupancy model, species distribution, zero-inflated model

Chapter abstract: Species occurrence is a crucial quantity in ecology. Among others, occurrence is relevant for studies of habitat selection, infection in parasite ecology, patch occupancy in metapopulation ecology, territory occupancy in population studies focusing on abundance and species occurrence in studies of static and dynamic species distributions. Site-occupancy models allow modeling and estimation of occurrence when detection is imperfect. They require detection/nondetection (‘presence/absence’) data that are replicated in space and time and jointly estimate occurrence and detection probability. Temporal replication must be short-term, so that the occurrence state at each site can be assumed constant. The model has the form of a hierarchical model with two coupled logistic regressions, with one describing the imperfectly observed occurrence state and the other the observations. Covariates can be introduced into both. We give an extensive overview of site-occupancy models as implemented in WinBUGS. Examples include a model for a single season with and without covariates, and for simulated and real data sets. We also illustrate the multi-season, dynamic site-occupancy model, which estimates parameters for occurrence dynamics (colonisation and extinction/survival probability), in addition to those for occupancy and detection. Many other extensions of site-occupancy models have been developed over the last years, with multistate occupancy models perhaps being the most important. We illustrate a single-season multistate site-occupancy model applied to owl territory occupancy with and without reproduction to estimate state proportions and detection and classification error rates. Dynamic site-occupancy models have an extremely wide scope of application and many other capture-recapture models can be described as special cases (e.g., the Jolly-Seber model).

[bookmark: _Toc308638314]13.1. Introduction

In much of ecology, abundance () is the most interesting state variable when analyzing a population. Abundance is usually estimated from capture-recapture data or counts using the methods in chapters 6, 10 or 12 or else strong assumptions are made about the count-abundance relationship. However, sometimes we don’t have counts but only less information-rich data of the detection/nondetection kind (also misleadingly called presence/absence data). These are binary data indicating whether a species is detected (1) or not (0) at a site. We may then want to characterize one or several sites using occupancy: the probability that a site is occupied, i.e., that local abundance is greater than zero. Often, occupancy is not of direct interest and merely a proxy for abundance, in which one is really interested. Indeed, it is often hard to think about occupancy separately from the abundance at the occupied sites.
However, there are also important fields in ecology that do focus on occupancy rather than abundance. Outstanding examples include metapopulation ecology (Hanski, 1994; Hanski, 1998), niche and species distribution (Guisan and Thuiller, 2005), and disease modeling (Thompson, 2007; McClintock et al., 2010). In addition, there is a sense in which, at a small spatial scale, occupancy and abundance coincide; when a site is chosen so small that at most one individual or pair can occupy it. The spotted owl data set in MacKenzie et al. (2003) and our section 13.5.1 provide examples for this. A similar example is given by Bled et al. (2011a), who studied habitat selection of kittiwakes in breeding cliffs. Here, a potential nest site is a straightforward site definition and it can be occupied by two birds at most.
This chapter deals with a class of hierarchical models also called ‘site-occupancy models’. In the statistical literature, these models are known as zero-inflated binomial models. In the context of distribution modeling in ecology, they have been introduced independently by MacKenzie et al. (2003) and Tyre et al. (2003), though they have important roots in earlier approaches as summarized in MacKenzie et al. (2006). ‘Site-occupancy model’ is a fairly uninformative name for this extremely flexible modeling framework. We believe that this has helped to hide its usefulness for inference about any kind of occurrence (‘presence-absence’) data at discrete sites. Essentially, site-occupancy models are hierarchical logistic regression models that jointly model the probability of occupancy and detection in animals or plants.
As usual, we believe that a hierarchical view of occurrence data is important to properly separate the ecological component and the observation components that combine to produce the observed data. However, this has not been a widely held opinion in ecology so far. For instance, in classical species distribution modeling (Guisan and Thuiller, 2005) it is typically ignored what is actually being modeled: it is not the distribution of a species. Rather, it is the apparent species distribution (unless detection probability is estimated). The apparent distribution is a function of both the true species distribution and of the detection probability of the species (Kéry and Schmidt, 2008; Kéry et al., 2010a; Kéry, 2011).
There are three concerns when apparent instead of true distribution is modeled:

		1.	The extend of species distributions will be underestimated when ,

		2.	Estimates of covariate relationships will be biased towards zero when ,
		3.	Factors that affect the difficulty with which a species is found may end up in predictive models of species occurrence or may mask factors that do affect species occurrence.
The first is intuitively clear: if a species is not found at all sites where it occurs, the perceived range will be smaller than the actual range. However, the second is not so intuitive, especially perhaps, because it seems to be different from the modeling of abundance when detection probability is ignored. Yet, this effect has been demonstrated very clearly by Tyre et al. (2003) and in the next section we conduct a little simulation to illustrate it. Finally, as an example of the third effect, assume that a species is more detectable in habitat A than in habitat B, for instance, because habitat A is more open and B is more wooded. In this case, open habitats may be identified as a factor that positively affects the occupancy probability/distribution of the species. For an example of the converse, see section 13.3.2.
As always, to account for imperfect detection, extra data about the observation process are required. This means temporally replicated “presence/absence” observations, where the pattern of detection/nondetection at a site contains the information about the observation process. We note that spatial replication at a small scale is informative about detection probability as well (Nichols et al., 1998a; Nichols et al., 1998b; Kendall and White, 2009; Hines et al., 2010), but we focus on temporal replication here. Site-occupancy models require data collected in a metapopulation design (Royle, 2004c; Kéry and Royle, 2010), where (temporally or small-scale spatially) replicated detection/nondetection observations are available for a number of spatial replicates (for instance, >20). As in chapter 12, analyzing such a data set does not mean to imply that it represents a metapopulation in the ecological sense of the term.

In the simplest case, we consider detection/nondetection observation at site during survey : takes on a value of 1 when a species is detected at site i on survey j, and value of 0 when it is not detected. It is useful to consider the genesis of all species distribution or metapopulation data as a combination of two processes: one (ecological) process determines whether a site is occupied or not, and the other (observation) process determines whether the species is found or not, given that a site is occupied. Correspondingly, in a site-occupancy model we formally distinguish between a first submodel for the partly observed true state (occurrence, the result of the ecological process), and second submodel for the actual observations. The actual observations result from both the particular realization of the ecological process and of the observation process.

				1. Ecological process yields true state

			2. Observation process yields observations

We naturally model true occurrence (zi = 1, if site i is occupied; zi = 0 if site i is not occupied) as a Bernoulli random variable governed by the parameter (occupancy probability); is the parameter that distribution modelers would wish they were modeling but only do so when detection is perfect or detection probability can be estimated. (Note that we denote probability of occupancy by and the latent occurrence state of a site as z). However, is not what we usually get to see; instead, our actual observations, , detection or not at site during survey (or ‘presence/absence’ datum), is another Bernoulli random variable with a success rate that is the product of the actual occurrence at site , , and detection probability at site during survey . At a site where a study species doesn’t occur, equals 0, and must be 0, unless there are false positive errors. Conversely, at an occupied site we have , and the species is detected with probability . That is, in the site-occupancy model, detection probability is expressed conditional on actual occurrence, and the two parameters and are separately estimable if replicate visits are available. We could call this model a Bernoulli-Bernoulli mixture model. Moreover, recognizing that the modeling of the latent occurrence () in the first level of the hierarchy accommodates additional zeroes in the data set, we see that it is also zero-inflated Binomial (ZIB) model.

We have claimed that the term ‘presence/absence’ for data is misleading. Algebra clarifies why: is a function of two processes, and only one of them has to do with occurrence, the other one is a nuisance process owing to the imperfect nature of the observation process. The true presence/absence data are the ’s, and they are only imperfectly observed and therefore latent: can be observed as or as . Site-occupancy models allow one to make a formal distinction between the two latter cases.
Two important assumptions of the model are closure and lack of false-positive errors. Closure in the context of the site-occupancy model means that over the duration of surveys, the occupancy state of a site must not change. Each site is either occupied or it is not, but there is no extinction or colonization. This sounds like a rather strong assumption; however, it is not always that problematic. Lack of closure is akin to temporary emigration (see chapter 9), so if temporary emigration is random, it will be confounded with detection probability. This means that temporary (but not permanent) absence of a species from a site will be one component of imperfect detection. Consequently, the estimate of the occupancy parameter will describe the proportion of sites ever occupied or used during the study period, rather than of sites that are permanently occupied, as it would in the absence of temporary emigration. If there is colonization/extinction, for instance when surveys are spread over several years, we could simply model occupancy separately for each period of closure separately, as we did for the open-population binomial-mixture model in section 12.3. Alternatively, we can use the dynamic occupancy model described in section 13.5, which expresses changes in occurrence over multiple ‘seasons’ as a function of colonization and extinction.
Absence of false positives means that no other species must be mistakenly identified as our focal species, or more generally, we must be sure that a 1 really means that our focal species was present. False positives can seriously bias occupancy estimates (Royle and Link, 2006), hence, they should be avoided for instance by good training of field personnel or by discarding doubtful records. If we discard doubtful sightings that in reality refer to our focal species, we simply lower detection probability but don’t incur biased estimators. However, our models are able to deal with imperfect detection very well. When different kinds of occupancy data are available and false positives can be excluded for at least one of them, multistate occupancy models (see section 13.6) can be used to account for both false negatives and for false positives (Miller et al., 2011).

One way to look at site-occupancy models is as a hierarchical, coupled logistic regression. One logistic regression describes true occurrence, and the other describes detection, given that the species occurs. Remember that conventional methods for distribution modeling (GLM, GAM, boosted regression trees: Elith et al., 2008; Maxent: Phillips and Dudik, 2008) would pool the temporal replicates and model the maximal observation, i.e., site will get a value of 1 if the species was ever detected there. Those approaches discard the information available about the observation process and thus in principle cannot model true, but only apparent species distributions (Kéry et al., 2010a). In contrast, site-occupancy models exploit the all the available information about both ecological and observation process contained in detection/nondetection data.

The two Bernoulli distributions above describe the simplest possible site-occupancy model, where both occupancy () and detection probability () are constant (see section 13.3.1). This simple model can be extended in many ways. Most importantly, we need to be able to model the effects of measured covariates on one or both parameter(s). Both the ecological and the observation processes represent a logistic regression (with an intercept only so far), so it is natural to include covariate effects via a logit link function. Hence, we can add statements of the following kind to the model description

.

Here, is the value of some occurrence-relevant covariate measured at site and and are the intercept and slope parameters of this logit-linear regression. We can do the same for the observation model, where we distinguish between ‘site covariates’ and ‘sampling covariates’. Site covariates vary among sites only and are constant across repeated surveys to a site, i.e., they will be indexed by only. In contrast, survey covariates vary by site and by survey, hence, they will be indexed by and . This is a minor distinction but in practice the modeling of sampling covariates requires a little more book-keeping effort. Explicitly couching site-occupancy models within the GLM framework makes it clear that other GLM extensions might be applied, too. For instance, overdispersion in detection probability could be modeled by introduction of random site effects (Royle, 2006). Of course, we could model the effects of many explanatory variables, of polynomial terms or of splines (Gimenez et al., 2006; Collier et al., 2011).
In section 13.2, we conduct a simulation to understand what happens to the estimates of regression coefficients in conventional species distribution models when detection probability is not perfect. In section 13.3 we analyze simulated data sets and in section 13.4 a real data set using single-season site-occupancy models. In section 13.5 we extend the model to multiple ‘seasons’ and thus arrive at an extended metapopulation model. In section 13.6 we extend the single-season model to multiple states of occurrence, which, in our example are owl territories occupied with or without reproduction.
We emphasize that we won’t conduct any goodness-of-fit assessments based on posterior predictive checks in this chapter. The reason for this is that with a binary response, the deviance or other discrepancy measures based directly on the response are uninformative about the fit of a model (McCullagh and Nelder, 1989). Kéry (2010) erroneously showed such a posterior predictive checks for site-occupancy models. These checks are meaningless because regardless of the model structure, they will always and thus sometimes spuriously indicate a fitting model. To do a goodness-of-fit test, the binary responses have to be aggregated.

[bookmark: _Toc308638315]13.2. What happens when p<1 and constant and p is not accounted for in a species distribution model?
We use simulation to understand what happens when there is a constant degree of imperfect detection and this is not accounted for in an analysis. We simulate 100,000 data sets from 250 sites, with a constant p<1 (here, p=0.60), and analyze them with a conventional species distribution model (here, a non-hierarchical logistic regression). We have a single explanatory variable (think of it as a habitat or environmental covariate) that links the habitat to occurrence probability on the logit-linear scale with intercept -3 and slope 1. (You may want to change nreps in the code to 1000.)

nreps <- 10^3 # No. replicates
estimates <- array(NA, dim = c(nreps, 2)) # Array to contain the estimates
R <- 250 # No. sites

for (i in 1:nreps) {
 cat(i, "\n") ; flush.console()
 x <- runif(R, 0, 10) # choose covariate values
 state<-rbinom(n = R, size = 1, prob = plogis(-3 + 1 * x)) # Occ. state
 obs <- rbinom(n = R, size = 1, prob = 0.6) * state # Observations
 fm <- glm(obs~x, family = binomial)
 estimates[i,] <- fm$coef
 }

par(mfrow = c(3, 1))
hist(estimates[,1], col = "gray", nclass = 50, main = "", xlab = "Intercept estimates", las = 1, ylab = "", freq = FALSE)
abline(v = -3, col = "red", lwd = 3)	# Truth
hist(estimates[,2], col = "gray", nclass = 50, main = "", xlab = "Slope estimates", xlim = c(0,1), las = 1, ylab = "", freq = FALSE)
abline(v = 1, col = "red", lwd = 3)		# Truth

plot(1:10, plogis(estimates[1,1] + estimates[1,2] * (1:10)), col = "gray", lwd = 1, ylab = "Occupancy probability", xlab = "Covariate value", type = "l", ylim = c(0, 1), frame.plot = FALSE, las = 1)
samp <- sample(1:nreps, 1000)
for (i in samp){
 lines(1:10, plogis(estimates[i,1] + estimates[i,2] * (1:10)), col = "gray", lwd = 1, type = "l")
 }
lines(1:10, plogis(-3 + 1 * (1:10)), col = "red", lwd = 3, type = "l")

When failing to account for a constant non-detection error, slope estimates of a covariate are biased towards zero (Fig. 13-1, middle panel). The intercept (Fig. 13-1, top panel) is not necessarily estimated too low, rather, here, it is overestimated. However, the combined effect is such that the total extent of a distribution is underestimated. The latter is represented by the area under the red curve in the bottom panel. The area under the gray curves (the estimated distribution) is always less than the area under the red curve (true distribution).
[image:]
Fig. 13-1: Effect of imperfect detection on a conventional species distribution model: slope estimates become biased low with imperfect detection even if detection probability is constant (here, 0.60). In the bottom panel, the red lines show the truth and the gray lines show a random sample of 1000 estimated regression lines: the extent of the distribution is always underestimated. See also Tyre et al. (2003).

[bookmark: _Toc308638316]13.3. Generation and analysis of simulated data for single-season occupancy
[bookmark: _Toc308638317]13.3.1. The simplest possible site-occupancy model

To fully grasp how the site-occupancy model ‘works’, we first look at the simplest possible case: both the ecological and the observation process are described by an intercept only. To generate detection/nondetection data under this Null model for R=200 spatial replicates (sites) and T=3 temporal replicates, we simply do this.

Select sample sizes (spatial and temporal replication)
R <- 200
T <- 3

Determine process parameters
psi <- 0.8 # Occupancy probability
p <- 0.5 # Detection probability

Create structure to contain counts
y <- matrix(NA, nrow = R, ncol = T)

Ecological process: Sample true occurrence (z, yes/no) from a Bernoulli (occurrence probability = psi)
z <- rbinom(n = R, size = 1, prob = psi) # Latent occurrence state

Observation process: Sample detection/nondetection observations from a Bernoulli(with p) if z=1
for (j in 1:T){
 y[,j] <- rbinom(n = R, size = 1, prob = z * p)
 }

Look at truth and at our imperfect observations
sum(z) # Realized occupancy among 200 surveyed sites
[1] 169
sum(apply(y, 1, max)) # Observed occupancy
[1] 151

Note that in the simulation of the observation process, we have multiplied the Bernoulli draw with z. This means that the result will be zero whenever z=0, i.e., whenever the species does not occur. Next, we analyse this data set.

Specify model in BUGS language
sink("model.txt")
cat("
model {

Priors
psi ~ dunif(0, 1)
p ~ dunif(0, 1)

Likelihood
Ecological model for true occurrence
for (i in 1:R) {
 z[i] ~ dbern(psi)
 p.eff[i] <- z[i] * p

 # Observation model for replicated detection/nondetection observations
 for (j in 1:T) {
 y[i,j] ~ dbern(p.eff[i])
 } #j
 } #i

Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites among the 200
}
",fill = TRUE)
sink()

Bundle data
win.data <- list(y = y, R = nrow(y), T = ncol(y))

Initial values
zst <- apply(y, 1, max)		# Observed occurrence as starting values for z
inits <- function() list(z = zst)

Parameters monitored
params <- c("psi", "p", "occ.fs")

MCMC settings
ni <- 1200
nt <- 2
nb <- 200
nc <- 3

Call WinBUGS from R (BRT < 1 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out, dig = 2)
[...]
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
psi 0.89 0.04 0.80 0.86 0.89 0.92 0.97 1.01 340
p 0.47 0.03 0.41 0.45 0.47 0.49 0.53 1.00 870
occ.fs 178.29 7.59 165.00 173.00 178.00 183.00 195.00 1.01 510
deviance 739.37 28.50 686.50 719.00 738.20 758.05 798.75 1.01 470
 [...]

This looks good. You will note quite a bit of sampling variability in this system. The estimates may be fairly different among repeated generations of the data set or among the replicate data sets of different people. This basic model is a good starting point for running simulation exercises to find out about how good inferences can be in marginal data situations; see exercises and Guillera-Arroita et al. (2010).

[bookmark: _Toc308638318]Interlude: Getting Maximum likelihood estimates with the R package UNMARKED
We always emphasize that we are Bayesians not primarily because of the philosophical appeal of the Bayesian framework of statistical inference. Rather, we often prefer a Bayesian analysis of statistical models using MCMC techniques in WinBUGS, OpenBUGS or JAGS because it is extremely useful and allows us to fit even very complex and non-standard models. However, for more standard models, likelihood inference can be much more practical and we are happy to use it.
The new R package unmarked (Fiske & Chandler, 2011) allows one to fit a large array of hierarchical models of the kind featured extensively in the book by Royle & Dorazio (2008) using maximum likelihood. To fit single-season site-occupancy models, there is a function occu(). Here we briefly demonstrate how it works for the data sets in this chapter (excluding the multistate site-occupancy models in section 13.6). For unmarked analyses, we use the currently latest version of unmarked (0.9-2) and R 2.13.1.
First, we load the package. At this point, some of you will notice that R depends on a few other packages, such as Rcpp and RcppArmadillo, which you may have to install first.

library(unmarked)

We get the general help page, with an overview of the model fitting functions.

?unmarked

We see that the function occu() is listed on top and we have a look at how it works.

?occu

One really neat thing about unmarked is that it allows to fit the models using the familiar model formula language, as for instance when we use functions glm() or lm() (we’ll see this in the next section only). One slight stumbling block (IMHO …) is that the data need to be formatted into special unmarked data frames, which are of a different kind for each type of model fitting function. There are functions to do this, and for occu() the function is called unmarkedFrameOccu(). We see how this works and then create an unmarked data frame with the simulated occupancy data and produce a data frame summary. There are other arguments in the function to feed in covariates; we only mention this here, but do not use it (see the next section for this).

? unmarkedFrameOccu
umdata <- unmarkedFrameOccu(y = y, siteCovs=NULL, obsCovs=NULL)
summary(umdata)
> summary(umdata)
unmarkedFrame Object

200 sites
Maximum number of observations per site: 3
Mean number of observations per site: 3
Sites with at least one detection: 152

Tabulation of y observations:
 0 1 <NA>
 331 269 0

We fit the model with constant parameters. Note that in the double right-hand formula the linear model for detection comes first, followed by that for occupancy. Type ?occu() to see how the synthax works.

(fm <- occu(formula = ~ 1 ~ 1, data = umdata))

The estimates shown are on the link-scale, i.e., represent logit(p) and logit(psi). We can backtransform and get 95% confidence limits on the estimates on the probability scale (note there is also a function backTransform()).

(psi.esti <- backTransform(fm, type='state'))
(p.esti <- backTransform(fm, type='det'))
(psi.CI <- plogis(confint(fm, type='state', method = 'normal')))
(p.CI <- plogis(confint(fm, type='det', method = 'normal')))

Finally, we compare the Bayesian estimates (posterior mean, standard deviation and 95% credible interval) with the maximum likelihood estimates (MLE, standard error and 95% confidence interval). We first package all the ML and Bayesian results suitably and then present them in a table along with the true values that we used to generate the data set.

ML.results <- matrix(c(psi.esti@estimate, sqrt(psi.esti@covMat), psi.CI,
p.esti@estimate, sqrt(p.esti@covMat), p.CI), nrow = 2, byrow = TRUE, dimnames = list(NULL, c("ML", "SE", "LCL", "UCL")))
Bayesian.results <- out$summary[c("psi", "p"), c(1:3, 7)]
print(cbind(TRUTH = c(psi, p), ML.results, Bayesian.results), dig = 3)

> print(cbind(TRUTH = c(psi, p), ML.results, Bayesian.results), dig = 3)
 TRUTH ML SE LCL UCL mean sd 2.5% 97.5%
psi 0.8 0.849 0.0383 0.758 0.910 0.848 0.0392 0.771 0.923
p 0.5 0.528 0.0284 0.472 0.583 0.526 0.0288 0.470 0.582

We see that when using vague priors in a Bayesian analysis, our estimates get numerically very close to those from the maximum likelihood method.

More interlude: Analysis with JAGS
Running the same analysis in JAGS and time the run
library(R2jags)
system.time(outJAGS <- jags(win.data, inits, params, "model.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))

Look at trace plots and summarize posteriors
traceplot(outJAGS)
print(outJAGS, 2)
Inference for Bugs model at "model.txt", fit using jags,
 3 chains, each with 1200 iterations (first 200 discarded), n.thin = 2
 n.sims = 1500 iterations saved
 mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff
occ.fs 168.10 6.11 158.00 164.00 168.00 172.00 182.00 1.01 190
p 0.51 0.03 0.46 0.49 0.51 0.53 0.57 1.01 250
psi 0.84 0.04 0.76 0.81 0.84 0.86 0.91 1.01 390
deviance 699.22 25.88 653.93 681.19 698.56 715.46 755.05 1.01 180

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = var(deviance)/2)
pD = 331.5 and DIC = 1030.8
DIC is an estimate of expected predictive error (lower deviance is better).

Let’s again look at the correlation between the estimates from the two submodels.

May look at correlation of estimates
plot(outJAGS$BUGSoutput$sims.list$p, outJAGS$BUGSoutput$sims.list$psi, xlab = "Detection", ylab = "Occupancy", main = "Can occupancy be estimated \nseparately from detection ?")

Correlation coefficient not soooo bad !?
cor(outJAGS$BUGSoutput$sims.list$p, outJAGS$BUGSoutput$sims.list$psi)
[1] -0.4928677

We see that estimating occupancy probability in a site-occ model seems to be less hard than estimating abundance using the Nmix model.

[bookmark: _Toc308638319]13.3.2. Site-occupancy models with covariates

Next, we look into the case where covariates affect the ecological and the observation process. We model covariate effects on a parameter through the canonical GLM link function, the logit = log(/(1-). As in the previous chapter, we will look at a worst-case scenario for a species distribution model, where opposing effects of a single covariate on the two processes generating the observed data effectively cancel each other out in the observations. The result will be that in a conventional species distribution model, the effect of this covariate on species distribution will not be identified correctly. We next define a function that creates species distribution data (detection/nondetection data) for us.

Define function for generating species distribution data
data.fn <- function(R = 200, T = 3, xmin = -1, xmax = 1, alpha.psi = -1, beta.psi = 3, alpha.p = 1, beta.p = -3) {

 y <- array(dim = c(R, T))	# Array for counts

 # Ecological process
 # Covariate values
 X <- sort(runif(n = R, min = xmin, max = xmax))

 # Relationship expected occurrence – covariate
 psi <- plogis(alpha.psi + beta.psi * X)	# Apply inverse logit

 # Add Bernoulli noise: draw occurrence indicator z from Bernoulli(psi)
 z <- rbinom(n = R, size = 1, prob = psi)
 occ.fs <- sum(z)	# Finite-sample occupancy (see Royle and Kéry 2007)

 # Observation process
 # Relationship detection prob – covariate
 p <- plogis(alpha.p + beta.p * X)

 # Make a ‘census’
 p.eff <- z * p
 for (i in 1:T){
 y[,i] <- rbinom(n = R, size = 1, prob = p.eff)
 }

 # Naïve regression
 naive.pred <- plogis(predict(glm(apply(y, 1, max) ~ X + I(X^2), family = binomial)))

 # Plot features of the simulated system
 par(mfrow = c(2, 2))
 plot(X, psi, main = "Expected occurrence", xlab = "Covariate", ylab = "Occupancy probability", las = 1, type = "l", col = "red", lwd = 3, frame.plot = FALSE)
 plot(X, z, main = "Realised (true) occurrence", xlab = "Covariate", ylab = "Occurrence", las = 1, frame.plot = FALSE, col = "red",)
 plot(X, p, ylim = c(0,1), main = "Detection probability", xlab = "Covariate", ylab = "p", type = "l", lwd = 3, col = "red", las = 1, frame.plot = FALSE)
 plot(X, naive.pred, main = "Detection/nondetection observations \n and conventional SDM", xlab = "Covariate", ylab = "Apparent occupancy", ylim = c(min(y), max(y)), type = "l", lwd = 3, lty = 2, col = "blue", las = 1, frame.plot = FALSE)
 points(rep(X, T), y)

 # Return stuff
 return(list(R = R, T = T, X = X, alpha.psi = alpha.psi, beta.psi = beta.psi, alpha.p = alpha.p , beta.p = beta.p, psi = psi, z = z, occ.fs = occ.fs, p = p, y = y))
 }

We obtain one realization from the stochastic system just defined and conduct a conventional species distribution model (Fig. 13-2):

sodata <- data.fn()
[image:]

Fig. 13-2: Features of the simulated data set, and truth behind it, and inference about the system based on a conventional species distribution model (blue line in bottom right panel. The truth is shown in red and observed data in black. (a) Occupancy probability, (b) realized (true) occurrence, (c) detection probability, (d) detection/nondetection (‘presence/absence’) observations and estimated occupancy probability under a conventional species distribution model.

str(sodata) # Look at data

summary(glm(apply(y, 1, max) ~ X + I(X^2), family = binomial, data = sodata))

Call:
glm(formula = apply(y, 1, max) ~ X + I(X^2), family = binomial,
 data = sodata)

Deviance Residuals:
 Min 1Q Median 3Q Max
-1.10984 -0.83363 -0.28985 -0.04219 2.45653

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.0439 0.2624 -3.978 6.95e-05 ***
X 3.3989 0.8348 4.072 4.67e-05 ***
I(X^2) -3.2680 1.1757 -2.780 0.00544 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 213.27 on 199 degrees of freedom
Residual deviance: 170.95 on 197 degrees of freedom
AIC: 176.95

Number of Fisher Scoring iterations: 6

Hence, in this simulated data set and with a conventional species distribution model, we identify an optimum value of the covariate for the occupancy probability of the study species (see blue curve in bottom-right panel of Fig. 13-2). Let’s see what a site-occupancy model can do.

Specify model in BUGS language
sink("model.txt")
cat("
model {

Priors
alpha.occ ~ dunif(-10, 10)
beta.occ ~ dunif(-10, 10)
alpha.p ~ dunif(-10, 10)
beta.p ~ dunif(-10, 10)

Likelihood
for (i in 1:R) {
 # True state model for the partially observed true state
 z[i] ~ dbern(psi[i]) # True occupancy z at site i
 logit(psi[i]) <- alpha.occ + beta.occ * X[i]

 for (j in 1:T) {
 # Observation model for the actual observations
 y[i,j] ~ dbern(p.eff[i,j]) # Detection-nondetection at i and j
 p.eff[i,j] <- z[i] * p[i,j]
 logit(p[i,j]) <- alpha.p + beta.p * X[i]
 } #j
 } #i

Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites among those studied
}
",fill = TRUE)
sink()

Bundle data
win.data <- list(y = sodata$y, X = sodata$X, R = nrow(sodata$y), T = ncol(sodata$y))

Initial values
zst <- apply(sodata$y, 1, max) #Good inits for latent states essential
inits <- function(){list(z = zst, alpha.occ = runif(1, -3, 3), beta.occ = runif(1, -3, 3), alpha.p = runif(1, -3, 3), beta.p = runif(1, -3, 3))}

Parameters monitored
params <- c("alpha.occ", "beta.occ", "alpha.p", "beta.p", "occ.fs")

MCMC settings
ni <- 10000
nt <- 8
nb <- 2000
nc <- 3

Call WinBUGS from R (BRT 1 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

We compare the known truth in the data-generating mechanism with our estimates of truth under the site-occupancy species distribution model. We find that the model does a decent job at recovering the parameters for the habitat relationships of the probability of occupancy (alpha.occ and beta.occ) and of detection (alpha.p and beta.p), but that the estimates are much more precise for the relationship with detection. This makes sense because there is more data (n=600 instead of n=200) from which to estimate those regression parameters. A total of 59 sites were occupied in our simulated data set, and at 45 of those the study species was discovered. Our model estimated 67 occurrences (95% CRI 57–78). This number, finite-sample occurrence, is not a function of population occupancy probability, but of the latent occurrence states , which we can easily estimate in an MCMC-based analysis (Royle and Kéry, 2007).

TRUTH <- c(sodata$alpha.psi, sodata$beta.psi, sodata$alpha.p, sodata$beta.p, sum(sodata$z))
print(cbind(TRUTH, out$summary[1:5, c(1,2,3,7)]), dig = 3)
 TRUTH mean sd 2.5% 97.5%
alpha.occ -1 -1.269 0.274 -1.81 -0.738
beta.occ 3 4.084 0.854 2.58 5.939
alpha.p 1 0.925 0.330 0.28 1.584
beta.p -3 -2.942 0.546 -4.00 -1.865
occ.fs 59 67.335 5.291 57.00 78.000

sum(apply(sodata$y, 1, sum) > 0)# Apparent number of occupied sites
[1] 45

We graphically compare the conclusions from the two species distribution models (Fig. 13-3). We see again that the conventional approach, which ignores the effects of the observation process in the generation of detection/nondetection data, models apparent rather than true species distributions only (Kéry, 2011).

naive.pred <- plogis(predict(glm(apply(sodata$y, 1, max) ~ X + I(X^2), family = binomial, data = sodata)))
lin.pred2 <- out$mean$alpha.occ + out$mean$beta.occ * sodata$X

plot(sodata$X, sodata$psi, ylim = c(0, 1), main = "", ylab = "Occupancy probability", xlab = "Covariate", type = "l", lwd = 3, col = "red", las = 1, frame.plot = FALSE)
lines(sodata$X, naive.pred, ylim = c(0 ,1), type = "l", lty = 2, lwd = 3, col = "blue")
lines(sodata$X, plogis(lin.pred2), ylim = c(0, 1), type = "l", lty = 1, lwd = 2, col = "blue")
[image:]

Fig. 13-3: Comparison of true and estimated relationship between occurrence probability and an environmental covariate under a site-occupancy model (solid blue) and under the conventional approach that ignores detection probability (dashed blue). Truth is shown in red.

[bookmark: _Toc308638320]Interlude: Getting Maximum likelihood estimates with the R package unmarked
We load the package (if we haven’t done this already) and remind us of the syntax of the occupancy model fitting function.

library(unmarked)
?occu

To fit the model with covariates, we first create an unmarked data frame with both of what unmarked calls site covariates and observation covariates. The former are a vector of length equal to the row dimension of the analysed detection/nondetection data (y) and the latter are an array with the same row and column dimension as y.

umdata <- unmarkedFrameOccu(y = sodata$y, siteCovs = data.frame(X.psi=sodata$X), obsCovs = list(X.p = cbind(sodata$X, sodata$X, sodata$X)))
summary(umdata)
> summary(umdata)
unmarkedFrame Object

200 sites
Maximum number of observations per site: 3
Mean number of observations per site: 3
Sites with at least one detection: 45

Tabulation of y observations:
 0 1 <NA>
 504 96 0

Site-level covariates:
 X.psi
 Min. :-0.99991
 1st Qu.:-0.56325
 Median :-0.21193
 Mean :-0.09627
 3rd Qu.: 0.39508
 Max. : 0.96471

Observation-level covariates:
 X.p
 Min. :-0.99991
 1st Qu.:-0.56325
 Median :-0.21193
 Mean :-0.09627
 3rd Qu.: 0.39508
 Max. : 0.96471

We fit the model with a logit-linear regression for both parameters (note that in the formula, detection comes first)

(fm <- occu(formula = ~ X.p ~ X.psi, data = umdata))

We compare Truth with the Maximum likelihood and the Bayesian estimates.

TRUTH <- c(sodata$alpha.psi, sodata$beta.psi, sodata$alpha.p, sodata$beta.p)
ML.results <- rbind(summary(fm)$state[,1:2], summary(fm)$det[,1:2])
Bayesian.results <- out$summary[1:4, c(1:3, 7)]
print(cbind(TRUTH = TRUTH, ML.results, Bayesian.results))

We again note the numerical similarity of the ML and the Bayesian estimates when vague priors are use. To emphasize, we produce a variant of the plot in Fig. 13-3.

plot(sodata$X, sodata$psi, ylim = c(0, 1), main = "", ylab = "Occupancy probability", xlab = "Covariate", type = "l", lwd = 3, col = "red", las = 1, frame.plot = FALSE)
lines(sodata$X, naive.pred, ylim = c(0 ,1), type = "l", lty = 2, lwd = 3, col = "blue")
lines(sodata$X, plogis(lin.pred2), ylim = c(0, 1), type = "l", lty = 1, lwd = 2, col = "blue")

We add the predicted regression line from the maximum likelihood analysis of the model.

ML.pred <- plogis(summary(fm)$state[1,1] + summary(fm)$state[2,1] * sodata$X)
lines(sodata$X, ML.pred, lty = 1, lwd = 3, col = "green")
legend(-0.95, 1, c('Truth', 'Naïve estimate', 'Posterior mean', 'MLE'), col=c("red", "blue", "blue", "green"), lty = c(1,2,1,1), lwd = 3, cex = 1.2)

[image:]
NOTE: This whole interlude uses a different data set from the earlier parts of the section.

And the final interlude for now: Analysis with JAGS
Running the same analysis in JAGS and time the run
library(R2jags)
system.time(outJAGS <- jags(win.data, inits, params, "model.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))

Look at trace plots and summarize posteriors
traceplot(outJAGS)
print(outJAGS, 2)

What about the correlation between the intercepts now ?

May look at correlation of estimates
plot(outJAGS$BUGSoutput$sims.list$alpha.p, outJAGS$BUGSoutput$sims.list$alpha.occ, xlab = "Detection intercept (logit scale)", ylab = "Abundance intercept (logit scale)", main = "Can occupancy be estimated \nseparately from detection ?")
cor(outJAGS$BUGSoutput$sims.list$alpha.p, outJAGS$BUGSoutput$sims.list$alpha.occ)
[1] -0.8470275

Plot predicted occupancy relationships with abundance from the three analyses
plot(data$X, data$N, main = "", xlab = "Covariate", ylab = "Abundance", las = 1, ylim = c(0, max(data$N)), frame.plot = FALSE)
lines(data$X, data$lam, type = "l", col = "red", lwd = 3)
GLM.pred <- exp(predict(glm(apply(data$y, 1, max) ~ X + I(X^2), family = poisson, data = data)))
lines(data$X, GLM.pred, type = "l", lty = 2, col = "blue", lwd = 3)
Nmix.pred <- exp(out$mean$alpha0 + out$mean$alpha1 * data$X)
points(data$X, Nmix.pred, type = "l", col = "blue", lwd = 3)
Nmix.pred.jags <- exp(outJAGS$BUGSoutput$mean$alpha0 + outJAGS$BUGSoutput$mean$alpha1 * data$X)
points(data$X, Nmix.pred.jags, type = "l", col = "orange", lwd = 3)
lines(data$X, MLEs[,1], type = "l", lty = 2, col = "green", lwd = 3)
legend(-0.95, 50, c('Truth', 'Naïve estimate', 'Post. mean BUGS', 'Post. mean JAGS', 'MLE'), col=c("red", "blue", "blue", "orange", "green"), lty = c(1,2,1,1,1), lwd = 3, cex = 1.2)

naive.pred <- plogis(predict(glm(apply(sodata$y, 1, max) ~ X + I(X^2), family = binomial, data = sodata)))
lin.pred2 <- out$mean$alpha.occ + out$mean$beta.occ * sodata$X
lin.pred3 <- outJAGS$BUGSoutput$mean$alpha.occ + outJAGS$BUGSoutput$mean$beta.occ * sodata$X

plot(sodata$X, sodata$psi, ylim = c(0, 1), main = "", ylab = "Occupancy probability", xlab = "Covariate", type = "l", lwd = 3, col = "red", las = 1, frame.plot = FALSE)
lines(sodata$X, naive.pred, ylim = c(0 ,1), type = "l", lty = 2, lwd = 3, col = "blue")
lines(sodata$X, plogis(lin.pred2), ylim = c(0, 1), type = "l", lty = 1, lwd = 2, col = "blue")
lines(sodata$X, plogis(lin.pred3), ylim = c(0, 1), type = "l", lty = 2, lwd = 2, col = "orange")
ML.pred <- plogis(summary(fm)$state[1,1] + summary(fm)$state[2,1] * sodata$X)
lines(sodata$X, ML.pred, lty = 1, lwd = 3, col = "green")
legend(-0.95, 1, c('Truth', 'Naïve estimate', 'Post. mean WinBUGS', 'Post. mean JAGS', 'MLE'), col=c("red", "blue", "blue", "orange", "green"), lty = c(1,2,1,2,1), lwd = 3, cex = 1.2)

[image:]

[bookmark: _Toc308638321]13.4. Analysis of real data set: Single-season occupancy model

NOTE: Something in the analysis in this section is flawed. For some reason, the MCMC algorithm seems to get stuck in some place it should not, at least for one parameter. See the Erratum for the BPA book on the book web site.

We will next analyze a small, but typical real-world occurrence data set: surveys to breeding sites of the endangered beetle Rosalia alpina (Fig. 13-4; see also the cover of Kéry 2010) during a single flight period (July-August 2009). In Switzerland, this striking blue bug lays its eggs into the wood of dead beech trees Fagus sylvatica, preferentially in tall and old logs, but unfortunately also in piles of firewood stocked in the forest only temporarily. Larvae develop over 3-4 years, hence, eggs laid in firewood are normally doomed. Nevertheless, checking firewood piles in forests is an efficient search strategy for this rare and elusive beetle. In 2009, one of us (MK) surveyed one of the few Swiss areas where the species is known to occur, the hills around Movelier in the Swiss Jura mountains.
The complete data set (“bluebug.txt”) contains replicated counts at a total of 27 sites (wood piles) in the Movelier region in 2009. There were up to 6 replicate counts at each woodpile, the count result of which is called detX. Woodpiles were either at the forest edge or more in the interior of a forest (covariate forest_edge) and individual visits took place at varying dates (covariate dateX) and times of day (hours in the afternoon, covariates hX).

[image: Description: _DSC1727]

Fig. 13-4: The remarkable ‘blue bug’, the cerambycid beetle Rosalia alpina, Switzerland, 2009 (Photo: T. Marent).

Table 13-1: A summary of the blue bug data set, which only keeps track of detections and nondetections. Rows denote woodpiles and columns, except for the right-most column, denote survey occasions. The total number of surveys with detections is shown in the right-most column. Surveys with Rosalia detections are shown in buff color, those without Rosalia detections in yellow, and missing values shown as dashes. For pure convenience, sites
have been ordered by decreasing number of surveys with detections.

	0
	1
	1
	1
	1
	1
	
	5

	1
	1
	1
	1
	1
	-
	
	5

	1
	0
	1
	0
	0
	1
	
	3

	1
	0
	0
	0
	1
	1
	
	3

	1
	1
	-
	-
	-
	-
	
	2

	1
	-
	-
	-
	-
	-
	
	1

	0
	0
	0
	0
	1
	0
	
	1

	1
	-
	-
	-
	-
	-
	
	1

	1
	-
	-
	-
	-
	-
	
	1

	1
	0
	0
	0
	0
	0
	
	1

	0
	0
	0
	0
	0
	-
	
	0

	0
	0
	0
	0
	0
	-
	
	0

	0
	0
	0
	0
	0
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

	0
	0
	-
	-
	-
	-
	
	0

	0
	0
	-
	-
	-
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

	0
	0
	-
	-
	-
	-
	
	0

	0
	0
	-
	-
	-
	-
	
	0

	0
	0
	-
	-
	-
	-
	
	0

	0
	0
	0
	-
	-
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

	0
	-
	-
	-
	-
	-
	
	0

A summary of these data is shown in Table 13.1. We see that Rosalia was detected at 10 out of 27 woodpiles and from 1 to 5 times. Clearly, detection probability at an occupied woodpile is not perfect; for instance, the woodpile in row 10 was surveyed 6 times and Rosalia was seen only once. It is natural to wonder whether other woodpiles might have been occupied but Rosalia was simply missed. Another question might be to ask how many times a woodpile might have to be checked in order to detect Rosalia at least once when it occurs. And finally, we may wonder whether the location of a woodpile, at the forest edge or in the interior, may affect the probability of it being occupied and similarly, whether there were relationships between detection probability and the date and time of day, respectively, at which a survey took place, or whether Rosalia was detected before (behavioral effect, see 6.2.3.). We will answer these questions with a site-occupancy species distribution model now.

Read in the data
data <- read.table("bluebug.txt", header = TRUE)

Collect the data into suitable structures
y <- as.matrix(data[,4:9]) # as.matrix essential for WinBUGS
y[y>1] <- 1 # Reduce counts to 0/1
edge <- data$forest_edge
dates <- as.matrix(data[,10:15])
hours <- as.matrix(data[,16:21])

Standardize covariates
mean.date <- mean(dates, na.rm = TRUE)
sd.date <- sd(dates[!is.na(dates)])
DATES <- (dates-mean.date)/sd.date # Standardise date
DATES[is.na(DATES)] <- 0 # Impute zeroes (means)

mean.hour <- mean(hours, na.rm = TRUE)
sd.hour <- sd(hours[!is.na(hours)])
HOURS <- (hours-mean.hour)/sd.hour # Standardise hour
HOURS[is.na(HOURS)] <- 0 # Impute zeroes (means)

In the BUGS code below, we ‘stabilize’ the logit to avoid numerical under- or overflow by truncating values more extreme than (-999, 999) on the logit scale. This should hardly affect the inference because this restricts the value of the linear predictor to the range (plogis(-999), plogis(999))

Specify model in BUGS language
sink("model.txt")
cat("
model {

Priors
alpha.psi ~ dnorm(0, 0.01)
beta.psi ~ dnorm(0, 0.01)
alpha.p ~ dnorm(0, 0.01)
beta1.p ~ dnorm(0, 0.01)
beta2.p ~ dnorm(0, 0.01)
beta3.p ~ dnorm(0, 0.01)
beta4.p ~ dnorm(0, 0.01)

Likelihood
Ecological model for the partially observed true state
for (i in 1:R) {
 z[i] ~ dbern(psi[i]) # True occurrence z at site i
 psi[i] <- 1 / (1 + exp(-lpsi.lim[i]))
 lpsi.lim[i] <- min(999, max(-999, lpsi[i]))
 lpsi[i] <- alpha.psi + beta.psi * edge[i]

 # Observation model for the observations
 for (j in 1:T) {
 y[i,j] ~ dbern(mu.p[i,j])	# Detection-nondetection at i and j
 mu.p[i,j] <- z[i] * p[i,j]
 p[i,j] <- 1 / (1 + exp(-lp.lim[i,j]))
 lp.lim[i,j] <- min(999, max(-999, lp[i,j]))
 lp[i,j] <- alpha.p + beta1.p * DATES[i,j] + beta2.p * pow(DATES[i,j], 2) + beta3.p * HOURS[i,j] + beta4.p * pow(HOURS[i,j], 2)
 } #j
 } #i

Derived quantities
occ.fs <- sum(z[]) # Number of occupied sites
mean.p <- exp(alpha.p) / (1 + exp(alpha.p)) # Sort of average detection
}
",fill = TRUE)
sink()

Bundle data
win.data <- list(y = y, R = nrow(y), T = ncol(y), edge = edge, DATES = DATES, HOURS = HOURS)

Initial values
zst <- apply(y, 1, max, na.rm = TRUE)	# Good starting values crucial
inits <- function(){list(z = zst, alpha.psi=runif(1, -3, 3), alpha.p = runif(1, -3, 3))}

Parameters monitored
params <- c("alpha.psi", "beta.psi", "mean.p", "occ.fs", "alpha.p", "beta1.p", "beta2.p", "beta3.p", "beta4.p")

MCMC settings
ni <- 30000
nt <- 10
nb <- 20000
nc <- 3

Call WinBUGS from R (BRT < 1 min)
out <- bugs(win.data, inits, params, "model.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

We inspect the estimates and then illustrate.

Summarize posteriors
print(out, dig = 2)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha.psi 5.83 5.26 -0.10 1.73 4.26 8.67 17.98 1.10 46
beta.psi -6.61 5.26 -18.83 -9.38 -5.13 -2.60 -0.44 1.10 48
mean.p 0.56 0.15 0.27 0.46 0.56 0.67 0.85 1.01 200
occ.fs 17.02 2.38 11.00 16.00 17.00 18.00 21.00 1.01 220
alpha.p 0.29 0.66 -0.97 -0.15 0.26 0.72 1.71 1.01 160
beta1.p 0.34 0.40 -0.42 0.06 0.33 0.60 1.13 1.00 2400
beta2.p 0.21 0.47 -0.71 -0.10 0.19 0.51 1.17 1.01 230
beta3.p -0.48 0.42 -1.37 -0.75 -0.46 -0.20 0.31 1.01 330
beta4.p -0.59 0.32 -1.28 -0.79 -0.57 -0.37 0.00 1.00 1600

We note that convergence for the occupancy parameters could be better (Rhat = 1.10). We also note (not shown) that parameter estimates are quite sensitive to the priors chosen in the model. This is not quite unexpected, given the small size of the data set. Thus, we should state our inferences with caution.
Earlier on, we asked a series of questions that we wanted to answer with the site-occupancy model. The first was “How many woodpiles were likely occupied by Rosalia alpina, given the detection probability estimated?”. We find the answer in the tabular summary of the estimates above, it’s 17.02 (95% CRI 11–21). Since this is a key quantity in our analysis, we want to visualize its entire posterior distribution (Fig. 13-5).

Posterior distribution of the number of occupied sites in actual sample
hist(out$sims.list$occ.fs, nclass = 30, col = "gray", main = "", xlab = "Number of occupied woodpiles (occ.fs)", xlim = c(9, 27))
abline(v = 10, lwd = 2) # The observed number
[image:]

Fig. 13-5: Posterior distribution of the number of woodpiles occupied by the cerambycid beetle Rosalia alpina in the Movelier region in 2009 among the 27 surveyed woodpiles. Vertical line indicates the observed number of 10.

The second question of interest was “Given that we may overlook the species at occupied woodpile, how many times must we survey a woodpile before we can be “almost certain” to detect it at least once, when it occurs? ”. We can answer this question by using a simple binomial argument put forwards in Kéry (2002) and many times elsewhere: the probability to detect the species during identical and independent surveys is , where is the detection probability from a site-occupancy model. Since detection varies in all sorts of ways (see below), we have to decide on one ‘useful’ value of p. We take the mean.p monitored in the analysis. Using the MCMC samples for that quantity, we can incorporate our uncertainty about detection probability into the answer to our question. We will compute for values of between 1 and 10 and see where it is at least 95%, which will be our definition of “almost certain”.

Pstar <- array(NA, dim = c(out$n.sims, 10))
x <- cbind(rep(1, 3000), rep(2, 3000), rep(3, 3000), rep(4, 3000), rep(5, 3000), rep(6, 3000), rep(7, 3000), rep(8, 3000), rep(9, 3000), rep(10, 3000))
for (i in 1:out$n.sims) {
 for (j in 1:10){
 Pstar[i,j] <- 1 - (1 - out$sims.list$mean.p[i])^j
 } #j
 } #i

boxplot(Pstar ~ x, col = "gray", las = 1, ylab = "Pstar", xlab = "Number of surveys", outline = FALSE)
abline(h = 0.95, lty = 2, lwd = 2)
[image:]

Fig. 13-6: The relationship between , the probability to detect Rosalia alpina at a woodpile at least once during surveys and for the blue bug data set. The dashed line indicates 95% certainty to detect the species when present.

Hence, 3-4 ‘average’ surveys were required to be almost certain to detect Rosalia alpina at a woodpile where it occurred (Fig. 13-6).
What about the occupancy at woodpiles at the forest edge as compared to the forest interior? Our parameter beta.psi represents the difference in occupancy probability, on the logit scale between woodpiles at the forest edge and those in the interior. The 95% CRI of its estimate does not cover 0, hence, we can be rather confident in that Rosalia was more widespread at woodpiles in the forest interior. We convert the occupancy parameters into an estimate of occupancy in both locations and plot that.

par(mfrow = c(2, 1))
hist(plogis(out$sims.list$alpha.psi), nclass = 40, col = "gray", main = "Forest interior", xlab = "Occupancy probability", xlim = c(0, 1))
hist(plogis(out$sims.list$alpha.psi+ out$sims.list$beta.psi), nclass = 40, col = "gray", main = "Forest edge", xlab = "Occupancy probability", xlim = c(0, 1))
[image:]
Fig. 13-7: Posterior distributions of the probability of occupancy by Rosalia alpina for a woodpile in the forest interior (top) and at the forest edge (bottom) in Movelier, 2009.

So, indeed, there appears to be a big effect of the location of a woodpile on the probability that it is occupied by Rosalia alpina: the forest interior is much preferred (Fig. 13-7).
Finally, we want to answer the questions about a relationship between detection probability and date and time of day, respectively. We can see from the 95% CRI in the summary results table above that the regression parameters for date, beta1.p and beta2.p, largely overlap zero but that those for time of day, beta3.p and beta4.p, don’t do this so clearly (at least not beta4.p, which just about straddles 0). We will plot the predicted relationship in a figure that also shows the uncertainty in the estimates by plotting the relationships for a random MCMC sample of the regression coefficients involved in their computation (Fig. 13-8). This again suggests the absence of a date effect on detection probability (top panel); however, detection probability seems to be highest around 5-6 pm (bottom panel). These results can be interesting for designing a monitoring program for this endangered species.

Predict effect of time of day with uncertainty
mcmc.sample <- out$n.sims

original.date.pred <- seq(0, 60, length.out = 30)
original.hour.pred <- seq(180, 540, length.out = 30)
date.pred <- (original.date.pred - mean.date)/sd.date
hour.pred <- (original.hour.pred - mean.hour)/sd.hour
p.pred.date <- plogis(out$mean$alpha.p + out$mean$beta1.p * date.pred + out$mean$beta2.p * date.pred^2)
p.pred.hour <- plogis(out$mean$alpha.p + out$mean$beta3.p * hour.pred + out$mean$beta4.p * hour.pred^2)

array.p.pred.hour <- array.p.pred.date <- array(NA, dim = c(length(hour.pred), mcmc.sample))
for (i in 1:mcmc.sample){
 array.p.pred.date[,i] <- plogis(out$sims.list$alpha.p[i] + out$sims.list$beta1.p[i] * date.pred + out$sims.list$beta2.p[i] * date.pred^2)
 array.p.pred.hour[,i] <- plogis(out$sims.list$alpha.p[i] + out$sims.list$beta3.p[i] * hour.pred + out$sims.list$beta4.p[i] * hour.pred^2)
 }

Plot for a subsample of MCMC draws
sub.set <- sort(sample(1:mcmc.sample, size = 200))

par(mfrow = c(2, 1))
plot(original.date.pred, p.pred.date, main = "", ylab = "Detection probability", xlab = "Date (1 = 1 July)", ylim = c(0, 1), type = "l", lwd = 3, frame.plot = FALSE)
for (i in sub.set){
 lines(original.date.pred, array.p.pred.date[,i], type = "l", lwd = 1, col = "gray")
 }
lines(original.date.pred, p.pred.date, type = "l", lwd = 3, col = "blue")

plot(original.hour.pred, p.pred.hour, main = "", ylab = "Detection probability", xlab = "Time of day (mins after noon)", ylim = c(0, 1), type = "l", lwd = 3, frame.plot = FALSE)
for (i in sub.set){
 lines(original.hour.pred, array.p.pred.hour[,i], type = "l", lwd = 1, col = "gray")
 }
lines(original.hour.pred, p.pred.hour, type = "l", lwd = 3, col = "blue")

[image:]

Fig. 13-8: Predictions of the covariate relationships that account for estimation uncertainty. Top, effect of date; bottom, effect of time of day. Blue lines show the posterior mean and gray lines show the relationships based on a random posterior sample of size 200 to visualize estimation uncertainty.

[bookmark: _Toc308638322]Interlude: Getting Maximum likelihood estimates with the R package unmarked

We first create the data frame.
bugdata <- unmarkedFrameOccu(y = y, siteCovs = data.frame(edge = edge), obsCovs = list(DATES = DATES, HOURS = HOURS))
summary(bugdata)

We fit the model with a logit-linear regression for both parameters (note that in the formula, detection comes first)

(fm <- occu(formula = ~ 1 ~ as.factor(edge)-1, data = bugdata))
(fm <- occu(formula = ~ DATES + I(DATES^2) ~ as.factor(edge)-1, data = bugdata))
(fm <- occu(formula = ~ DATES + I(DATES^2) + HOURS + I(HOURS^2) ~ as.factor(edge)-1, data = bugdata))

We don’t known Truth in Real Life, so all we can do now is to compare the Maximum likelihood and the Bayesian estimates.

ML.results <- rbind(summary(fm)$state[,1:2], summary(fm)$det[,1:2])
Bayesian.results <- out$summary[c(1:2, 5:9), c(1:3, 7)]
print(cbind(ML.results, Bayesian.results))

This is an interesting comparison: we note again the numerical similarity of the ML and the Bayesian estimates when vague priors are used, but only for the parameters in the observation model. However, for the parameters in the state model, there is a great discrepancy in the estimates. (NOTE AGAIN: The Bayesian estimates look not good, see Erratum on BPA book web site.)

Check observed occurrence at forest interior (edge=0) and at edge sites (edge=1)
tapply(apply(y, 1, max, na.rm = TRUE), edge, mean)
> tapply(apply(y, 1, max, na.rm = TRUE), edge, mean)
 0 1
0.5000000 0.2307692

In the light of the raw occupancy estimates at the two types of habitat, the ML estimates for the ecological state look more sensible than do the Bayesian estimates.

[bookmark: _Toc308638323]13.5. Dynamic (multi-season) site-occupancy models

So far we have been modeling detection/nondetection observations from sites and replicate surveys, yielding data for site and survey . We have required a so-called closed population, which in the occupancy context means that the occurrence state of site must not change over the replicates. The closure assumption is often a reasonable approximation for studies that are short relative to the dynamics of the system investigated. In other cases, however, closure may not hold for all replicate surveys, for instance, when animals randomly move onto and off study sites. This specific form of non-closure is called random temporary emigration, and the models of the preceding sections may still be applied. The probability of random temporary emigration, i.e., of being temporarily unavailable for detection, is confounded with the probability of detection given availability (Kendall, 1999). In other words, the detection parameter refers to the product of the probability of being available for detection and that of being detected, given being present. According to conventional wisdom, the interpretation of the occupancy parameter simply changes from the probability of permanent presence to the probability of use sometime during the study period (MacKenzie, 2005).

However, there may be cases when temporary emigration (dispersal) is so strong as to make the resulting estimates of probability of use meaningless, e.g., effectively 1. In other cases temporary emigration may be Markovian: whether a site is occupied at time depends on whether it was so at . Probability of (un-)availability is then no longer confounded with the probability of detection given availability, and naive application of single-season occupancy models result in biased estimates of occupancy (Kendall, 1999; Rota et al., 2009).

As a remedy, the survey occasions may be assigned to subgroups and closure assumed only within each such subgroup. Owing to the seasonality of nature in most parts of the world, seasons over a series of years represent an extremely common, natural grouping factor. As an example, for birds or amphibians replicate surveys are often conducted during the breeding season and this may be repeated over multiple years. Such a sampling at two temporal scales is called the robust design (Williams et al., 2002); each year, or breeding season, is called a primary sampling occasion and the surveys within each season are called secondary sampling occasions. It is natural then to assume closure among secondary seasons only, i.e., within each primary season, and allow change in the occurrence state among primary seasons. In the context of site-occupancy models, we then have observations from sites, replicate surveys (secondary sampling occasions) and primary seasons (such as years), yielding detection/nondetection data for site , within-season survey and season . Note that up to now in this chapter, index was for all occasions, while in this section will index secondary occasions only.

Given our expectation that occupancy changes among seasons , how should we model occupancy dynamics ? It would be simplest to treat season as a group and fit separate parameters for each, as we did in section 12.3. in the context of abundance estimation in an open population. This is a reasonable approach, but there may be two issues with it. First, it treats observations from a site surveyed in different seasons as independent. However, whether a site is occupied at one time may depend on whether it was occupied previously, violating the independence assumption and representing a form of pseudoreplication (Hurlbert, 1984). This may result in too short standard error estimates, so it may be desirable to account for the repeated-measures nature of multi-season data. Second, the interest of a study may focus on the parameters that govern occupancy dynamics, i.e., colonization and extinction/survival. Occupancy is the quantity that metapopulation ecologists also call incidence (Hanski, 1994). Rather than simply describing changes of incidence over time, a metapopulation ecologist is interested in estimating probabilities of patch survival (or extinction) and patch colonization. This provides us with the motivation to explicitly model occupancy dynamics in terms of parameters describing the demographic components of that dynamics. This is achieved by the multi-season, or dynamic, site-occupancy model of MacKenzie et al. (2003). Moving from a single-season to a dynamic site-occupancy model is analogous to moving from a closed capture-recapture model (chapter 6) to a Jolly-Seber model (chapter 10) or from a classic binomial-mixture model (chapter 12) to the generalized binomial-mixture model of Dail and Madsen (2011).

To describe detection/nondetection data for site and (within-season) replicate survey in season , we follow the hierarchical, or state-space, formulation of the model by Royle and Kéry (2007). We describe the observed data in a two-level random-effects model, i.e., as a set of two linked stochastic processes or equations. The first equation describes the ecological process, i.e., the evolution of the latent occurrence state of site over season . Occurrence is latent because it is only partly observable and hence must be estimated from the observations . The second equation describes the observation process, i.e., the mapping of the latent state on observation . The basic model is thus this:

			1. Ecological process yields true state

		2. Observation process yields observations

The sole change to the single-season occupancy model is the addition of an index for season, . The model now describes the latent occurrence state at site in season as a Bernoulli trial with occupancy parameter . Observation is equal to 1 if a species is detected during temporal replicate at site in season , and zero otherwise, and is another Bernoulli trial governed by the product of the occurrence state at and and detection probability .

As said above, we could model by simply treating season as a group, which would be equivalent to fitting separate occupancy models to the data from each season. This is how we modeled changes in abundance over multiple seasons in section 12.3. But now we will describe the state dynamics in an explicit, Markovian way instead: we will specify an initial state and two sets of parameters that govern subsequent changes in a first-order autoregressive manner. This is a simple extension of the ecological process model above. For clarity, we will drop the site index ().

				1a. Initial ecological state in first season

		1b. Markovian transitions in later seasons

Hence, in season 1, occurrence is a simple Bernoulli trial as before. In all later seasons, the occurrence state of a site in season is a Bernoulli trial with a success parameter that depends on two things: whether the site was occupied at time and on the value of either a survival or a colonization parameter. Hence, if a site was occupied during season (i.e., and therefore), it will be re-occupied in the following season with probability ; this is the (site) survival probability. Of course, we could equivalently describe this in terms of the complement of survival, extinction probability . On the other hand, if a site was unoccupied during season (i.e., and therefore), it will be occupied at with probability ; this is the (site) colonization probability.

The state process of the dynamic site-occupancy model is exactly equivalent to a classical metapopulation model (Hanski, 1998), which expresses changes between time and in the occurrence state of a collection of patches as a function of the probabilities of colonization of patches unoccupied at time , and of survival (or alternatively, of extinction) of patches that were occupied at time . This model makes the important assumption that the occurrence state of each patch can be determined perfectly, i.e., that detection probability is equal to 1. Dynamic site-occupancy models represent an extended metapopulation model: the extension lies in an explicit accounting for imperfect detection (MacKenzie et al., 2003; Royle and Kéry, 2007), which becomes possible whenever replicated detection/nondetection observations are available within single periods of closure for at least some sites and/or such periods. Not accounting for imperfect detection in conventional metapopulation models will lead to biased estimates of all estimated quantities: incidence will be estimated too low and the probabilities of extinction, colonization and turnover will all be estimated too high (Moilanen (2002), Royle and Dorazio (2008); see also Risk et al. (2011), for a robust-design incidence function model).
We will next simulate a data set under the dynamic site-occupancy model and analyze that. Afterwards, we will analyze a real data set. You’ll find another example of a dynamic occupancy model in the OpenBUGS manual (Examples > Ecology examples > Sparrowhawks).

[bookmark: _Toc308638324]13.5.1. Generation and analysis of simulated data

We assume that we have data from a typical population study of a (nocturnal) bird of prey, the Long-eared owl (Fig. 13-9). Each of a total of territories was surveyed on occasions during each of breeding seasons (years) and it was recorded whether any sign of territory occupation was detected. Our data represent detection () or nondetection () of an owl in territory , during replicate survey in breeding season (year) . Note that here, occupancy is equivalent to abundance, because the number of occupied sites is exactly the local population size of owls.

[image:]

Fig. 13-9: Long-eared owl (Asio otus), Finland, 2008 (Photo T. Muukkonen)

We define a function to generate a data set. As always, apart from generating a data set to be analyzed later, this function may be used to get insights into the structure of the model used to analyze the data, issues of parameter estimation or required samples sizes (see section 1.5.).

data.fn <- function(R = 250, J = 3, K = 10, psi1 = 0.4, range.p = c(0.2, 0.4), range.phi = c(0.6, 0.8), range.gamma = c(0, 0.1)) {
Function to simulate detection/nondetection data for dynamic site-occ model
Annual variation in probabilities of patch survival, colonization and
detection is specified by the bounds of a uniform distribution.

Function arguments:
R – Number of sites
J – Number of replicate surveys
K – Number of years
psi1 – occupancy probability in first year
range.p – bounds of uniform distribution from which annual p drawn
range.psi and range.gamma – same for survival and colonization probability

 # Set up some required arrays
 site <- 1:R					# Sites
 year <- 1:K					# Years
 psi <- rep(NA, K)				# Occupancy probability
 muZ <- z <- array(dim = c(R, K))	# Expected and realized occurrence
 y <- array(NA, dim = c(R, J, K))	# Detection histories

 # Determine initial occupancy and demographic parameters
 psi[1] <- psi1				# Initial occupancy probability
 p <- runif(n = K, min = range.p[1], max = range.p[2])
 phi <- runif(n = K-1, min = range.phi[1], max = range.phi[2])
 gamma <- runif(n = K-1, min = range.gamma[1], max = range.gamma[2])

 # Generate latent states of occurrence
 # First year
 z[,1] <- rbinom(R, 1, psi[1])		# Initial occupancy state
 # Later years
 for(i in 1:R){				# Loop over sites
 for(k in 2:K){				# Loop over years
 muZ[k] <- z[i, k-1]*phi[k-1] + (1-z[i, k-1])*gamma[k-1] # Prob for occ.
 z[i,k] <- rbinom(1, 1, muZ[k])
 }
 }

 # Plot realised occupancy
 plot(year, apply(z, 2, mean), type = "l", xlab = "Year", ylab = "Occupancy or Detection prob.", col = "red", xlim = c(0,K+1), ylim = c(0,1), lwd = 2, lty = 1, frame.plot = FALSE, las = 1)
 lines(year, p , type = "l", col = "red", lwd = 2, lty = 2)

 # Generate detection/nondetection data
 for(i in 1:R){
 for(k in 1:K){
 prob <- z[i,k] * p[k]
 for(j in 1:J){
 y[i,j,k] <- rbinom(1, 1, prob)
 }
 }
 }

 # Compute annual population occupancy
 for (k in 2:K){
 psi[k] <- psi[k-1]*phi[k-1] + (1-psi[k-1])*gamma[k-1]
 }

 # Plot apparent occupancy
 psi.app <- apply(apply(y, c(1,3), max), 2, mean)
 lines(year, psi.app, type = "l", col = "black", lwd = 2)
 text(0.85*K, 0.06, labels = "red solid – true occupancy\n red dashed – detection\n black – observed occupancy")

 # Return data
 return(list(R = R, J = J, K = K, psi = psi, psi.app = psi.app, z = z, phi = phi, gamma = gamma, p = p, y = y))
}

We execute the function once to obtain a data set for 250 owl territories with three surveys in each of 10 years (Fig. 13-10 a).

data <- data.fn(R = 250, J = 3, K = 10, psi1 = 0.6, range.p = c(0.1, 0.9), range.phi = c(0.7, 0.9), range.gamma = c(0.1, 0.5))

[image:]

Fig. 13-10: (a) Simulated territory occupancy data for long-eared owls. Truth is shown in red (solid – occupancy probability; dashed – detection probability) and the observed occupancy probability in black. The difference between the red and the black lines is due to detection error. (b) Comparison between true, observed and estimated occupancy probability. Truth is shown in red, estimates under the site-occupancy model (with 95% CRI) are in blue and naïve estimates (observed values) are in black. (Note: Using the R code in the book, you will generate each panel separately.)

We attach the data set and produce a simple summary.

attach(data)
str(data)
> str(data)
List of 10
 $ R : num 250
 $ J : num 3
 $ K : num 10
 $ psi : num [1:10] 0.6 0.535 0.635 0.658 0.71 ...
 $ psi.app: num [1:10] 0.48 0.536 0.328 0.356 0.24 0.232 0.38 0.3 0.184 0.512
 $ z : num [1:250, 1:10] 0 1 0 1 1 1 1 1 0 1 ...
 $ phi : num [1:9] 0.791 0.761 0.805 0.879 0.772 ...
 $ gamma : num [1:9] 0.151 0.489 0.403 0.384 0.105 ...
 $ p : num [1:10] 0.382 0.659 0.19 0.246 0.151 ...
 $ y : num [1:250, 1:3, 1:10] 0 0 0 1 1 0 1 0 0 0 ...

We conduct the analysis using code from Royle and Kéry (2007), which includes estimation of the actual number of occupied territories (among the 250), the occupancy-based population growth rate and the turnover rate.

Specify model in BUGS language
sink("Dynocc.txt")
cat("
model {

Specify priors
psi1 ~ dunif(0, 1)
for (k in 1:(nyear-1)){
 phi[k] ~ dunif(0, 1)
 gamma[k] ~ dunif(0, 1)
 p[k] ~ dunif(0, 1)
 }
p[nyear] ~ dunif(0, 1)

Ecological submodel: Define state conditional on parameters
for (i in 1:nsite){
 z[i,1] ~ dbern(psi1)
 for (k in 2:nyear){
 muZ[i,k]<- z[i,k-1]*phi[k-1] + (1-z[i,k-1])*gamma[k-1]
 z[i,k] ~ dbern(muZ[i,k])
 } #k
 } #i

Observation model
for (i in 1:nsite){
 for (j in 1:nrep){
 for (k in 1:nyear){
 muy[i,j,k] <- z[i,k]*p[k]
 y[i,j,k] ~ dbern(muy[i,j,k])
 } #k
 } #j
 } #i

Derived parameters: Sample and population occupancy, growth rate and turnover
psi[1] <- psi1
n.occ[1]<-sum(z[1:nsite,1])
for (k in 2:nyear){
 psi[k] <- psi[k-1]*phi[k-1] + (1-psi[k-1])*gamma[k-1]
 n.occ[k] <- sum(z[1:nsite,k])
 growthr[k-1] <- psi[k]/psi[k-1]
 turnover[k-1] <- (1 - psi[k-1]) * gamma[k-1]/psi[k]
 }
}
",fill = TRUE)
sink()

Bundle data
win.data <- list(y = y, nsite = dim(y)[1], nrep = dim(y)[2], nyear = dim(y)[3])

Initial values
zst <- apply(y, c(1, 3), max)	# Observed occurrence as inits for z
inits <- function(){ list(z = zst)}

Parameters monitored
#params <- c("psi", "phi", "gamma", "p", "n.occ", "growthr", "turnover")
params <- c("psi", "phi", "gamma", "p", "n.occ", "turnover")

MCMC settings
ni <- 2500
nt <- 4
nb <- 500
nc <- 3

Call WinBUGS from R (BRT 3 min)
out <- bugs(win.data, inits, params, "Dynocc.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Call JAGS
out <- jags(win.data, inits, params, "Dynocc.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb)

out <- out$BUGSoutput

Summarize posteriors
print(out, dig = 3)
 [...]
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
psi[1] 0.61 0.04 0.53 0.58 0.61 0.64 0.69 1.00 720
 [...]
psi[10] 0.53 0.03 0.46 0.50 0.53 0.55 0.59 1.00 810
phi[1] 0.83 0.04 0.75 0.81 0.83 0.86 0.90 1.00 1500
[...]
phi[9] 0.67 0.06 0.55 0.63 0.68 0.71 0.80 1.00 1500
gamma[1] 0.12 0.06 0.01 0.08 0.12 0.17 0.25 1.00 1500
[...]
gamma[9] 0.24 0.12 0.02 0.15 0.24 0.33 0.44 1.00 1500
p[1] 0.40 0.03 0.35 0.38 0.40 0.42 0.47 1.00 1100
[...]
p[10] 0.71 0.03 0.66 0.69 0.71 0.72 0.75 1.00 1500
n.occ[1] 152.32 7.48 138.00 147.00 152.00 158.00 166.00 1.00 1500
[...]
n.occ[10] 131.51 2.18 128.00 130.00 131.00 133.00 137.00 1.00 1100
growthr[2] 0.91 0.06 0.80 0.87 0.91 0.95 1.04 1.00 1500
[...]
growthr[10] 0.83 0.14 0.62 0.73 0.81 0.90 1.16 1.00 1400
turnover[1] 0.09 0.05 0.01 0.05 0.08 0.12 0.20 1.00 1500
[...]
turnover[9] 0.17 0.11 0.01 0.09 0.16 0.24 0.41 1.00 1500
[...]

We compare truth and estimates of truth (posterior mean, sd and 95% CRI) in tables …

print(cbind(datapsi, outsummary[1:K, c(1, 2, 3, 7)]), dig = 3)
print(cbind(dataphi, outsummary[(K+1):(K+(K-1)), c(1, 2, 3, 7)]), dig = 3)
print(cbind(data$gamma, out$summary[(2*K):(2*K+(K-2)), c(1, 2, 3, 7)]), dig = 3)
print(cbind(datap, outsummary[(3*K-1):(4*K-2), c(1, 2, 3, 7)]), dig = 3)

… and in a picture (Fig. 13-10 b).
plot(1:K, data$psi, type = "l", xlab = "Year", ylab = "Occupancy probability", col = "red", xlim = c(0,K+1), ylim = c(0,1), lwd = 2, lty = 1, frame.plot = FALSE, las = 1)
lines(1:K, data$psi.app, type = "l", col = "black", lwd = 2)
points(1:K, out$mean$psi, type = "l", col = "blue", lwd = 2)
segments(1:K, out$summary[1:K,3], 1:K,out$summary[1:K,7], col = "blue", lwd = 1)

We are rather satisfied with the performance of the metapopulation estimators of the model.

Analysis with JAGS (91 secs)
The model, with growthr defined as in the book, works fine with WinBUGS, but not with JAGS. The reason seems to be that the vector growthr is defined to go from 2 till K. When its elements are numbered from 1 to K-1 (by defining growthr as growthr[k-1] <- psi[k]/psi[k-1]) the model works fine in JAGS also.

library("R2jags")# requires rjags
system.time(outJAGS <- jags(win.data, inits, params, "Dynocc.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb))
print(outJAGS, dig = 2)

plot(1:K, data$psi, type = "l", xlab = "Year", ylab = "Occupancy probability", col = "red", xlim = c(0,K+1), ylim = c(0,1), lwd = 2, lty = 1, frame.plot = FALSE, las = 1)
lines(1:K, data$psi.app, type = "l", col = "black", lwd = 2)
points(1:K, outJAGS$BUGSoutput$mean$psi, type = "l", col = "blue", lwd = 2)
segments(1:K, outJAGS$BUGSoutput$summary[49:58,3], 1:K, outJAGS$BUGSoutput$summary[49:58,7], col = "blue", lwd = 1)

[bookmark: _Toc308638325]Interlude: Getting Maximum likelihood estimates with the R package unmarked

The model fitting function in unmarked for dynamic occupancy models is called colext() (from colonization-extinction). The analysis requires us to format the data in a function-specific way. There is a tutorial (called a vignette) on the use of this function available at http://cran.r-project.org/web/packages/unmarked/index.html. The following text copies much from there.

library(unmarked)			# Load the package

Next, we reformat the detection/non-detection data from a 3-dimensional array (as generated) into a 2-dimensional matrix with M rows. That is, we put the annual tables of data (the slices of the former 3-D array) sideways to produce a "wide" layout of the data.

yy <- matrix(data$y, data$R, data$J* data$K)

Next, we create a matrix indicating the year each site was surveyed.

year <- matrix(c('01','02','03','04','05','06','07','08','09','10'),
nrow(yy), data$K, byrow=TRUE)

To organize the data in the format required by colext, we make use of the function unmarkedMultFrame(). The only required arguments are y, the detection/non-detection data, and numPrimary, the number of seasons. Three types of covariates can also be supplied using the arguments siteCovs, yearlySiteCovs, and obsCovs. In this case, we only make use of the second type, which must have R rows and K columns.

simUMF <- unmarkedMultFrame(
y = yy,
yearlySiteCovs = list(year = year),
numPrimary=data$K)
summary(simUMF)

Next, we fit the dynamic occupancy model with full year-dependence in the parameters describing occupancy dynamics and also in detection. This is the same model under which we generated the data set, so we would expect accurate estimates. By default in R, a factor such as year in this analysis, is a parameterized in terms of an intercept and effects representing differences. This would mean that the parameter for the first year is the intercept and the effects would denote the differences between the parameter values in all other years, relative to the parameter value in the first year, which serves as a reference level. This treatment or effects parameterization is useful for testing for differences. For simple presentation, a means parameterization is more practical. It can be specified by adding a -1 to the formula for the time-dependent parameters.

fm <- colext(psiformula = ~1, 	# First-year occupancy
gammaformula = ~ year-1, 		# Colonization
epsilonformula = ~ year-1, 		# Extinction
pformula = ~ year-1, 			# Detection
data = simUMF)

summary(fm)
Call:
colext(psiformula = ~1, gammaformula = ~year - 1, epsilonformula = ~year -
 1, pformula = ~year - 1, data = simUMF)

Initial (logit-scale):
 Estimate SE z P(>|z|)
 0.352 0.396 0.888 0.375

Colonization (logit-scale):
 Estimate SE z P(>|z|)
year01 -0.252 0.471 -0.536 5.92e-01
year02 -1.796 0.337 -5.328 9.94e-08
year03 -0.711 0.255 -2.793 5.23e-03
year04 0.273 0.232 1.176 2.40e-01
year05 -2.471 1.399 -1.767 7.72e-02
year06 -1.331 0.503 -2.649 8.07e-03
year07 -0.403 0.308 -1.310 1.90e-01
year08 -1.549 0.428 -3.621 2.94e-04
year09 -0.998 0.262 -3.809 1.39e-04

Extinction (logit-scale):
 Estimate SE z P(>|z|)
year01 -2.069 0.359 -5.757 8.58e-09
year02 -2.538 0.292 -8.677 4.05e-18
year03 -1.352 0.218 -6.192 5.94e-10
year04 -1.953 0.266 -7.344 2.07e-13
year05 -6.971 42.223 -0.165 8.69e-01
year06 -0.219 0.268 -0.815 4.15e-01
year07 -1.562 0.420 -3.723 1.97e-04
year08 -0.773 0.233 -3.317 9.11e-04
year09 -4.494 4.547 -0.988 3.23e-01

Detection (logit-scale):
 Estimate SE z P(>|z|)
year01 -1.2247 0.230 -5.317 1.05e-07
year02 1.8215 0.129 14.139 2.20e-45
year03 2.1424 0.145 14.755 2.86e-49
year04 0.4811 0.109 4.412 1.02e-05
year05 0.9793 0.102 9.557 1.21e-21
year06 -2.3781 0.157 -15.176 5.10e-52
year07 -0.6573 0.183 -3.597 3.22e-04
year08 -0.3925 0.131 -2.987 2.82e-03
year09 0.2192 0.133 1.644 1.00e-01
year10 -0.0986 0.126 -0.782 4.34e-01

Again, all estimates are shown on the logit-scale. Back-transforming estimates when covariates, such as year, are present involves an extra step. Specifically, we need to tell unmarked the values of our covariate at which we want an estimate. This can be done using backTransform() in combination with linearComb(), although it can be easier to use predict(). predict() allows the user to supply a data.frame in which each row represents a combination of covariate values of interest. Below, we create data.frames called nd with each row representing a year. Then we request yearly estimates of the probability of extinction, colonization and detection, and compare them to "truth", i.e., the values with which we simulated the data set. Note that there are K-1 extinction and colonization parameters in this case, so we do not need to include year `10' in nd.

nd <- data.frame(year=c('01','02','03','04','05','06','07','08','09'))
E.ext <- predict(fm, type='ext', newdata=nd)
E.col <- predict(fm, type='col', newdata=nd)
nd <- data.frame(year=c('01','02','03','04','05','06','07','08','09','10'))
E.det <- predict(fm, type='det', newdata=nd)

predict() returns the predictions along with standard errors and confidence intervals. These can be used to create plots. The with() function is used to simplify the process of requesting the columns of data.frame returned by predict().

op <- par(mfrow=c(3,1), mai=c(0.6, 0.6, 0.1, 0.1))
with(E.ext, { 			# Plot for extinction probability
 plot(1:9, Predicted, pch=1, xaxt='n', xlab='Year',
 ylab=expression(paste('Extinction probability (', epsilon, ')')),
 ylim=c(0,1), col="green")
 axis(1, at=1:9, labels=nd$year[1:9])
 arrows(1:9, lower, 1:9, upper, code=3, angle=90, length=0.03, col="green")
 points((1:9)-0.1, 1-phi, col="red", lwd = 1, pch=16)
 points((1:9)+0.1, 1-out$summary[11:19,1], col="blue", lwd = 1, pch=16)
 segments(((1:9)+0.1), (1-out$summary[11:19,3]), ((1:9)+0.1), (1-out$summary[11:19,7]), col = "blue", lwd = 1)
 legend(7, 1, c('Truth', 'ML', 'Posterior mean'), col=c("red", "green", "blue"), pch=c(16, 1),
 cex=0.8)
})

with(E.col, { 			# Plot for colonization probability
 plot(1:9, Predicted, pch=1, xaxt='n', xlab='Year',
 ylab=expression(paste('Colonization probability (', gamma, ')')),
 ylim=c(0,1), col="green")
 axis(1, at=1:9, labels=nd$year[1:9])
 arrows(1:9, lower, 1:9, upper, code=3, angle=90, length=0.03, col="green")
 points((1:9)-0.1, gamma, col="red", lwd = 1, pch=16)
 points((1:9)+0.1, out$summary[20:28,1], col="blue", lwd = 1, pch=16)
 segments(((1:9)+0.1), out$summary[20:28,3], ((1:9)+0.1), out$summary[20:28,7], col = "blue", lwd = 1)
 legend(7, 1, c('Truth', 'ML', 'Posterior mean'), col=c("red", "green", "blue"), pch=c(16, 1),
 cex=0.8)
})

with(E.det, { 			# Plot for detection probability: note 10 years
 plot(1:10, Predicted, pch=1, xaxt='n', xlab='Year',
 ylab=expression(paste('Detection probability (', p, ')')),
 ylim=c(0,1), col="green")
 axis(1, at=1:10, labels=nd$year[1:10])
 arrows(1:10, lower, 1:10, upper, code=3, angle=90, length=0.03, col="green")
 points((1:10)-0.1, p, col="red", lwd = 1, pch=16)
 points((1:10)+0.1, out$summary[29:38,1], col="blue", lwd = 1, pch=16)
 segments(((1:10)+0.1), out$summary[29:38,3], ((1:10)+0.1), out$summary[29:38,7], col = "blue", lwd = 1)
 legend(8, 1, c('Truth', 'ML', 'Posterior mean'), col=c("red", "green", "blue"), pch=c(16, 1),
 cex=0.8)
})
par(op)

The resulting figure shows that both maximum likelihood and Bayesian estimates are numerically very similar and moreover that their 95% uncertainty intervals (usually) include the true parameter values.
[image:]

Estimates of occupancy probability in years K > 1 must be derived from the estimates of first-year occupancy and the two parameters governing the dynamics, extinction/survival and colonization. unmarked does this automatically in two ways. First, the population-level estimates of occupancy probability are calculated and stored in the slot named projected. Slots can be accessed using the @ operator, e.g. fm@projected. In some cases, interest may lie in making inference about the proportion of the sampled sites that are occupied, rather than the entire population of sites. These estimates are contained in the smoothed slot of the fitted model. Thus, the projected values are estimates of population parameters, and the smoothed estimates are of the finite-sample quantities. Discussion of the differences can be found in Weir et al. (2009).

The next table compares Truth for occupancy with the estimates from unmarked and WinBUGS. Standard errors for the ML estimates could be obtained using the bootstrap (see the colext vignette for how to do this).

cbind(psi=psi, ML.estimates=projected(fm)[2,], Bayesian.estimates=out$summary[1:10, c(1:3,7)])
> cbind(psi=psi, ML.estimates=projected(fm)[2,], Bayesian.estimates=out$summary[1:10, c(1:3,7)])
 psi ML.estimates mean sd 2.5% 97.5%
1 0.6000000 0.5870151 0.6086705 0.09037223 0.4396374 0.7866674
2 0.6654864 0.7017277 0.6991529 0.02949929 0.6423966 0.7544575
3 0.6340784 0.6927966 0.6898502 0.02984609 0.6302475 0.7484100
4 0.6713109 0.6515450 0.6511929 0.03345488 0.5892425 0.7173674
5 0.7566061 0.7684663 0.7632411 0.02826295 0.7055324 0.8170525
6 0.7094328 0.7857780 0.6919270 0.08737853 0.4911273 0.8246000
7 0.5747002 0.4804154 0.4908447 0.05605002 0.3874425 0.6062870
8 0.6567393 0.6052629 0.6117554 0.04389762 0.5274475 0.6983347
9 0.5407996 0.4832512 0.4840710 0.03578187 0.4166475 0.5543624
10 0.6008708 0.6170492 0.6024637 0.03582045 0.5305273 0.6718525

[bookmark: _Toc308638326]13.5.2. Dynamic occupancy modeling in a real data set
As another illustration of the dynamic occupancy model of MacKenzie et al. (2003), we will use data from the Six-spot burnet (Fig. 13-11) collected in the Swiss butterfly monitoring program. Remember that we have 95 sites with 2 replications in each of 7 seasons, and that a ‘season’ represents one day, within which a transect is surveyed back and forth (for further description, see section 12.3, Kéry et al. (2009b) and Dorazio et al. (2010)). This is a more typical example of an occupancy model, where a ‘site’ represents a 2.5 km transect in a 1 km2 square and is so large relative to the space requirements of the study species that is can be inhabited by many (hundred) individuals. Thus, there is no longer a 1:1 relationship between occupancy and abundance as in the owl example.

[image: Description: 5161]

Fig. 13-11: The Six-spot burnet Zygaena filipendulae, a day-flying moth, Switzerland, 2004 (Photo: T. Marent)

After reading the count data into R, we will first reformat the data into a 3-dimensional array, as we did for the multi-season binomial-mixture model in section 12.3. We start with a format where butterfly counts from different ‘seasons’ (days) are stacked. For this code to work the data must be balanced, i.e., we must have the same number of surveyed sites in each ‘season’ (day). This is not a requirement of the model, simply of our code. If you have variation in the number of sites surveyed, then you have to “fill in” the data using NAs to make them balanced or else vectorize the BUGS model description (see chapter 21 in Kéry, 2010).

Read in the data and put it into 3D array
bdat <- read.table(file = "burnet.txt", header = T)
str(bdat)

y <- array(NA, dim = c(95, 2, 7))	# 95 sites, 2 reps, 7 days

for (i in 1:7){
 sel.rows <- bdat$day == i
 y[,,i] <- as.matrix(bdat)[sel.rows, 3:4]
 }
str(y)

Convert counts to detection/nondetection data
y[y>0] <- 1

Look at the number of sites with detections for each day
tmp <- apply(y, c(1,3), max, na.rm = TRUE)
tmp[tmp == "-Inf"] <- NA
apply(tmp, 2, sum, na.rm = TRUE)
 [1] 0 0 3 10 17 17 6

There are no detections of burnets at all during the first two days. We are now ready to fit the dynamic occupancy model in WinBUGS. The code is the same as before (section 13.5.1.) so we simply recycle the BUGS model description from there.

Bundle data
win.data <- list(y = y, nsite = dim(y)[1], nrep = dim(y)[2], nyear = dim(y)[3])

Initial values
inits <- function(){ list(z = apply(y, c(1, 3), max))}

Parameters monitored
params <- c("psi", "phi", "gamma", "p", "n.occ", "growthr", "turnover")

MCMC settings
ni <- 5000
nt <- 4
nb <- 1000
nc <- 3

Call WinBUGS from R (BRT 1 min)
out1 <- bugs(win.data, inits, params, "Dynocc.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out1, dig = 3)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
psi[1] 0.106 0.208 0.001 0.009 0.025 0.078 0.895 1.048 60
[...]
psi[7] 0.117 0.052 0.044 0.080 0.106 0.142 0.246 1.005 490
phi[1] 0.442 0.294 0.014 0.177 0.419 0.687 0.969 1.007 870
[...]
phi[6] 0.447 0.183 0.170 0.313 0.415 0.551 0.900 1.002 1000
gamma[1] 0.151 0.230 0.001 0.014 0.050 0.171 0.905 1.025 100
[...]
gamma[6] 0.026 0.026 0.001 0.008 0.018 0.036 0.095 1.004 650
p[1] 0.294 0.296 0.002 0.038 0.179 0.497 0.948 1.037 79
[...]
p[7] 0.536 0.183 0.195 0.398 0.540 0.679 0.864 1.005 430
n.occ[1] 9.268 19.972 0.000 0.000 1.000 6.000 85.000 1.171 32
[...]
n.occ[7] 9.515 3.971 6.000 7.000 8.000 11.000 20.000 1.009 300
growthr[2] 21.130 257.481 0.078 0.841 2.037 6.563 117.412 1.026 88
[...]
growthr[7] 0.548 0.230 0.222 0.384 0.504 0.671 1.101 1.003 710
turnover[1] 0.714 0.287 0.054 0.539 0.826 0.953 0.998 1.011 260
[...]
turnover[6] 0.172 0.139 0.005 0.061 0.137 0.251 0.505 1.003 940

We see that some of the parameters associated with the first two days, when no burnets were observed, are not estimable. An indication of this is that their posterior distributions cover (almost) the entire range of their prior distributions, i.e., the 95% CRI essentially covers the range from 0 to 1 for the probability parameters. This means that the data contain no information about these parameters. The parameters describing the dynamics of occupancy, survival (phi), colonization (gamma) and the growth rate, may all offer interesting insights into the factors that drive the population dynamics of a species in the context of occurrence.
Apart from the third day, when very few burnets were observed (and during the first two, see above), detection probability appears to be similar. Hence, we pool the detection parameters and fit a model with constant detection probability. In addition, as an exercise we aggregate the binary response over the two replicates per day and specify a binomial(2, p) data distribution instead of a Bernoulli(p). When there is not modeled structure among replicate surveys, this model parameterization is computationally more efficient than the one with a Bernoulli response.

Specify model in BUGS language
sink("Dynocc2.txt")
cat("
model {

Specify priors
psi1 ~ dunif(0, 1)
for (k in 1:(nyear-1)){
 phi[k] ~ dunif(0, 1)
 gamma[k] ~ dunif(0, 1)
 }
p ~ dunif(0, 1)

Both models at once
for (i in 1:nsite){
 z[i,1] ~ dbern(psi1) # State model 1: Initial state
 for (k in 2:nyear){ # State model 2: State dynamics
 muZ[i,k] <- z[i,k-1]*phi[k-1] + (1-z[i,k-1])*gamma[k-1]
 z[i,k] ~ dbern(muZ[i,k])

 # Observation model
 muy[i,k] <- z[i,k]*p
 y[i,k] ~ dbin(muy[i,k], 2)
 } #k
 } #i

Derived parameters: Sample and population occupancy, growth rate and turnover
psi[1] <- psi1
n.occ[1] <- sum(z[1:nsite,1])
for (k in 2:nyear){
 psi[k] <- psi[k-1]*phi[k-1] + (1-psi[k-1])*gamma[k-1]
 n.occ[k] <- sum(z[1:nsite,k])
 growthr[k] <- psi[k]/psi[k-1]
 turnover[k-1] <- (1 - psi[k-1]) * gamma[k-1]/psi[k]
 }
}
",fill = TRUE)
sink()

Aggregate detections over reps within a day and bundle data
yy <- apply(y, c(1, 3), sum, na.rm = TRUE)
win.data <- list(y = yy, nsite = dim(yy)[1], nyear = dim(yy)[2])

Initial values
inits <- function(){list(z = apply(y, c(1, 3), max))}

Parameters monitored
params <- c("psi", "phi", "gamma", "p", "n.occ", "growthr", "turnover")

MCMC settings
ni <- 2500
nt <- 2
nb <- 500
nc <- 3

Call WinBUGS from R (BRT 1 min)
out2 <- bugs(win.data, inits, params, "Dynocc2.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posterior
print(out2, dig = 3)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
psi[1] 0.461 0.394 0.003 0.058 0.387 0.902 0.997 1.122 21
[...]
psi[7] 0.093 0.032 0.040 0.070 0.090 0.114 0.165 1.002 1700
phi[1] 0.121 0.207 0.001 0.008 0.026 0.121 0.778 1.087 28
[...]
phi[6] 0.368 0.120 0.154 0.280 0.362 0.447 0.625 1.001 3000
gamma[1] 0.108 0.202 0.001 0.007 0.020 0.083 0.790 1.070 33
[...]
gamma[6] 0.017 0.017 0.000 0.005 0.012 0.024 0.063 1.001 3000
p 0.646 0.059 0.525 0.608 0.648 0.687 0.756 1.001 3000
n.occ[1] 43.739 38.086 0.000 5.000 36.000 87.000 95.000 1.176 16
[...]
n.occ[7] 7.241 1.301 6.000 6.000 7.000 8.000 10.000 1.001 3000
growthr[2] 0.742 4.958 0.004 0.021 0.060 0.327 5.190 1.096 26
[...]
growthr[7] 0.433 0.139 0.196 0.334 0.422 0.517 0.742 1.002 1900
turnover[1] 0.507 0.300 0.016 0.244 0.507 0.777 0.981 1.002 1400
[...]
turnover[6] 0.143 0.126 0.004 0.048 0.108 0.206 0.464 1.001 3000

We plot what we have learnt about the occupancy, or incidence, of Swiss burnets over the season (Fig. 13-12).

DAY <- cbind(rep(1, out2$n.sims), rep(2, out2$n.sims), rep(3, out2$n.sims), rep(4, out2$n.sims), rep(5, out2$n.sims), rep(6, out2$n.sims), rep(7, out2$n.sims))
boxplot(out2$sims.list$psi ~ DAY, col = "gray", ylab = "Occupancy probability", xlab = "Day of survey", las = 1, frame.plot = FALSE)
[image:]

Fig. 13-12: Occupancy probability of the burnet over a season: summary of posterior distributions for survey day 1 through survey day 7. No burnets at all were seen during the first two days.

We see the typical unimodal phenology of an insect in temperate latitudes (Kéry et al. 2009). Six-spot burnets are most widespread in Switzerland during the period in which survey number 5 is made. Interestingly, although no burnets were seen during either the first and the second day, the posterior distribution for occupancy was quite different for the two days. There are two reasons for this. First, the Markovian model propagates information backwards in time and so occurrence at k = 2 (zi,2) is informed directly by zi,3 because there are data at k = 3. Conversely zi,1 gets no direct information at all from k = 2 because there were no observations (J.A. Royle, pers. comm.). Second, different amounts of information are available for occupancy on the two days. There were only 75 sites with surveys on the first, but 87 days with surveys on the second day. As a consequence, the occupancy parameter was not estimable on the first day; the posterior samples simply reflected the prior. In contrast, on the second day, occupancy was estimated at effectively zero. You can compare the sample sizes for each day like this:

apply(apply(y, c(1, 3), max), 2, function(x){sum(!is.na(x))})
[1] 75 87 95 95 95 95 87

In summary, the dynamic site-occupancy model is a powerful extension to the classical metapopulation model. Depending on the definition of a site and the state of occurrence, dynamic occupancy models can be used to describe the dynamics of a vast array of systems. Covariates can be introduced for all parameters via the usual GLM link functions. The main challenge when applying the model may be a data management and parameter bookkeeping one: to put the data in the required multi-dimensional arrays and not to get confused with multi-dimensional model code.

[bookmark: _Toc308638327]Somewhat important interlude: Fitting dynamic occupancy models to data in the vertical format
Both when fitting dynamic occupancy models in unmarked and in WinBUGS (when using the code so far shown), the data must be balanced. That is, any imbalance must be eliminated by “filling in” missing values in the data set. Missing values in a Bayesian analysis are treated like any other unknown quantity: they are estimated as part of the MCMC algorithm.
When dynamic site-occupancy models are fitted to opportunistic data (see for instance Kéry et al., 2010a, b), the “filled in” data sets may have far more than 90% missing values, making the previous code very inefficient. In this case, it is useful to layout the data in a vertical format. Note that this is also often called the ‘long’, as opposed to the ‘wide’ format, for instance, in the R package reshape. The WinBUGS model description then needs to be adapted slightly. This is shown here.
Next is a function to generate data in 3D or in 2D “vertical” format.

data.fn <- function(R = 10, J = 2, K = 3, psi1 = 0.4, range.p = c(0.2, 0.4),
range.phi = c(0.6, 0.8), range.gamma = c(0, 0.1)) {
Function to simulate detection/nondetection data for dynamic site-occ model
in the vertical format
Annual variation in probabilities of patch survival, colonization and
detection is specified by the bounds of a uniform distribution.

Function arguments:
R - Number of sites
J - Number of replicate surveys
K - Number of years
psi1 - occupancy probability in first year
range.p - bounds of uniform distribution from which annual p drawn
range.psi and range.gamma - same for survival and colonization probability

 # Set up some required arrays
 site <- 1:R					# Sites
 year <- 1:K					# Years
 psi <- rep(NA, K)				# Occupancy probability
 muZ <- z <- array(dim = c(R, K))	# Expected and realized occurrence
 y <- array(NA, dim = c(R, J, K))	# Detection histories

 # Determine initial occupancy and demographic parameters
 psi[1] <- psi1				# Initial occupancy probability
 p <- runif(n = K, min = range.p[1], max = range.p[2])
 phi <- runif(n = K-1, min = range.phi[1], max = range.phi[2])
 gamma <- runif(n = K-1, min = range.gamma[1], max = range.gamma[2])

 # Generate latent states of occurrence
 # First year
 z[,1] <- rbinom(R, 1, psi[1])		# Initial occupancy state
 # Later years
 for(i in 1:R){				# Loop over sites
 for(k in 2:K){				# Loop over years
 muZ[k] <- z[i, k-1]*phi[k-1] + (1-z[i, k-1])*gamma[k-1] # Prob for occ.
 z[i,k] <- rbinom(1, 1, muZ[k])
 }
 }

 # Plot realised occupancy
 plot(year, apply(z, 2, mean), type = "l", xlab = "Year", ylab = "Occupancy or Detection prob.",
 col = "red", xlim = c(0,K+1), ylim = c(0,1), lwd = 2, lty = 1, frame.plot = FALSE, las = 1)
 lines(year, p , type = "l", col = "red", lwd = 2, lty = 2)

 # Generate observed detection/nondetection data
 for(i in 1:R){
 for(k in 1:K){
 prob <- z[i,k] * p[k]
 for(j in 1:J){
 y[i,j,k] <- rbinom(1, 1, prob)
 }
 }
 }

 # Compute annual population occupancy
 for (k in 2:K){
 psi[k] <- psi[k-1]*phi[k-1] + (1-psi[k-1])*gamma[k-1]
 }

 # Plot apparent occupancy
 psi.app <- apply(apply(y, c(1,3), max), 2, mean)
 lines(year, psi.app, type = "l", col = "black", lwd = 2)
 text(0.85*K, 0.06, labels = "red solid - true occupancy\n red dashed - detection\n black - observed occupancy")

 # Convert data into vertical format
 yy <- as.numeric(y)
 sites <- rep(site, J*K)
 season <- sort(rep(1:K, R*J))
 survey <- rep((sort(rep(1:J, R))), K)
 vertical.data <- list(y = yy, site = sites, season = season, survey = survey)

 # Return data
 return(list(R = R, J = J, K = K, psi = psi, psi.app = psi.app, z = z,
 phi = phi, gamma = gamma, p = p, y = y, vertical.data = vertical.data))
}

We may play around a little with this function to convince ourselves that it does what it should.

data <- data.fn(R = 250, J = 3, K = 6, psi1 = 0.6, range.p = c(0.1, 0.9), range.phi = c(0.7, 0.9), range.gamma = c(0.1, 0.5))
data <- data.fn(R = 10, J = 2, K = 3, psi1 = 0.6, range.p = c(0.1, 0.9), range.phi = c(0.7, 0.9), range.gamma = c(0.1, 0.5))

Then we attach one data set and analyse it.

attach(data)
str(data)

Specify model in BUGS language for vertical data format
sink("Dynocc.txt")
cat("
model {

Specify priors
psi1 ~ dunif(0, 1)
for (k in 1:(nyear-1)){
 phi[k] ~ dunif(0, 1)
 gamma[k] ~ dunif(0, 1)
 p[k] ~ dunif(0, 1)
 }
p[nyear] ~ dunif(0, 1)

Ecological submodel: Define state conditional on parameters
for (i in 1:nsite){
 z[i,1] ~ dbern(psi1)
 for (k in 2:nyear){
 muZ[i,k]<- z[i,k-1]*phi[k-1] + (1-z[i,k-1])*gamma[k-1]
 z[i,k] ~ dbern(muZ[i,k])
 } #k
 } #i

Observation model
for (i in 1:nobs){
 muy[site[i],survey[i],year[i]] <- z[site[i],year[i]]*p[year[i]]
 y[i] ~ dbern(muy[site[i],survey[i],year[i]])
 }

Derived parameters: Sample and population occupancy, growth rate and turnover
psi[1] <- psi1
n.occ[1]<-sum(z[1:nsite,1])
for (k in 2:nyear){
 psi[k] <- psi[k-1]*phi[k-1] + (1-psi[k-1])*gamma[k-1]
 n.occ[k] <- sum(z[1:nsite,k])
 growthr[k-1] <- psi[k]/psi[k-1]
 turnover[k-1] <- (1 - psi[k-1]) * gamma[k-1]/psi[k]
 }
}
",fill = TRUE)
sink()

Bundle data
datlist <- data$vertical.data
win.data <- list(y = datlist$y, site = datlist$site, year = datlist$season, survey = datlist$survey,
nsite = max(datlist$site), nyear = max(datlist$season), nobs = length(datlist$y))

Initial values
zst <- apply(data$y, c(1, 3), max)	# Observed occurrence as inits for z
inits <- function(){ list(z = zst)}

Parameters monitored
params <- c("psi", "phi", "gamma", "p", "n.occ", "growthr", "turnover")

MCMC settings
ni <- 2500
nt <- 4
nb <- 500
nc <- 3

Call WinBUGS from R
out <- bugs(win.data, inits, params, "Dynocc.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb,
debug = TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out, dig = 2)

This seems to work. Now we run the data-generating function for a larger data set repeatedly and compare input values and estimates under the model. We experiment with “unbalancing” the data by randomly throwing out rows in data$vertical.data.

Generate balanced data set
data <- data.fn(R = 250, J = 3, K = 10, psi1 = 0.3, range.p = c(0.1, 0.5), range.phi = c(0.7, 0.9), range.gamma = c(0.1, 0.5))

Make it unbalanced by throwing out random rows in the data set.
The proportion of rows thrown out is called prop.delete
datlist <- matrix(c(data$vertical.data$y, data$vertical.data$site, data$vertical.data$season, data$vertical.data$survey),
nrow = length(data$vertical.data$survey), ncol = 4, byrow = FALSE)
colnames(datlist) <- list("y", "site", "season", "survey")
prop.delete <- 0.3		# Proportion of deleted data
deleted.cases <- sort(sample(1:length(datlist[,1]), size = prop.delete * length(datlist[,1]), replace = FALSE))

Bundle data
datlist <- data$vertical.data
datlist <- datlist[-deleted.cases,]
win.data <- list(y = datlist[,"y"], site = datlist[,"site"], year = datlist[,"season"], survey = datlist[,"survey"],
nsite = data$R, nyear = data$K, nobs = length(datlist[,"y"]))

Initial values for states: all ones
zst <- array(1, dim = c(data$R, data$K))

MCMC settings
ni <- 2500 ; nt <- 4 ; nb <- 500 ; nc <- 3

Call WinBUGS from R
out <- bugs(win.data, inits, params, "Dynocc.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb,
debug = FALSE, bugs.directory = bugs.dir, working.directory = getwd())
brt()

Summarize posteriors
print(out, dig = 2)

Check visually whether estimates resemble values of generating parameters
Following code for plots assumes analysis for 10 years
Also, this assumed that WinBUGS is used for analysis of the model
(JAGS (see below) presents parameter estimates in alphabetical order)

x11()
shift <- 0.1

par(mfrow = c(2,2))
plot(1:10, data$psi, ylim = c(0, 1), xlab = "", ylab = "", main = "Occupancy probability", las = 1, pch = 16)
points(1:10+shift, out$summary[1:10, 1], col = "blue", pch = 21)
segments(1:10+shift, out$summary[1:10, 3], 1:10+shift, out$summary[1:10, 7], col = "blue")

plot(1:10, data$p, ylim = c(0, 1), xlab = "", ylab = "", main = "Detection probability", las = 1, pch = 16)
points(1:10+shift, out$summary[29:38, 1], col = "blue", pch = 21)
segments(1:10+shift, out$summary[29:38, 3], 1:10+shift, out$summary[29:38, 7], col = "blue")

plot(1:9, data$gamma, ylim = c(0, 1), xlab = "Year", ylab = "", main = "Colonization probability", las = 1, pch = 16)
points(1:9+shift, out$summary[20:28, 1], col = "blue", pch = 21)
segments(1:9+shift, out$summary[20:28, 3], 1:9+shift, out$summary[20:28, 7], col = "blue")

plot(1:9, data$phi, ylim = c(0, 1), xlab = "Year", ylab = "", main = "Survival probability", las = 1, pch = 16)
points(1:9+shift, out$summary[11:19, 1], col = "blue", pch = 21)
segments(1:9+shift, out$summary[11:19, 3], 1:9+shift, out$summary[11:19, 7], col = "blue")

This is it – looks good !

Yet another interlude: Analysis in JAGS

Call JAGS from R and get run time
library("R2jags")		# requires rjags
system.time(outJAGS <- jags(win.data, inits, params, "Dynocc.txt", n.chains = nc,
 n.thin = nt, n.iter = ni, n.burnin = nb))
traceplot(outJAGS)
print(outJAGS, dig = 3)

[bookmark: _Toc308638328]13.6. Multistate occupancy models
So far, we’ve been treating occurrence as a binary variable. However, frequently we can distinguish different states of occurrence. Examples include ‘single bird’, ‘non-reproductive pair’, ‘reproductive pair’ when studying territory occupancy, ‘breeding possible’, ‘breeding probable’ or ‘breeding confirmed’ in bird atlas studies (Schmid et al., 1998), different population size classes in the monitoring of vocal amphibians (Royle and Link, 2005), or ‘occupied by species A only’, ‘occupied by species B only’ or ‘occupied by both species’ in studies of species interactions. Apart from detection uncertainty, there is an additional potential component of uncertainty in these examples: state uncertainty, i.e., whether a site observed in one state truly is in that state. For example, when species A is observed at a site, the true state of that site could either be ‘occupied by species A only’ or ‘occupied by both species’.
The multistate site-occupancy model is used for inference about multiple states of occupancy in the presence of both state and detection uncertainty. This model seems to have been independently developed by Royle and Link (2005) and Nichols et al. (2007), providing another example for the independent and (more or less) simultaneous development of a model, such as the Cormack-Jolly-Seber model (Cormack, 1964; Seber, 1965; Jolly, 1965), single-state site-occupancy models (MacKenzie et al., 2002; Tyre et al., 2003) and spatial capture-recapture models (Borchers and Efford, 2008; Royle and Young, 2008). The explicit merging of site-occupancy models with multistate models (chapter 9) holds promise, because the combination of two already very general model classes likely results in even more flexible models. It is likely that many ideas that are well understood and applied in the multistate arena may be taken over to site-occupancy models as well.
In the following, we focus on the simplest possible multistate occupancy model, where two occurrence states along with the third state ‘unoccupied’ are distinguished in a closed population. The generalization to more than two states is straightforward. We illustrate with data from a survey of long-eared owls (Fig. 13-9), where either hooting adult males or begging young are detected, or nothing at all. If a hooting male is heard, we are unsure about whether reproduction is taking place at a site. If we fail to hear anything, we are unsure about whether a site is occupied at all as well as whether there is reproduction. In contrast, when hearing begging young, there is no uncertainty about state and occurrence.
The development of the model is nearly identical to that of the multistate model (chapter 9). First, we need to define lists of true and of observed states. The true states in our example are ‘not occupied’, ‘occupied without reproduction’ and ‘occupied with reproduction’. The list of observed states comprises ‘not seen’, ‘seen without reproduction’ and ‘seen with reproduction’. A hierarchical model for data from this system distinguishes a description of the state and another of the observation process. We therefore introduce the latent variable z, which defines the true state of each site and can take values 1 (site not occupied), 2 (site occupied without reproduction) or 3 (site occupied with reproduction). The probability of the state of site i is modeled using a categorical distribution as

,
where i is the state vector. The state vector has as many elements as there are states and each element is the probability that site i is in a given state. In our example we have

,
where 1,i is the probability that site i is occupied without reproduction, 2,i is the probability that site i is occupied and reproduction takes place, and 1-1,i-2,i is the probability that site i is unoccupied. Obviously the three probabilities need to sum to 1, and we often assume that the probabilities are the same at all sites (no index i).
Given the true state zi of site i, the observation process links the true state with the observations (y). We write

,
where is the observation array and O is the number of observed states. The array has four dimensions; the last two refer to site (i) and survey (j). If detection is assumed to be the same at all sites and constant among surveys, the observation array becomes a two-dimensional matrix. The first dimension refers to the true state and the second to the observed states. The elements of the matrix are the probabilities of an observation given a state. Assuming constancy over sites and surveys, the most general observation matrix is

.

The true states are in the rows and the observed states in the columns. Thus, denotes the probability of classifying a site in state as being in state . These probabilities are either detection or genuine classification probabilities or both. Clearly, the probabilities of correct classification are in the diagonal, while the off-diagonals contain the probabilities of incorrect classification. The matrix is row-stochastic, so the three probabilities in the same row are not independent; rather, they sum to one.
This matrix defines the most general multistate model that could be fitted in a site-occupancy context. Given sufficient data, all parameters should be estimable. However, frequently, there is a natural order in the modeled states and some errors are unlikely or impossible. Typically, it can be assumed that classification errors only occur in one direction, so that a ‘higher’ state can be erroneously taken to be a lower state, but not the other way round. For instance, a site with reproduction could be classified as having no reproduction if only an adult is heard hooting and no begging young are heard, but not the other way round. The result of this is that we model a restricted version of the fully general observation matrix (now we also make explicit the relationships among cell probabilities within a row):

Both Royle and Link (2005) and Nichols et al. (2007) describe restricted models of this kind, where a site in state 1 (unoccupied) can only be observed in state 1 (we assume there are no false positives), but sites in state 2 can be observed in state 1 or 2 and sites in state 3 in all three states (1, 2 or 3).

This model can be re-expressed in various parameterizations. What this means is that the elements of the state vector and the elements in the observation matrix can be rewritten as functions of other parameters that may be more interesting biologically or that may allow a more natural formulation of covariate effects; see Royle and Link (2005) and Nichols et al. (2007). Our parameterization in this chapter is this:

State vector					Observation matrix

				

Here, is the probability of occupancy, regardless of reproduction, and r is the probability that reproduction takes place at an occupied site. In the observation matrix, is the detection probability of a site without reproduction, is the probability that at a site with reproduction, the species is detected and reproduction is observed (i.e., the state is correctly classified), is the probability that at a site with reproduction, the species is detected but reproduction is not observed (i.e., the state is misclassified) and is the probability that the species is not detected at a site with reproduction. The three probabilities, , must sum to one and this is accounted for by our choice of a Dirichlet prior in the BUGS model description; see below.
	To illustrate this model, we use data on territory occupancy of the long-eared owl (Fig. 13-9) from a long-term population study of our colleague Simon Birrer at the Swiss Ornithological Institute. Birrer has been surveying 40 owl territories repeatedly in every breeding season since 1989. Not all sites were checked in every year and we chose the data from 2009, when 31 sites were checked up to 5 times. We read in the data and briefly look at them.

owls <- read.table("owls.txt", header = TRUE)
str(owls)

The variables entitled obs1-obs5 denote the result of each survey; detection of no owl at all (0), of a hooting owl (1) or of begging young (2). The variables entitled date1-date5 give the Julian date of each survey. To fit the model, we must relabel the states, because WinBUGS does not allow indices of 0. Hence, we denote the states in the same way as defined above. This relabeling is done in the data bundle statement below.
We specify the model with default vague priors for all parameters. The beta terms are used to specify a vague Dirichlet prior for the multinomial distribution represented by row three in the observation matrix above (see also Section 9.6). Our model could accommodate time variation in the observation matrix, but at first we will assume constancy of parameters over time.

Specify model in BUGS language
sink("model1.txt")
cat("
model {

Priors
p2 ~ dunif(0, 1)
psi ~ dunif(0, 1)
r ~ dunif(0, 1)
for (i in 1:3) {
 beta[i] ~ dgamma(1, 1) # Induce Dirichlet prior
 p3[i] <- beta[i]/sum(beta[])
 }

Define state vector
for (s in 1:R){
 phi[s,1] <- 1 - psi # Prob. of non-occupation
 phi[s,2] <- psi * (1 - r) # Prob. of occupancy without repro
 phi[s,3] <- psi * r # Prob. of occupancy and repro
 }

Define observation matrix
Order of indices: true state, time, observed state
for (t in 1:T){
 p[1,t,1] <- 1
 p[1,t,2] <- 0
 p[1,t,3] <- 0
 p[2,t,1] <- 1-p2
 p[2,t,2] <- p2
 p[2,t,3] <- 0
 p[3,t,1] <- p3[1]
 p[3,t,2] <- p3[2]
 p[3,t,3] <- p3[3]
 }

State-space likelihood
State equation: model of true states (z)
for (s in 1:R){
 z[s] ~ dcat(phi[s,])
 }

Observation equation
for (s in 1:R){
 for (t in 1:T){
 y[s,t] ~ dcat(p[z[s],t,])
 } #t
 } #s

Derived quantities
for (s in 1:R){
 occ1[s] <- equals(z[s], 1)
 occ2[s] <- equals(z[s], 2)
 occ3[s] <- equals(z[s], 3)
 }
n.occ[1] <- sum(occ1[]) # Sites in state 1
n.occ[2] <- sum(occ2[]) # Sites in state 2
n.occ[3] <- sum(occ3[]) # Sites in state 3
}
",fill=TRUE)
sink()

We analyze rows 2-6 in the owls data frame and convert them to a matrix called Y.

Bundle data
y <- as.matrix(owls[, 2:6])
y <- y + 1
win.data <- list(y = y, R = dim(y)[1], T = dim(y)[2])

Initial values
zst <- apply(y, 1, max, na.rm = TRUE)
zst[zst == "-Inf"] <- 1
inits <- function(){list(z = zst)}

Parameters monitored
params <- c("p2", "p3", "r", "psi", "n.occ") # Might want to add "z"

MCMC settings
ni <- 2500
nt <- 2
nb <- 500
nc <- 3

Call WinBUGS from R (BRT <1 min)
out1 <- bugs(win.data, inits, params, "model1.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug =TRUE, bugs.directory = bugs.dir, working.directory = getwd())

-------------- New -------------
library(R2jags)
Call WinBUGS from R (BRT <1 min)
out1 <- jags(win.data, inits, params, "model1.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb)

Summarize posteriors
print(out1, dig = 2)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
p2 0.35 0.19 0.04 0.21 0.33 0.46 0.82 1.00 2400
p3[1] 0.55 0.12 0.30 0.47 0.56 0.64 0.77 1.00 3000
p3[2] 0.21 0.09 0.05 0.14 0.20 0.26 0.40 1.00 530
p3[3] 0.24 0.12 0.07 0.16 0.22 0.31 0.51 1.00 550
r 0.64 0.21 0.24 0.48 0.64 0.81 0.98 1.01 350
psi 0.52 0.15 0.28 0.42 0.50 0.61 0.86 1.00 1900
n.occ[1] 19.11 5.39 5.00 16.00 20.00 23.00 27.00 1.00 1100
n.occ[2] 7.51 5.46 0.00 3.00 7.00 10.00 21.03 1.01 260
n.occ[3] 13.38 5.10 6.00 10.00 13.00 16.00 25.00 1.00 600

We estimate that 52 % of sites are occupied, of which 64 % by reproductive owls. For our specific sample of 40 sites, this translates into an estimated 13.4 occupied sites with and 7.5 sites without reproduction and 19.1 unoccupied sites. Detection probability of a site without reproduction is estimated at 0.35 and for a site with reproduction at 0.24. There is a probability of 0.21 to detect only hooting adults at a site with reproduction and one of 0.55 to miss it altogether. The parameters describing state uncertainty and detection error all refer to a single survey.
	This model assumes that all parameters are constant, but the surveys take place over an extended time period (early March – early September), so this assumption may be unlikely. For instance, begging young will not be available over the entire period. Therefore, a more realistic model may be one that allows for these parameters to vary by occasion (i.e., survey 1-5).

Specifiy model in BUGS language
sink("model2.txt")
cat("
model {

Priors
psi ~ dunif(0, 1)
r ~ dunif(0,1)

for (t in 1:T){
 p2[t] ~ dunif(0, 1)
 for (i in 1:3) {
 beta[i,t] ~ dgamma(1, 1) # Induce Dirichlet prior
 p3[i,t] <- beta[i,t]/sum(beta[,t])
 } #i
 } #t

Define state vector
for (s in 1:R){
 phi[s,1] <- 1 - psi # Prob. of non-occupation
 phi[s,2] <- psi * (1 - r) # Prob. of occupancy without repro.
 phi[s,3] <- psi * r # Prob. of occupancy and repro
 }

Define observation matrix
Order of indices: true state, time, observed state
for (t in 1:T){
 p[1,t,1] <- 1
 p[1,t,2] <- 0
 p[1,t,3] <- 0
 p[2,t,1] <- 1-p2[t]
 p[2,t,2] <- p2[t]
 p[2,t,3] <- 0
 p[3,t,1] <- p3[1,t]
 p[3,t,2] <- p3[2,t]
 p[3,t,3] <- p3[3,t]
 }

State-space likelihood
State equation: model of true states (z)
for (s in 1:R){
 z[s] ~ dcat(phi[s,])
 }

Observation equation
for (s in 1:R){
 for (t in 1:T){
 y[s,t] ~ dcat(p[z[s],t,])
 } #t
 } #s

Derived quantities
for (s in 1:R){
 occ1[s] <- equals(z[s], 1)
 occ2[s] <- equals(z[s], 2)
 occ3[s] <- equals(z[s], 3)
 }
n.occ[1] <- sum(occ1[]) # Sites in state 1
n.occ[2] <- sum(occ2[]) # Sites in state 2
n.occ[3] <- sum(occ3[]) # Sites in state 3
}
",fill=TRUE)
sink()

We recycle the remaining ‘ingredients’ for the call to bugs() below.

Call WinBUGS from R (BRT 1 min)
out2 <- bugs(win.data, inits, params, "model2.txt", n.chains = nc,
n.thin = nt, n.iter = ni, n.burnin = nb, debug =TRUE, bugs.directory = bugs.dir, working.directory = getwd())

Summarize posteriors
print(out2, dig = 2)
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
p2[1] 0.76 0.19 0.32 0.65 0.80 0.92 0.99 1.01 440
p2[2] 0.57 0.21 0.17 0.41 0.57 0.72 0.94 1.00 3000
p2[3] 0.16 0.16 0.00 0.05 0.12 0.23 0.58 1.00 1600
p2[4] 0.34 0.20 0.04 0.19 0.32 0.47 0.78 1.01 670
p2[5] 0.27 0.21 0.01 0.09 0.22 0.39 0.78 1.00 3000
p3[1,1] 0.53 0.17 0.20 0.40 0.53 0.65 0.84 1.00 1300
p3[1,2] 0.33 0.17 0.06 0.20 0.32 0.44 0.68 1.00 3000
p3[1,3] 0.41 0.19 0.08 0.26 0.40 0.55 0.80 1.00 3000
p3[1,4] 0.53 0.22 0.11 0.36 0.54 0.70 0.91 1.00 3000
p3[1,5] 0.37 0.25 0.02 0.16 0.34 0.55 0.87 1.00 3000
p3[2,1] 0.37 0.16 0.09 0.25 0.36 0.48 0.70 1.00 3000
p3[2,2] 0.14 0.12 0.00 0.04 0.10 0.19 0.44 1.00 1300
p3[2,3] 0.15 0.13 0.00 0.04 0.11 0.21 0.48 1.00 1000
p3[2,4] 0.24 0.19 0.01 0.09 0.20 0.36 0.69 1.00 3000
p3[2,5] 0.31 0.23 0.01 0.11 0.27 0.47 0.82 1.00 2000
p3[3,1] 0.10 0.09 0.00 0.03 0.08 0.14 0.35 1.00 3000
p3[3,2] 0.54 0.18 0.20 0.41 0.54 0.67 0.86 1.00 2000
p3[3,3] 0.45 0.19 0.11 0.30 0.44 0.58 0.82 1.01 600
p3[3,4] 0.23 0.19 0.01 0.08 0.19 0.33 0.69 1.00 3000
p3[3,5] 0.32 0.23 0.01 0.13 0.28 0.48 0.83 1.00 3000
r 0.58 0.17 0.27 0.47 0.59 0.70 0.91 1.00 3000
psi 0.40 0.10 0.22 0.33 0.40 0.47 0.62 1.00 3000
n.occ[1] 24.13 2.94 17.00 22.00 25.00 26.00 29.00 1.00 1100
n.occ[2] 6.33 2.48 1.00 5.00 6.00 8.00 11.03 1.00 3000
n.occ[3] 9.54 2.90 5.00 7.00 9.00 11.00 16.00 1.00 1900

Many parameters are estimated with little precision, but we see that occupancy (psi) and the conditional (on occupancy) probability of successful reproduction (r) are estimated at higher values under model 2 than under model 1. We could also specify a model with covariate effects (Julian date in our data set) on these dime-dependent parameters, but leave this for the exercises.
The multistate occupancy model can be extended in two important ways. First, the generalization to more than two occupancy states is straightforward. Second, a dynamic multistate occupancy model has been developed recently (MacKenzie et al., 2009). Similar to the multistate models of chapter 9, these models estimate state transition probabilities. Technically, the state transition is an element of the state equation and can be included in WinBUGS by using a categorical distribution. The parameters of the state transition matrix may then be, e.g., the probability that a site with reproduction in year t is abandoned in year t+1, or the probability that a site without reproduction in year t produces young in year t+1. Dynamic, multistate occupancy models are conceptually analogous to multievent models (Pradel, 2005).

[bookmark: _Toc308638329]13.7. Summary and outlook
We have introduced site-occupancy models, a class of hierarchical logistic regression model for occurrence data that jointly estimate detection probability to account for imperfect detection. Occurrence may be a proxy for the local metapopulation abundance, which is the focus of interest in the binomial-mixture model of the previous chapter. Alternatively, occupancy may be the focus of interest such as in species distribution models, disease ecology or metapopulation ecology. When detection of occupied sites (patches) is not perfect, the extent of occurrence of species will be underestimated and covariate relationships will be estimated with bias, regardless of whether there are patterns in detection probability or whether it is constant. Given suitable data (occurrence observations that are replicated in both space and time within a short period), occupancy probability can be estimated separately from detection probability, and covariate relationships with either parameter can be estimated, even when the same covariate is affecting both occurrence and detection. Knowing typical values of detection probability and how the latter varies with measurable covariates can be invaluable for the planning of surveys.
We have furthermore illustrated a dynamic, multi-season version of a site-occupancy model (MacKenzie et al., 2003; Royle and Kéry, 2007), which is precisely a generalization of a classical metapopulation model for incidence, colonization and extinction probability that accounts for imperfect detection; imperfect detection biases virtually all parameter estimates in classical metapopulation models unless corrected for. Static and especially dynamic site-occupancy models have increasingly been used to correct for variation in effort over long time scales when studying changes in species distributions from historic data (Altwegg et al., 2008; Moritz et al., 2008; Tingley and Beissinger, 2009; Tingley et al., 2009; Kéry et al., 2009a; van Strien et al., 2011). We have also illustrated another important generalization, the multistate site-occupancy model (Royle and Link, 2005; Nichols et al., 2007). These models allow one to simultaneously deal with detection error and state uncertainty and thus considerably extend the range of possible applications of this model class. For instance, Miller et al. (2011) use multistate occupancy models to deal with false-negative (detection) and false-positive (misclassification) errors in occupancy data.
Further extensions of the basic model include Royle and Nichols (2003), who describe a heterogeneity site-occupancy model that allows one, under certain conditions, to estimate the mean abundance at a collection of sites from detection/nondetection data alone (see also Dorazio (2007) and Conroy et al. (2008) for a Bayesian implementation). In an exciting new development, Bled et al. (2011b) describe complex, spatially-explicit, dynamic occupancy model for the spread of invasive species. Roth and Amrhein (2009) have developed a site-occupancy model to estimate local survival and recruitment from territory occupancy data with unmarked animals. Dorazio and Royle (2005) have described a multi-species site-occupancy model that enables one, among other things, to estimate species richness for each site (i.e., community size) as well as for the collection of sites (i.e., metacommunity size). The Bayesian implementation of this model using data augmentation (Dorazio et al., 2006) has been very seminal for community studies; see series of papers by Kéry and Royle (2008; 2009), Russell et al. (2009), Zipkin et al. (2009; 2010), Ruiz-Gutiérrez and Zipkin (2011). This model has been extended to open population by Kéry et al. (2009b; not including dynamics) and Dorazio et al. (2010; including occurrence dynamics); Yamaura et al. (2011) developed a version of the open multi-species site-occupancy model with the Royle-Nichols (2003) formulation of detection heterogeneity. In addition, MacKenzie et al. (2009) developed a multistate, dynamic occupancy model, which appears to be a very general and unifying model – most other occupancy models can be described as special cases of this overarching model. In summary, site-occupancy models represent an extremely powerful and flexible class of models for inference about populations of animals and plants.

[bookmark: _Toc308638330]13.6. Exercises
1. In the blue bug example, fit a ‘behavioral response’ effect, i.e., fit a separate detection probability dependent on whether the species has been detected ever before at a site or not. Hint, you can use the following R code to generate the ‘seen-before’ covariate matrix. How do you interpret the results? Would you use the behavioral response model for inference about the system behind the blue bug data set? Discuss.

Generate a ‘seen-before’ covariate
sb <- array(NA, dim = dim(y))
for (i in 1:27){
 for (j in 1:6){
 sb[i,j] <- max(y[i, 1:(j-1)])
 }
 }
sb[is.na(y)] <- 0				# Impute ‘irrelevant’ zeroes

2. In the dynamic occupancy model of Section 13.5.1, ignore the detection process and aggregate the temporal within-day replicates. Adapt the WinBUGS code to fit a conventional metapopulation model and see how the estimated quantities are biased; see also Ruiz-Gutiérrez and Zipkin (2011).

3. Fit a multi-season, non-dynamic version of the site-occupancy model to the burnet data. That is, treat days as a group and model occupancy independent between successive days (similar to how we modeled abundance in section 12.3). In this way, you commit some pseudoreplication, but treating days as a group allows you to model occupancy as a function of temporally varying covariates.

4. Site-occupancy models represent the only currently available species distribution modeling framework that can estimate true, rather than apparent distributions (Kéry et al., 2010a; Kéry, 2011). However, modeling occurrence and observation jointly can be difficult in marginal data situations. Devise a simulation study, where you vary the number of sites, occupancy and detection probability as well as the number of replicate visits per site to see that in small-data situations, occupancy estimates will be biased high, and sometimes severely so. Do so in a model with constant detection and occurrence probability. Hint: this is a somewhat larger project.

5. In the multistate occupancy model, add an effect of Julian date on detection probability of hooting adults and begging young, i.e., p2, p3,2 and p3,3. Don’t forget to standardize the covariate.

Extra exercises
6. In the blue bug analyses, do a prior sensitivity analysis. Try uniform(0,1) priors for the occupancy probability. Also run a model with constant occupancy probability (i.e., no effect of edge). Always compare ML and Bayesian estimates.

[bookmark: _Toc308638331][bookmark: _Toc252875021][bookmark: _Toc252876127][bookmark: _Toc252876444][bookmark: _Toc252876993][bookmark: _Toc252877329]
References

This list should contain all the literature cited in the last two chapters, but not necessarily titles cited earlier.

Altwegg, R., Wheeler, M., Erni, B., 2008. Climate and the range dynamics of species with imperfect detection. Biol. Lett. 4, 581-584.
Bled, F., Royle, J.A., Cam, E., 2011a. Assessing hypotheses about nesting site occupancy dynamics. Ecology 92, 938-951.
Bled, F., Royle, J.A., Cam, E., 2011b. Hierarchical modeling of an invasive spread: case of the Eurasian collared dove Streptopelia decaocto in the USA. Ecol. Appl. 21, 290-302.
Borchers, D.L., Efford, M.G., 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64, 377-385.
Buckland, S.T., Anderson, D.R., Burnham, K.P., Laake, J.L., Borchers, D.L., Thomas, L., 2001. Introduction to distance sampling. Oxford University Press, Oxford.
Buckland, S.T., Newman, K.B., Fernandez, C., Thomas, L., Harwood, J., 2007. Embedding population dynamics models in inference. Stat. Sci. 22, 44-58.
Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical information theoretic approach. Springer, New York.
Chandler, R.B., King, D.I., 2011. Golden-winged warbler habitat selection and habitat quality in Costa Rica: an application of hierarchical models for open populations. J. Appl. Ecol. 48, 1038-1047.
Chandler, R.B., King, D.I., Chandler, C.C., 2009a. Effects of management regime on the abundance and nest survival of shrubland birds in wildlife openings in northern New England, USA. Forest Ecol. Manage. 258, 1669-1676.
Chandler, R.B., King, D.I., DeStefano, S., 2009b. Scrub-shrub bird habitat associations at multiple spatial scales in beaver meadows in Massachusetts. Auk 126, 186-197.
Collier, B.A., Groce, J.E., Morrison, M.L., Newnam, J.C., Campomizzi, A.J., Farrell, S.L., Mathewson, H.A., Snelgrove, R.T., Carroll, R.J., Wilkins, R.N., 2011. Hierarchical modeling of species occupancy data using semiparametric regression. Ecol. Appl. 999, 999.
Conroy, M.J., Runge, J.P., Barker, R.J., Schofield, M.R., Fonnesbeck, C.J., 2008. Efficient estimation of abundance for patchily distributed populations via two-phase, adaptive sampling. Ecology 89, 3362-3370.
Cormack, R.M., 1964. Estimates of survival from the sighting of marked animals. Biometrika 51, 429-438.
Dail, D., Madsen, L., 2011. Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577-587.
Dennis, B., Ponciano, J.M., Lele, S.R., Taper, M.L., Staples, D.F., 2006. Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76, 323-341.
Dodd, C.K., Dorazio, R.M., 2004. Using counts to simultaneously estimate abundance and detection probabilities in salamander surveys. Herpetologica 60, 468-478.
Dorazio, R.M., 2007. On the choice of statistical models for estimating occurrence and extinction from animal surveys. Ecology 88, 2773-2782.
Dorazio, R.M., Kéry, M., Royle, J.A., Plattner, M., 2010. Models for inference in dynamic metacommunity systems. Ecology 91, 2466-2475.
Dorazio, R.M., Royle, J.A., 2005. Estimating size and composition of biological communities by modeling the occurrence of species. J. Am. Stat. Ass. 100, 389-398.
Dorazio, R.M., Royle, J.A., Söderström, B., Glimskär, A., 2006. Estimating species richness and accumulation by modeling species occurrence and detectability. Ecology 87, 842-854.
Efford, M.G., Dawson, D.K., 2009. Effect of distance-related heterogeneity on population size estimates from point counts. Auk 126, 100-111.
Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802-813.
Fiske, I.J., Chandler, R., 2011. unmarked: An R package for the analysis of wildlife occurrence and abundance data. Journal of Statistical Software 43.
Gelman, A., Carlin, J.P., Stern, H.S., Rubin, D.B., 2004. Bayesian data analysis. CRC/Chapman & Hall, Boca Raton.
Gelman, A., Hill, J., 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge.
Gelman, A., Meng, X.-L., Stern, H.S., 1996. Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Stat. Sinica 6, 733-807.
Gimenez, O., Crainiceanu, C., Barbraud, C., Jenouvrier, S., Morgan, B.J.T., 2006. Semiparametric regression in capture-recapture modeling. Biometrics 62, 691-698.
Guillera-Arroita, G., Ridout, M.S., Morgan, B.J.T., 2010. Design of occupancy studies with imperfect detection. Meth. Ecol. Evol. 1, 131-139.
Guisan, A., Thuiller, W., 2005. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993-1009.
Hanski, I., 1994. A practical model for metapopulation dynamics. J. Anim. Ecol. 63, 151-162.
Hanski, I., 1998. Metapopulation dynamics. Nature 396, 41-49.
Hines, J.E., Nichols, J.D., Royle, J.A., MacKenzie, D.I., Gopalaswamy, A.M., Samba Kumar, N., Karanth, K.U., 2010. Tigers on trails: occupancy modeling for cluster sampling. Ecol. Appl. 20, 1456-1466.
Hooten, M.B., Wikle, C.K., Dorazio, R.M., Royle, J.A., 2007. Hierarchical spatiotemporal matrix models for characterizing invasions. Biometrics 63, 558-567.
Hurlbert, S.H., 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187-211.
Jolly, G.M., 1965. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225-247.
Joseph, L.N., Elkin, C., Martin, T.G., Possingham, H., 2009. Modeling abundance using N-mixture models: the importance of considering ecological mechanisms. Ecol. Appl. 19, 631-642.
Kendall, W.L., 1999. Robustness of closed capture-recapture methods to violations of the closure assumption. Ecology 80, 2517-2525.
Kendall, W.L., White, G.C., 2009. A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy. J. Appl. Ecol. 46, 1182-1188.
Kéry, M., 2002. Inferring the absence of a species - a case study of snakes. J. Wildl. Manage. 66, 330-338.
Kéry, M., 2008. Estimating abundance from bird counts: binomial mixture models uncover complex covariate relationships. Auk 125, 336-345.
Kéry, M., 2010. Introduction to WinBUGS for Ecologists. - A Bayesian approach to regression, ANOVA, mixed models and related analyses. Academic Press, Burlington.
Kéry, M., 2011. Towards the modeling of true species distributions. J. Biogeogr. 38, 617-618.
Kéry, M., Dorazio, R.M., Soldaat, L., van Strien, A., Zuiderwijk, A., Royle, J.A., 2009a. Trend estimation in populations with imperfect detection. J. Appl. Ecol. 46, 1163-1172.
Kéry, M., Gardner, B., Monnerat, C., 2010a. Predicting species distributions from checklist data using site-occupancy models. J. Biogeogr. 37, 1851-1862.
Kéry, M., Royle, J.A., 2008. Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys. J. Appl. Ecol. 45, 589-598.
Kéry, M., Royle, J.A., 2009. Inference about species richness and community structure using species-specific occupancy models in the national Swiss breeding bird survey MHB. pp. 639-656 in D.L. Thomson, E.G. Cooch, M.J. Conroy (eds.) Modeling Demographic Processes in Marked Populations.
Kéry, M., Royle, J.A., 2010. Hierarchical modeling and estimation of abundance in metapopulation designs. J. Anim. Ecol. 79, 453-461.
Kéry, M., Royle, J.A., Plattner, M., Dorazio, R.M., 2009b. Species richness and occupancy estimation in communities subject to temporary emigration. Ecology 90, 1279-1290.
Kéry, M., Royle, J.A., Schmid, H., 2005. Modeling avian abundance from replicated counts using binomial mixture models. Ecol. Appl. 15, 1450-1461.
Kéry, M., Royle, J.A., Schmid, H., Schaub, M., Volet, B., Häfliger, G., Zbinden, N., 2010b. Site-ocupancy distribution modeling to correct population-trend estimates derived from opportunistic observations. Conserv. Biol. 24, 1388-1397.
Kéry, M., Schmidt, B.R., 2008. Imperfect detection and its consequences for monitoring for conservation. Comm. Ecol. 9, 207-216.
Link, W.A., Sauer, J.R., 1998. Estimating population change from count data: application to the North American breeding bird survey. Ecol. Appl. 8, 258-268.
MacKenzie, D.I., 2005. What are the issues with presence-absence data for wildlife managers? J. Wildl. Manage. 69, 849-860.
MacKenzie, D.I., Nichols, J.D., Hines, J.E., Knutson, M.G., Franklin, A.B., 2003. Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200-2207.
MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A., Langtimm, C.A., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248-2255.
MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Hines, J.E., Bailey, L.L., 2006. Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Elsevier, San Diego.
MacKenzie, D.I., Nichols, J.D., Seamans, M.E., Gutierrez, R.J., 2009. Modeling species occurrence dynamics with multiple states and imperfect detection. Ecology 90, 823-835.
Martin, J.E., Royle, J.A., Gardner, B., MacKenzie, D.I., Edwards, H.H., Kéry, M., 2011. Accounting for non-independent detection when estimating abundance of organisms with a Bayesian approach. Meth. Ecol. Evol. 999, 999.
McClintock, B.T., Nichols, J.D., Bailey, L.L., MacKenzie, D.I., Kendall, W.L., Franklin, A.B., 2010. Seeking a second opinion: uncertainty in disease ecology. Ecol. Lett. 13, 659-674.
McCullagh, P., Nelder, J.A., 1989. Generalized linear models. Chapman & Hall, London.
Millar, R.B., 2009. Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes' factors. Biometrics 65, 962-969.
Miller, D.A., Nichols, J.D., McClintock, B.T., Grant, E.H.C., Bailey, L.L., Weir, L., 2011. Improving occupancy estimation when two types of observational errors occur: non-detection and species misidentification. Ecology 92, 1422-1428.
Moilanen, A., 2002. Implications of empirical data quality to metapopulation model parameter estimation and application. Oikos 96, 516-530.
Moritz, C., Patton, J.L., Conroy, C.J., Parra, J.L., White, G.C., Beissinger, S.R., 2008. Impact of a century of climate change on small mammal communities in Yosemite National Park, USA. Science 322, 261-264.
Nichols, J.D., Boulinier, T., Hines, J.E., Pollock, K.H., Sauer, J.R., 1998a. Estimating rates of local species extinction, colonization, and turnover in animal communities. Ecol. Appl. 8, 1213-1225.
Nichols, J.D., Boulinier, T., Hines, J.E., Pollock, K.H., Sauer, J.R., 1998b. Inference methods for spatial variation in species richness and community composition when not all species are detected. Conserv. Biol. 12, 1390-1398.
Nichols, J.D., Hines, J.E., MacKenzie, D.I., Seamans, M.E., Gutierrez, R.J., 2007. Occupancy estimation and modeling with multiple states and state uncertainty. Ecology 88, 1395-1400.
Pagel, J., Schurr, F.M., 2011. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Glob. Ecol. Biogeo. 999, 999.
Phillips, S.J., Dudik, M., 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161-175.
Post van der Burg, M., Bly, B., Vercauteren, T., Tyre, A.J., 2011. Making better use of monitoring data from low density species using a spatially explicit modeling approach. J. Appl. Ecol. 48, 47-55.
Pradel, R., 2005. Multievent: an extension of multistate capture-recapture models to uncertain states. Biometrics 61, 442-447.
Risk, B.B., De Valpine, P., Beissinger, S.R., 2011. A robust-design formulation of the incidence function model of metapopulation dynamics applied to two rail species. Ecology 92, 462-474.
Rota, C.T., Fletcher, R.J.jr., Dorazio, R.M., Betts, M.G., 2009. Occupancy estimation and the closure assumption. J. Appl. Ecol. 46, 1173-1181.
Roth, T., Amrhein, V., 2009. Estimating individual survival using territory occupancy data on unmarked animals. J. Appl. Ecol. 47, 386-392.
Royle, J.A., 2004a. Generalized estimators of avian abundance from count survey data. Anim. Biodiv. Cons. 27.1, 375-386.
Royle, J.A., 2004b. Modeling abundance index data from anuran calling surveys. Conserv. Biol. 18, 1378-1385.
Royle, J.A., 2004c. N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108-115.
Royle, J.A., 2006. Site occupancy model with heterogeneous detection probabilities. Biometrics 62, 97-102.
Royle, J.A., Dorazio, R.M., 2008. Hierarchical modeling and inference in ecology. The analysis of data from populations, metapopulations and communities. Academic Press, New York.
Royle, J.A., Kéry, M., 2007. A Bayesian state-space formulation of dynamics occupancy models. Ecology 88, 1813-1823.
Royle, J.A., Kéry, M., Guélat.J., 2011. Spatial capture-recapture models for search-encounter data. Meth. Ecol. Evol. 999, 999.
Royle, J.A., Link, W.A., 2005. A general class of multinomial mixture models for anuran calling survey data. Ecology 86, 2505-2512.
Royle, J.A., Link, W.A., 2006. Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87, 835-841.
Royle, J.A., Nichols, J.D., 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777-790.
Royle, J.A., Young, K.G., 2008. A hierarchical model for spatial capture-recapture data. Ecology 89, 2281-2289.
Ruiz-Gutierrez, V., Zipkin, E.F., 2011. Detection biases yield misleading patterns of species persistence and colonization in fragmented landscapes. Ecosphere 2, article 61.
Russell, R.E., Royle, J.A., Saab, V.A., Lehmkuhl, J.F., Block, W.M., Sauer, J.A., 2009. Modeling the effects of environmental disturbance on wildlife communities: avian responses to prescribed fire. Ecol. Appl. 19, 1253-1263.
Schlossberg, S., King, D.I., Chandler, R.B., Mazzei, D.A., 2010. Regional synthesis of habitat relationships in shrubland birds. J. Wildl. Manage. 74, 1513-1522.
Schmid, H., Luder, R., Naef-Daenzer, B., Graf, R., Zbinden, N., 1998. Schweizer Brutvogelatlas. Schweizerische Vogelwarte, Sempach.
Seber, G.A.F., 1965. A note on the multiple recapture census. Biometrika 52, 249-259.
Thompson, D.K., 2007. Use of site-occupancy models to estimate prevalence of Myxobolus cerebralis infection in trout. J. Anim. Health 19, 8-13.
Tingley, M.W., Beissinger, S.R., 2009. Detecting range shifts from historical species occurrences: new perspectives on old data. Trend. Ecol. Evol. 24, 625-633.
Tingley, M.W., Monahan, W.B., Beissinger, S.R., Moritz, C., 2009. Birds track their Grinnellian niche through a century of climate change. Proc. Nat. Acad. Sci. USA 106, 19637-19643.
Tyre, A.J., Tenhumberg, B., Field, S.A., Niejalke, D., Parris, K., Possingham, H.P., 2003. Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecol. Appl. 13, 1790-1801.
van Strien, A.J., van Swaay, C.A.M., Kéry, M., 2011. Metapopulation dynamics in the butterfly Hipparchia semele changed decades before decline in the Netherlands. Ecol. Appl. 999, 999.
Webster, R.A., Pollock, K.H., Simons, T.R., 2008. Bayesian spatial modeling of data from avian point surveys. JABES 13, 121-139.
Wenger, S.J., Freeman, M.C., 2008. Estimating species occurrence, abundance, and detection probability using zero-inflated distributions. Ecology 89, 2953-2959.
Williams, B.K., Nichols, J.D., Conroy, M.J., 2002. Analysis and management of animal populations. Academic Press, San Diego.
Yamaura, Y., Royle, J.A., Kubio, K., Tada, T., Ikeno, S., Makino, S., 2011. Modelling community dynamics based on species-level abundance models from detection/nondetection data. J. Appl. Ecol. 48, 67-75.
Zipkin, E.F., DeWan, A., Royle, J.A., 2009. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling. J. Appl. Ecol. 46, 815-822.
Zipkin, E.F., Royle, J.A., Dawson, D.K., Bates, S., 2010. Multi-species occurrence models to evaluate the effects of conservation and management actions. Biol. Cons. 143, 479-484.
[bookmark: _Toc308638332]
Appendix 1: A list of WinBUGS tricks

The appendix provides a list of tips that hopefully allow you to love WinBUGS more unconditionally. It is based on an appendix in the book ’Introduction to WinBUGS for ecologists‘ by Marc Kéry (2010), but also includes new stuff. We would suggest you skim over the list when you start working with WinBUGS and then refer back to it later as necessary.

1. Do read the manual: WinBUGS may not have the best documentation available for a software, but its manual is nevertheless very useful. Be sure to at least skim over most of it once when you start getting into WinBUGS, so you may remember that the manual has something to say about a particular topic when you need it. Don’t forget the sections entitled ’Tricks: Advanced Use of the BUGS Language‘ and ’Tips and Troubleshooting’.
2. Always begin from a template: When starting a new analysis, always start from a template of a similar analysis. Only ever try to write an analysis from scratch if you want to test yourself.
3. Make a clear distinction between BUGS and R code: We use the R function sink() to write into the R working directory (which you can set yourself using setwd()) a text file containing the model description in the BUGS language. We find it practical to have all our code in a single document. Here is a sketch example of how this looks like (you see this kind of code for each example where we use WinBUGS in the book).
Define the model in the BUGS language
sink("modelname.txt")
cat("
model {		# BUGS model starts on this line
	
Priors
some priors
	
Likelihood
for (i in 1:n){
 some description of the likelihood
 }
}			# BUGS model ends with this line
",fill = TRUE)
sink()
Here, R code is left-aligned and BUGS code is indented one level and in bold. We neither show this indentation nor the bold type in the book, but show it here to clarify how everything inside the two quotes after ‘cat’ and before ‘fill’ is BUGS code and everything outside these two quotes is R code. You have to be totally clear about which part of the code is in the BUGS language and which is in the R language. This may be a little confusing at first, especially because the two languages are quite similar: R is a dialect of S and BUGS is strongly inspired by S. Moreover, this way of writing the BUGS model sometimes seems to cause problems when using the R editor Tinn-R (see trick 17).
4. Give initial values: The wise choice of initial values can be the key to success or failure of an analysis in WinBUGS. With complex models WinBUGS needs to start the Markov chains not too far away from their stationary distribution or it will crash or not even start to update. Of course, the requirement to start the chains close to the solution goes counter the requirement to start them at dispersed places in order to assess convergence, so some reasonable intermediate choice is important.
5. Don’t select initial values that contradict the priors: Initial values must not be outside of the possible range of a parameter. For instance, negative initial values for a parameter that has prior mass only for positive values (such as a variance) will cause WinBUGS to crash and so do initial values outside of the range of a uniform prior.
6. Only provide initial values for quantities that appear in the model: Otherwise the ‘incompatible copy’ error may appear.
7. Don’t provide initial values for fixed elements of a vector-valued parameter: Sometimes some elements of a vector-valued parameter are known or fixed at a certain value. Then, they are no longer a parameter that is estimated and initial values must not be given for them. An example is a two-way fixed-effects ANOVA, where you must set to zero the effect of one level (e.g., the first) of one factor to avoid overparameterisation. In this case, no initial value is required for that effect. For a factor beta with four levels, the first of which is set to zero, you can do this as follows: beta = c(NA, rnorm(3)).
8. In your prior choice, be ignorant, but not too ignorant: When you want your Bayesian inference to be dominated by your data and choose priors intended to be vague, don’t specify too much ignorance, otherwise traps may result or convergence may not be achieved. For instance, don’t specify the limits of a uniform prior or the variance of a normal prior to be too wide.

9. How to deal with missing values (NAs): In WinBUGS, NAs are dealt with less automatically than in conventional stats programs with which you are likely familiar, hence, it is important to know how to deal with them: briefly, missing responses (i.e., missing ’s) are no problem, but NAs in the explanatory variables (the ’s) need attention. A missing response is simply estimated, and indeed, adding missing responses for selected covariate values is one of the simplest ways to form predictions for desired values of explanatory variables (see Sections 5.4 and 11.5). On the other hand, a missing explanatory variable must either be replaced with some number, e.g., the mean observed value for that variable, or else given some prior distribution. In general, the former is easier and should not pose a problem unless the number of missing ’s is large.
10. NAs and NaNs: When dealing with data in multidimensional arrays, a very useful R package is ‘reshape’. The newer versions the reshape package in R 2.9 uses an NaN to fill in NAs. This makes WinBUGS very unhappy - you must have NA, not NaN. In general, this is probably good to know about BUGS and newer versions of other packages may be doing the same thing. So, if you use the melt/cast functions in reshape to organize data, then you will need to update your code in the newer R versions by adding "fill=NA_real_". Example: Ymat=cast(data.melt, SppCode~JulianDate~GridCellID, fun.aggregate=mean, fill=NA_real_) (Beth Gardner, pers. comm.).
11. Data in arrays; think in a box (and know your box): When coding an analysis in WinBUGS, you often will have to deal with data that come in arrays, and these may have more than one dimension. For instance, when analyzing animal counts from different sites, over several years and taken at various months in a year, it may be useful to format them into a three-dimensional array. Some covariates of such an analysis will then have two or even three dimensions, too. You must then be absolutely clear about the dimensions of theses ’boxes‘ in which your data are and not get confused by the indexing of the data. In our experience, knowing how to format data into such arrays and then not getting lost is one of the most difficult things to learn about the routine use of WinBUGS.

12. Loop order in arrays: In ‘serious’ analyses, your modeling will often require the data to be formatted in some multi-dimensional array. For instance, for a multi-species version of a site-occupancy model (Dorazio and Royle, 2005), you will have at least three dimensions corresponding to species (), site () and replicate survey (). It appears that how you build your array, and especially, how you loop over that array in the definition of the likelihood can make a huge difference in terms of the speed with which your Markov chains in WinBUGS evolve. You should loop over the longest dimension first and over the shortest last. For instance, if you have data from 450 sites, 100 species and for two surveys each, then it appears best to format the data as and then loop over sites () first, then over species () and finally over replicate surveys () (Beth Gardner and Elise Zipkin, pers. comm.).
13. Do not define things twice: Every parameter in WinBUGS can only be defined once. For instance, writing y ~ dnorm(mu, tau) and then adding y[3] <- 5 will cause an error. There is a single exception to this rule, and that is the transformation of the response by some function such as the log() or abs(). So in order to conduct an analysis of a log-transformed response, you may write log.y <- log(y) and then log.y ~ dnorm(mu, tau). Beware of inadvertently defining quantities multiple times when erroneously putting them within a loop that they don’t belong.
14. Problems with WinBUGS’ own logit function: We have sometimes experienced problems when using WinBUGS’ own logit function, for instance with achieving convergence. Therefore, it is often better to specify that transformation explicitly by logit.p[i] <- log(p[i] / (1 – p[i])), p[i] <- exp(logit.p[i]) / (1 + exp(logit.p[i])) or p[i] <- 1 / (1 + exp(-logit.p[i])).
15. ‘Stabilizing’ the logit: To avoid numerical over- or underflow, you may ‘stabilize’ the logit function by excluding extreme values (Brendan Wintle, pers. comm.). Here’s a sketch of how to do that. The Gibbs sampling will typically get slower, but at least WinBUGS will be less likely to crash:
logit(psi.lim[i]) <- lpsi.lim[i]
lpsi.lim[i] <- min(999, max(-999, lpsi[i]))
lpsi[i] <- alpha.occ + beta.occ * something[i]

16. Truncated priors for normal random effects: Similarly, in log- or logit-normal mixtures (which we see when introducing a normal random effect into the linear predictor), you can truncate the zero-mean normal distribution, e.g., at 20 (Kéry and Royle, 2009): e[i] ~ dnorm(0, tau)I(-20,20)). This can greatly help convergence of the Markov chains.
17. Problems with Tinn-R: Users of the popular R editor Tinn-R 2.0 (or newer) may have problems writing the text file containing the BUGS model description with the sink() function; Tinn-R adds to that file some gibberish that will cause WinBUGS to crash. You must then use an alternative way of writing the model file. As an example, here is a workaround that should be compatible with Tinn-R (Wesley Hochachka, pers. comm.):
modelFilename = 'model.txt'
cat("
model {
Here is the model in BUGS language
}
",fill=TRUE, file=modelFilename)
An alternative solution due to Jérôme Guélat is this: The ‘R send’ functions available in Tinn-R allow sending commands into R. However the ‘(echo=TRUE)’ versions of these functions should not be used when sending the sink() function and its content into R. For example: one should use ‘R send: selection’ instead of ‘R send: selection (echo=TRUE)’.
18. Run trial analyses first: Run very short chains first, e.g., of length 12 with a burnin of 2, just to confirm that there are no coding or other errors. Only when you are satisfied that your code works and your model does what it should, increase the chain length to get a production run.
19. How to choose the burnin length: We have chosen Markov chain lengths so that convergence appears to be achieved. You may ask yourself how we decided on adequate chain lengths. The answer is simple: we always conduct trial runs first and based on that decide on the chain length for a production run of the analysis.
20. Avoid long Windows addresses: WinBUGS doesn’t seem to like very long Windows addresses (C:\My harddisk\Important stuff\Less important stuff\ …) for its working directory. Hence, you should not bury your WinBUGS analyses too far down in a tree hierarchy.
21. Use of native WinBUGS (1): A feature of both Kéry (2010) and this book is that WinBUGS is run exclusively from within program R. We believe that this is much more efficient than running native WinBUGS. However, with some complex models and/or large data sets, WinBUGS will be extremely slow. This may be the one exception where it is perhaps more efficient to run WinBUGS natively. You may still prepare the analysis in R as shown in this book, but only request WinBUGS to run very short Markov chains. When you set the option DEBUG = TRUE in the function bugs(), then WinBUGS will stay open after the requested number of iterations have been conducted. Then, you can request more iterations to be executed directly in WinBUGS (i.e., using the Update Tool; see chapter 4 in Kéry 2010). You can then incrementally increase the total chain length and monitor convergence as you go. Once convergence has been achieved, do the required additional number of iterations and save them into coda files. You must do this latter, since when exiting WinBUGS, the bugs() function will only import back into R the (small) number of iterations that you originally requested. When you have your valuable samples of your complex model’s posterior distribution in coda files, use facilities provided by R packages boa or coda to import them into R and process them (e.g., compute Brooks-Gelman-Rubin convergence tests or posterior summaries for inference about the parameters).
22. Use of native WinBUGS (2): Use of native WinBUGS can also be helpful to diagnose why a model does not run properly or produces unexpected results. If WinBUGS has been successfully called from R, there will be three (or more) text files in your current directory. If you have specified working.directory = getwd() in ‘bugs’, the files will be stored in the working directory (type getwd() if you are not sure which one this is). Otherwise, the files will be in a temporary directory (type tempdir() to see the path). The file stored first is the BUGS model and has the name that you have specified just after the sink command. The second file with the name data.txt contains the data in WinBUGS format. Finally, the third file contains the initial values in WinBUGS format and is named inits1.txt. If you have specified more than one chain, there will be more files of this type. To make use of native WinBUGS, you open WinBUGS, and select ‘file’ --> ‘new’. Then you copy the model text file, the data text file and the text file(s) with the initial values into the empty window. You have then all information to start with a native WinBUGS analysis. See the WinBUGS documentation and chapter 4 in Kéry (2010) if you do not know how to proceed within WinBUGS.
23. Be flexible in your modeling: Try out different priors, e.g., for parameters representing probabilities try a uniform(0,1), a flat normal for the logit transform or a beta(1,1). Sometimes, one may work while another doesn’t. Similarly, WinBUGS is very sensitive to changes in the parameterization of a model (see Gelman and Hill 2007 for some good examples). Sometimes, one way of writing the model may work and the other doesn’t, or one works much faster than the other.
24. Don’t know how to specify the linear model? If you have trouble seeing how to specify a linear model in WinBUGS, use of the very handy R function model.matrix() may help. For instance, if you want to fit a model with four factors, A, B, C and D, with all main effects and interactions A.B and C.D, do this to see how the linear model looks like: model.matrix(~ A + B + C + D + A:B + C:D).
25. Scale continuous covariates: Scaling continuous covariates, so that their range does not extend too far away on either side of zero, can greatly improve mixing of the chains and often makes convergence possible (see, e.g., Section 11.4. in Kéry 2010 and Section 3.3.1 in this book).
26. What if WinBUGS hangs after compiling? Try a restart and if that doesn’t work, find better starting values (this tip is from the manual).
27. How to debug a WinBUGS analysis (1): If something went wrong, you need to attentively read through the entire WinBUGS log file from the top to identify the first thing that went wrong. Other errors may follow, but they may not be the actual cause of the failure.
28. How to debug a WinBUGS analysis (2): When something doesn’t work, the simplest and best advice (see also Gelman and Hill 2007) is to go back to a simpler version of the same model, or to a similar model, that did work, and then incrementally increase the complexity of that model until you arrive at the desired model. That is, from less complex models sneak up on the model you want. Indeed, when using WinBUGS you learn to always start from the simplest version of a problem and gradually build in more complexity until you are at the level of complexity that you require. We think that this is actually a very good approach to learning in general.
29. DIC problems: Surprisingly, sometimes when getting a trap (including one with the very informative title ‘NIL dereference (read)’), setting the argument DIC = FALSE in the bugs() function has helped.
30. What if R chokes on too much results from WinBUGS ? Sometimes the R object created by R2WinBUGS is too big for one’s computer. Then, use boa or coda to read in the coda files directly and use their facilities to produce your inference in this way (e.g., convergence diagnostics, posterior summaries). Also see trick 37.
31. Check of identifiability/estimability of parameters: To see whether two or more parameters are difficult to estimate separately, you can plot the values of their Markov chains against each other.
32. Check of model adequacy: Do residual analysis, posterior predictive checks and cross-validation to see whether your model appears to be an adequate representation of the main features in the data.
33. Predictions: The estimation of unobserved or future data is a very important part of inference. One particularly useful way to examine predictions is to estimate what a response would look like for a chosen combination of values of the explanatory variables. The generation and examination of such predicted values is an important method to understand complex models (for instance, to see what a particular interaction means) and also needed to illustrate the results of an analysis, e.g., as a figure in a paper.
34. Sensitivity analysis for priors: Consider assessing prior sensitivity, i.e., repeat your analyses, or those for key models, with different prior specifications and see whether your inference is robust in this respect. If it is not, then not all is lost, but you must report on that in the methods section of your paper.
35. VISTA problems: Windows VISTA has caused all sorts of ‘challenges’ in workshops taught – be prepared! One problem was that the default BUGS directory is not the same as that stated in the preface.
36. Windows 7 problems: We experienced problems when WinBUGS is installed in a folder like "C:\Program Files\...". WinBUGS runs fine when directly installed on "C:\".
37. Use of the coda package: Some prefer to work with coda objects than with the results returned by bugs(), as we do throughout the book. Here is some R sample code to summarize the posterior samples and to check convergence and sample autocorrelation (from Richard B. Chandler):
outmc <- as.mcmc.list(out)
summary(outmc)
plot(outmc, ask=TRUE)
outmc[,"alpha"]
autocorr.plot(outmc, ask=TRUE)
gelman.plot(outmc, ask=TRUE)
gelman.diag(outmc)
window(outmc, thin=5)

38. Free choice among the sisters: When a model does not run in WinBUGS, you may try (and succeed) in OpenBUGS or JAGS, or vice versa (Mike Meredith, pers. comm.).
39. Beware of the dreaded ‘tiefschutz and probefahrt error’ (Scott Sillett, Andy Royle, pers. comm.): it means that your computer has been invaded by space aliens. Stay calm, shut the door, leave the building and set it on fire.
40. Last but not least, you must have a healthy distrust in your solutions: Always inspect your inference to see whether the WinBUGS solution makes sense with respect to what you know about the modeled system. For instance, look at tables of estimates, plot predictions against observed values for quantities that can be observed. Also watch out for unexplained differences in parameter estimates between neighboring models, e.g., those that differ by only one covariate or some other rather minor model characteristic. This can be an indication that something went wrong (e.g. convergence was not reached or you made a coding error) or that there are estimability problems with the model for your data set.

34

image2.jpeg

oleObject48.bin

oleObject49.bin

image45.wmf
i

N

oleObject50.bin

image46.wmf
j

oleObject51.bin

image47.wmf
,

ij

p

oleObject52.bin

image48.wmf
i

oleObject53.bin

image3.wmf
Np

image49.wmf
j

oleObject54.bin

oleObject55.bin

oleObject56.bin

image50.emf
1.82.02.22.42.62.83.0

0.35

0.40

0.45

0.50

0.55

0.60

Data-generating values in red

Posterior draws of lambda

Posterior draws of p

image51.wmf
N

oleObject57.bin

image52.wmf
l

oleObject58.bin

image53.emf
-1.0-0.50.00.51.0

0

10

20

30

40

50

Expected abundance

Covariate

lambda

-1.0-0.50.00.51.0

0

10

20

30

40

50

Realised abundance

Covariate

N

-1.0-0.50.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Detection probability

Covariate

p

-1.0-0.50.00.51.0

0

1

2

3

4

5

6

Actual counts

 and naïve regression

Covariate

Relative abundance

oleObject1.bin

image54.emf
alpha0

Frequency

0.60.81.01.21.4

0

200

400

600

800

alpha1

Frequency

1.52.02.53.03.5

0

100

200

300

400

500

600

700

beta0

Frequency

-0.50.00.5

0

100

200

300

400

500

600

beta1

Frequency

-6.5-6.0-5.5-5.0-4.5-4.0-3.5

0

100

200

300

400

500

600

image55.emf
-1.0-0.50.00.51.0

0

10

20

30

40

50

Covariate

Abundance

image56.emf
-1.0-0.50.00.51.0

0

10

20

30

40

50

Covariate

Abundance

Truth

Naïve estimate

Posterior mean

MLE

image57.emf
0.60.81.01.21.4

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

Can abundandance be estimated

separately from detection ?

Detection intercept (logit scale)

Abundance intercept (logit scale)

image58.emf
-1.0-0.50.00.51.0

0

10

20

30

40

50

60

Covariate

Abundance

Truth

Naïve estimate

Post. mean BUGS

Post. mean JAGS

MLE

image59.wmf
,,

ijk

y

oleObject59.bin

image60.wmf
i

oleObject60.bin

image61.wmf
1...95

i

=

image4.wmf
N

oleObject61.bin

image62.wmf
j

oleObject62.bin

image63.wmf
(1,2)

j

=

oleObject63.bin

image64.wmf
k

oleObject64.bin

image65.wmf
(1...7)

k

=

oleObject65.bin

image66.wmf
j

oleObject2.bin

oleObject66.bin

image67.wmf
k

oleObject67.bin

image68.jpeg

image69.emf
50100150200250

50

100

150

200

Discrepancy actual data

Discrepancy replicate data

(a)

50100150200250

50

100

150

200

Discrepancy actual data

(b)

image70.wmf
i

oleObject68.bin

image71.wmf
~Bernoulli()

i

z

W

oleObject69.bin

image72.wmf
,

ik

image5.wmf
p

oleObject70.bin

image73.wmf
,

|~Poisson()

ikiik

Nzz

l

oleObject71.bin

image74.wmf
,,

ijk

oleObject72.bin

image75.wmf
,,,,,,

|~Binomial(,)

ijkikikijk

yNNp

oleObject73.bin

image76.wmf
W

oleObject74.bin

image77.wmf
k

l

oleObject3.bin

oleObject75.bin

image78.wmf
,,

ijk

p

oleObject76.bin

image79.wmf
z

oleObject77.bin

image80.wmf
,,

ijk

y

oleObject78.bin

image81.wmf
,

ik

oleObject79.bin

image82.wmf
,,

~Poisson()

ikik

N

l

oleObject4.bin

oleObject80.bin

image83.wmf
,

log()

ikki

lae

=+

oleObject81.bin

image84.wmf
2

~Normal(0,)

i

l

es

oleObject82.bin

image85.wmf
,,

ijk

oleObject83.bin

image86.wmf
,,,,,,

~Binomial(,)

ijkikikijk

yNNp

oleObject84.bin

image87.wmf
,,,,

logit()

ijkkijk

p

bd

=+

oleObject5.bin

oleObject85.bin

image88.wmf
2

,,

~Normal(0,)

ijkp

ds

oleObject86.bin

image89.wmf
e

oleObject87.bin

image90.wmf
d

oleObject88.bin

image91.wmf
,,

ijk

d

oleObject89.bin

image92.wmf
,,

ijk

d

oleObject6.bin

oleObject90.bin

image93.wmf
,

ik

d

oleObject91.bin

image94.wmf
i

d

oleObject92.bin

image95.emf
1234567

0

5

10

15

Day

Mean daily abundance

1234567

0.0

0.2

0.4

0.6

0.8

1.0

Day

Detection probability

image96.wmf
N

oleObject93.bin

oleObject94.bin

image97.wmf
,

ij

N

oleObject7.bin

oleObject95.bin

image98.wmf
j

oleObject96.bin

image99.wmf
,,

ijk

d

oleObject97.bin

image100.wmf
N

oleObject98.bin

image101.wmf
1

p

<

oleObject99.bin

oleObject100.bin

image6.wmf
,

ij

y

image102.wmf
,

ij

y

oleObject101.bin

image103.wmf
i

oleObject102.bin

image104.wmf
j

oleObject103.bin

image105.wmf
,

ij

y

oleObject104.bin

image106.wmf
~()

i

zBernoulli

y

oleObject105.bin

oleObject8.bin

image107.wmf
,

~()

ijii

yzBernoullizp

oleObject106.bin

image108.wmf
i

z

oleObject107.bin

image109.wmf
y

oleObject108.bin

oleObject109.bin

oleObject110.bin

oleObject111.bin

image110.wmf
,

ij

y

image7.wmf
i

oleObject112.bin

image111.wmf
i

oleObject113.bin

image112.wmf
j

oleObject114.bin

image113.wmf
,

ij

y

oleObject115.bin

image114.wmf
i

oleObject116.bin

image115.wmf
i

z

oleObject9.bin

oleObject117.bin

image116.wmf
p

oleObject118.bin

oleObject119.bin

oleObject120.bin

image117.wmf
z

oleObject121.bin

image118.wmf
y

oleObject122.bin

image119.wmf
1

z

=

image8.wmf
j

oleObject123.bin

image120.wmf
p

oleObject124.bin

oleObject125.bin

image121.wmf
p

oleObject126.bin

image122.wmf
z

oleObject127.bin

image123.wmf
,

ij

y

oleObject128.bin

oleObject10.bin

image124.wmf
,

ij

y

oleObject129.bin

image125.wmf
i

z

oleObject130.bin

image126.wmf
1

z

=

oleObject131.bin

image127.wmf
0

y

=

oleObject132.bin

image128.wmf
1

y

=

oleObject133.bin

image9.wmf
~()

i

NPoisson

l

oleObject134.bin

oleObject135.bin

image129.wmf
y

oleObject136.bin

image130.wmf
p

oleObject137.bin

image131.wmf
logit()*

ii

x

yab

=+

oleObject138.bin

image132.wmf
i

x

oleObject139.bin

oleObject11.bin

image133.wmf
i

oleObject140.bin

image134.wmf
a

oleObject141.bin

image135.wmf
b

oleObject142.bin

image136.wmf
i

oleObject143.bin

oleObject144.bin

image137.wmf
j

image10.wmf
,

|~(,)

ijii

yNBinomialNp

oleObject145.bin

image138.emf
Intercept estimates

-3.5-3.0-2.5-2.0-1.5-1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Slope estimates

0.00.20.40.60.81.0

0

2

4

6

8

246810

0.0

0.2

0.4

0.6

0.8

1.0

Covariate value

Occurrence probability

image139.wmf
,

ij

y

oleObject146.bin

image140.wmf
q

oleObject147.bin

image141.wmf
q

oleObject148.bin

oleObject149.bin

image142.emf
-1.00.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Occupancy probability

(a)

-1.00.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Occurrence

(b)

-1.00.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Covariate

p

(c)

-1.00.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Covariate

Apparent occupancy

(d)

oleObject12.bin

image143.wmf
z

oleObject150.bin

image144.emf
-1.0-0.50.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Covariate

Occurrence probability

image145.emf
-1.0-0.50.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Covariate

Occupancy probability

Truth

Naïve estimate

Posterior mean

MLE

image146.emf
-1.0-0.50.00.51.0

0.0

0.2

0.4

0.6

0.8

1.0

Covariate

Occupancy probability

Truth

Naïve estimate

Post. mean WinBUGS

Post. mean JAGS

MLE

image147.jpeg

image148.emf
Number of occupied sites (occ.fs)

Frequency

10152025

0

200

400

600

image149.wmf
*

P

oleObject151.bin

image150.wmf
n

image11.wmf
i

oleObject152.bin

image151.wmf
*1(1)

n

Pp

=--

oleObject153.bin

image152.wmf
p

oleObject154.bin

oleObject155.bin

image153.wmf
n

oleObject156.bin

image154.emf
12345678910

0.2

0.4

0.6

0.8

1.0

Number of surveys

Pstar

image155.wmf
*

P

oleObject13.bin

oleObject157.bin

image156.wmf
n

oleObject158.bin

oleObject159.bin

image157.emf
Forest interior

Occupancy probability

Frequency

0.00.20.40.60.81.0

0

500

1000

Forest edge

Occupancy probability

Frequency

0.00.20.40.60.81.0

0

50

100

150

image158.emf
0102030405060

0.0

0.4

0.8

Date (1 = 1 July)

Detection probability

200250300350400450500550

0.0

0.4

0.8

Hour of day (mins after noon)

Detection probability

image159.wmf
R

oleObject160.bin

image160.wmf
J

oleObject161.bin

image12.wmf
i

N

image161.wmf
,

ij

y

oleObject162.bin

oleObject163.bin

oleObject164.bin

image162.wmf
i

oleObject165.bin

oleObject166.bin

image163.wmf
2

t

=

oleObject167.bin

image164.wmf
1

t

=

oleObject14.bin

oleObject168.bin

image165.wmf
J

oleObject169.bin

oleObject170.bin

oleObject171.bin

image166.wmf
K

oleObject172.bin

image167.wmf
,,

ijk

y

oleObject173.bin

oleObject174.bin

image13.wmf
l

oleObject175.bin

image168.wmf
k

oleObject176.bin

image169.wmf
j

oleObject177.bin

oleObject178.bin

image170.wmf
k

oleObject179.bin

image171.wmf
,,

ijk

y

oleObject180.bin

oleObject15.bin

oleObject181.bin

oleObject182.bin

oleObject183.bin

image172.wmf
,

ik

z

oleObject184.bin

image173.wmf
i

oleObject185.bin

image174.wmf
k

oleObject186.bin

image175.wmf
,,

ijk

y

image14.wmf
,

ij

y

oleObject187.bin

image176.wmf
,

ik

z

oleObject188.bin

image177.wmf
,,

ijk

y

oleObject189.bin

image178.wmf

oleObject190.bin

image179.wmf
,,

~()

ikik

zBernoulli

y

oleObject191.bin

image180.wmf
,,,,,,

|~()

ijkikikijk

yzBernoullizp

oleObject16.bin

oleObject192.bin

image181.wmf
k

oleObject193.bin

image182.wmf
,

ik

z

oleObject194.bin

image183.wmf
i

oleObject195.bin

image184.wmf
k

oleObject196.bin

image185.wmf
,

ik

y

image15.wmf
i

N

oleObject197.bin

image186.wmf
,,

ijk

y

oleObject198.bin

image187.wmf
j

oleObject199.bin

image188.wmf
i

oleObject200.bin

image189.wmf
k

oleObject201.bin

image190.wmf
i

oleObject17.bin

oleObject202.bin

image191.wmf
k

oleObject203.bin

image192.wmf
,,

ijk

p

oleObject204.bin

image193.wmf
,,

ijk

y

oleObject205.bin

image194.wmf
k

oleObject206.bin

image195.wmf
i

image16.wmf
i

oleObject207.bin

image196.wmf
11

~()

zBernoulli

y

oleObject208.bin

image197.wmf
1

|~((1))

kkkkkk

zzBernoullizz

+

+-

fg

oleObject209.bin

image198.wmf
1

k

z

+

oleObject210.bin

image199.wmf
1

k

+

oleObject211.bin

image200.wmf
k

oleObject18.bin

oleObject212.bin

image201.wmf
k

oleObject213.bin

image202.wmf
1

k

z

=

oleObject214.bin

image203.wmf
10

k

z

-=

oleObject215.bin

image204.wmf
k

f

oleObject216.bin

image205.wmf
1

k

-

f

image17.wmf
j

oleObject217.bin

image206.wmf
k

oleObject218.bin

image207.wmf
0

k

z

=

oleObject219.bin

image208.wmf
11

k

z

-=

oleObject220.bin

image209.wmf
1

k

+

oleObject221.bin

image210.wmf
k

g

oleObject19.bin

oleObject222.bin

image211.wmf
t

oleObject223.bin

image212.wmf
1

t

+

oleObject224.bin

oleObject225.bin

oleObject226.bin

image213.wmf
R

oleObject227.bin

image214.wmf
J

oleObject20.bin

oleObject228.bin

image215.wmf
K

oleObject229.bin

image216.wmf
,,

ijk

y

oleObject230.bin

image217.wmf
1

y

=

oleObject231.bin

image218.wmf
0

y

=

oleObject232.bin

image219.wmf
i

image18.wmf
p

oleObject233.bin

image220.wmf
j

oleObject234.bin

image221.wmf
k

oleObject235.bin

image222.jpeg

image223.emf
0246810

0.0

0.2

0.4

0.6

0.8

1.0

Year

Occupancy or detection probability

(a)

0246810

0.0

0.2

0.4

0.6

0.8

1.0

Year

Occupancy probability

(b)

image224.emf
0.0

0.2

0.4

0.6

0.8

1.0

Year

Extinction probability (

)

010203040506070809

Truth

ML

Posterior mean

0.0

0.2

0.4

0.6

0.8

1.0

Year

Colonization probability (

)

010203040506070809

Truth

ML

Posterior mean

0.0

0.2

0.4

0.6

0.8

1.0

Year

Detection probability (

p

)

01020304050607080910

Truth

ML

Posterior mean

image225.wmf
1

(1)(1)

ttttt

yyeyg

+

=-+-

oleObject21.bin

oleObject236.bin

image226.jpeg

image227.emf
1234567

0.0

0.2

0.4

0.6

0.8

1.0

Day of survey

Occupancy probability

image228.wmf
(

)

~W

ii

zcategorical

oleObject237.bin

image229.wmf
1,2,

1,

2,

1

éù

-y-y

êú

W=y

êú

êú

y

ëû

ii

ii

i

oleObject238.bin

image230.wmf
(

)

,,1...,,

i

ijizOij

yzcategorical

~Q

oleObject239.bin

image231.wmf
ppp

éù

êú

ppp

êú

êú

ppp

ëû

1,11,21,3

2,12,22,3

3,13,23,3

not seenseen without rep.seen with rep.

not occupied

occupied without reproduction

occupied with reproduction

image19.wmf
l

oleObject240.bin

image232.wmf
,

mk

p

oleObject241.bin

image233.wmf
m

oleObject242.bin

image234.wmf
k

oleObject243.bin

image235.wmf
éù

êú

-pp

êú

êú

-p-ppp

ëû

2,22,2

3,23,33,23,3

not seenseen without rep.seen with rep.

not occupied100

occupied without reproduction10

occupied with reproduction1

oleObject244.bin

image236.wmf
,

mk

p

oleObject22.bin

oleObject245.bin

image237.wmf
1

(1)

r

r

y

y

y

-

éù

êú

-

êú

êú

ëû

oleObject246.bin

image238.wmf
22

3,13,23,3

100

10

pp

ppp

éù

êú

-

êú

êú

ëû

oleObject247.bin

image239.wmf
y

oleObject248.bin

image240.wmf
2

p

oleObject249.bin

image241.wmf
3,3

p

image20.wmf
p

oleObject250.bin

image242.wmf
3,2

p

oleObject251.bin

image243.wmf
3,1

p

oleObject252.bin

image244.wmf
3,

k

p

oleObject253.bin

image245.wmf
y

oleObject254.bin

image246.wmf
x

oleObject23.bin

oleObject255.bin

oleObject256.bin

image247.wmf
i

oleObject257.bin

image248.wmf
j

oleObject258.bin

image249.wmf
k

oleObject259.bin

image250.wmf
[,,]

yjik

oleObject260.bin

image21.wmf
01

log()*

ii

x

laa

=+

image251.wmf
j

oleObject261.bin

image252.wmf
i

oleObject262.bin

image253.wmf
k

oleObject263.bin

image254.wmf
±

oleObject264.bin

oleObject24.bin

image22.wmf
,01,

logit()*

ijij

px

bb

=+

oleObject25.bin

image23.wmf
i

oleObject26.bin

image24.wmf
i

x

oleObject27.bin

image25.wmf
0

a

oleObject28.bin

image26.wmf
1

a

oleObject29.bin

image27.wmf
i

oleObject30.bin

image28.wmf
j

oleObject31.bin

image29.wmf
,

ij

x

oleObject32.bin

image30.wmf
0

b

oleObject33.bin

image31.wmf
1

b

oleObject34.bin

oleObject35.bin

image32.wmf
i

N

oleObject36.bin

image33.wmf
01

log()*

iii

x

laae

=++

oleObject37.bin

image34.wmf
2

~(0,)

i

Normal

l

es

image1.emf

oleObject38.bin

image35.wmf
i

N

oleObject39.bin

image36.wmf
i

oleObject40.bin

image37.wmf
i

N

oleObject41.bin

image38.wmf
i

oleObject42.bin

image39.wmf
k

oleObject43.bin

image40.wmf
,,

ijk

y

oleObject44.bin

image41.wmf
i

oleObject45.bin

image42.wmf
j

oleObject46.bin

image43.wmf
k

oleObject47.bin

image44.wmf
N

