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ABSTRACT

Aim Our aims are: (1) to highlight the power of dynamic occupancy models

for analysing species range dynamics while accounting for imperfect detection;

(2) to emphasize the flexibility to model effects of environmental covariates in

the dynamics parameters (extinction and colonization probability); and (3) to

illustrate the development of predictive maps of range dynamics by projecting

estimated probabilities of occupancy, local extinction and colonization.

Location Switzerland.

Methods We used data from the Swiss breeding bird survey to model the

Swiss range dynamics of the European crossbill (Loxia curvirostra) from 2000

to 2007. Within-season replicate surveys at each 1 km2 sample unit allowed us

to fit dynamic occupancy models that account for imperfect detection, and

thus estimate the following processes underlying the observed range dynamics:

local extinction, colonization and detection. For comparison, we also fitted a

model variant where detection was assumed to be perfect.

Results All model parameters were affected by elevation, forest cover and ele-

vation-by-forest cover interactions and exhibited substantial annual variation.

Detection probability varied seasonally and among years, highlighting the need

for its estimation. Projecting parameter estimates in environmental or geo-

graphical space is a powerful means of understanding what the model is telling

about covariate relationships. Geographical maps were substantially different

between the model where detection was estimated and that where it was not,

emphasizing the importance of accounting for imperfect detection in studies of

range dynamics, even for high-quality data.

Main conclusions The study of species range dynamics is among the most

exciting avenues for species distribution modelling. Dynamic occupancy models

offer a robust framework for doing so, by accounting for imperfect detection and

directly modelling the effects of covariates on the parameters that govern distri-

butional change. Mapping parameter estimates modelled by spatially indexed co-

variates is an under-used way to gain insights into dynamic species distributions.

Keywords
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INTRODUCTION

The study of species distributions is an area of great scientific

interest in ecology (e.g. Graham et al., 2006; Pearman et al.,

2008) and evolutionary biology (e.g. Kearney et al., 2009).

Species distribution modelling is also an important tool for

biodiversity conservation, as knowledge about species distri-

butions is vital for informing and prioritizing conservation

action (e.g. Hirzel et al., 2006) and for effective conservation

planning (e.g. Ara�ujo & Williams, 2000; Wintle et al., 2005).
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In this context, predictive models of species distributions are

even more critical in the face of climate change, because they

allow an understanding of how the distributions of species

might change under different projected climatic scenarios

(e.g. Hannah et al., 2005; Kearney et al., 2010).

Over the last few decades many species distribution mod-

elling approaches have been proposed for static distributions

(for a comparison of some methods see Guisan & Zimmer-

mann, 2000; Elith et al., 2006); however, there is only one,

usually referred to as ‘occupancy modelling’ (MacKenzie

et al., 2002; Tyre et al., 2003), that formally accounts for one

of the hallmarks of ecological data: imperfect detection

(Yoccoz et al., 2001; K�ery, 2002; K�ery & Schmidt, 2008), an

issue also relevant for sessile organisms such as plants (Chen

et al., 2013). This framework allows the joint modelling of

species occupancy probability as a function of spatially

indexed covariates and of the detection process, resulting in

an extension of the traditional logistic regression model to

account for species detectability. Despite often being disre-

garded (e.g. Ara�ujo & Guisan, 2006), explicitly accounting

for imperfect detection can be crucial when modelling spe-

cies distributions (K�ery, 2011). Otherwise, rather than cap-

turing the actual distribution of the species, the area where

the species is detected is estimated, thus leading to incorrect

inferences regarding habitat relationships (Tyre et al., 2003;

Gu & Swihart, 2004; MacKenzie, 2006), a problem which is

greatest when detectability is itself a function of the habitat

covariates (K�ery, 2010; K�ery et al., 2010a; K�ery & Schaub,

2012). Disregarding imperfect detection has also been shown

to decrease model predictive performance of where a species

would be detected (Rota et al., 2011).

Perhaps even more important and exciting is the study of

the change of species distributions, or range dynamics. In

contrast to the study of static distributions, considerably

fewer modelling methods have been proposed so far for the

study of range dynamics (e.g. Morin & Thuiller, 2009; Pagel

& Schurr, 2012). In this paper we aim to highlight one par-

ticularly powerful framework for the analysis of range

dynamics: dynamic occupancy models (MacKenzie et al.,

2003), also known as multiple-season occupancy models.

These extend the static (single-season) occupancy model of

MacKenzie et al. (2002) and Tyre et al. (2003) to allow esti-

mation of occupancy change among discrete time steps by

explicitly modelling the processes underlying occupancy

dynamics in a Markovian manner. Thus, the occurrence of a

species at each time step is described as a function of occur-

rence during the previous time step and parameters for the

probability that a previously unoccupied site becomes occu-

pied (colonization) and that a previously occupied site

becomes unoccupied (local extinction). Provided replicate

observations of ‘presence/absence’ (more accurately ‘detec-

tion/non-detection’) are available for at least some of the

sites within survey seasons, when the occurrence state is

assumed not to change, the model allows imperfect detection

to be accounted for, thus making the estimates of occupancy,

colonization and local extinction robust against the presence

of false absence records (i.e. false negatives). Model parame-

ters can be expressed as functions of covariates, including

those describing the dynamics of species occupancy (coloni-

zation, local extinction), which can be described using site-

and time-specific characteristics. Estimates of all covariate

relationships can be projected onto a region of interest, such

as an entire country, obtaining predictive maps of all compo-

nents of range dynamics, a powerful and yet under-utilized

method to visualize the results.

We believe that the potential of the dynamic occupancy

modelling framework to model species range dynamics, as

well as the value of visually expressing the inferences drawn

as a map, is far from widely appreciated. In this paper we

aim to draw attention to this class of models and we illus-

trate its power by means of analyses of the range dynamics

of a bird species in Switzerland. One of the main objectives

of this study is to emphasize the ability to produce predictive

maps. In particular, we generate maps of spatially explicit

colonization and local extinction probabilities for a species at

the scale of an entire country.

MATERIALS AND METHODS

Study area, study species and data collection

Switzerland is a small (41,285 km2) country in western

Europe with an extensive elevational gradient reaching from

200 to 4600 m a.s.l. Forests cover c. 30% of the country

mostly in the form of rather small mosaic-like patches at

lower elevations, beyond which they are more extensive,

especially at medium elevations (800–1800 m a.s.l.).

The European crossbill (Loxia curvirostra Linnaeus, 1758)

is a spruce seed-eating finch of coniferous forests, which

often exhibits substantial interannual dynamics of abundance

and local occurrence, depending on the annually and region-

ally varying production of spruce cones and being most

abundant and widespread in a region during mast years.

Crossbills are widespread in Switzerland from the lowlands

up to the tree line, but are most abundant at medium eleva-

tions where conifers are particularly common (Schmid et al.,

1998).

We used data collected in the period 2000–2007 in the

Swiss breeding bird survey MHB (Monitoring H€aufige

Brutv€ogel; Schmid et al., 2004), where 267 quadrats of 1 km2

laid out as a grid across the country are surveyed 2–3 times

every breeding season (mid-April to mid-July). Experienced

volunteer observers (a total of 315 serving in 2000–2007) fol-

low a quadrat-specific survey route of typical length 3–8 km

(average 5 km) and record all visual and acoustic detections

of all potential breeding bird species. Crossbills commonly

make flights above the canopy and call frequently, making

their presence in a quadrat or short sampling route fairly

easy to detect when the birds are active. In this study we

reduced the actual counts to simple detection/non-detection

observations. A subset of these data from 2001 to 2004 was

analysed by Royle & K�ery (2007).
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Dynamic occupancy modelling

Dynamic occupancy models explicitly describe the mecha-

nisms underlying occupancy dynamics and the detection

process. The sampling protocol assumed here is one in which

detection/non-detection data are collected at a number of

sampling sites in various sampling seasons (breeding seasons

in our example), with repeat surveys within each season. The

design therefore involves two nested levels of replication and

can be interpreted as a robust design (Pollock, 1982; Wil-

liams et al., 2002). A key model assumption is that the sys-

tem is closed within seasons but occupancy is allowed to

change between seasons. It is also assumed that false detec-

tions are absent.

Site occupancy dynamics are modelled as a two-state first-

order Markov chain (Fig. 1). State transitions are governed

by the probabilities of colonization c and local extinction e,
and only depend on the occupancy status at the previous

time step. This structure gives rise to the following relation-

ship for occupancy probability at time t + 1:

wtþ1 ¼ wt � ð1� eÞ þ ð1� wtÞ � c:
The probability that a site is occupied at t + 1 is the sum

of two probabilities: (1) the probability that the site was

occupied at t and the species did not become locally extinct

in the interval between t and t + 1 plus (2) the probability

that the site was empty at t and the species colonized it

between t and t + 1. The Markovian dependence accommo-

dates the autocorrelation in occupancy probability, as in an

AR(1) autoregressive time-series model. Note that multiple-

season occupancy data can also be analysed by separately fit-

ting single-season occupancy models to each season. This

implies an assumption of independence in the occupancy

status of sites between seasons, equivalent to assuming

e = 1 – c (MacKenzie et al., 2006, pp. 205–207).

In the vast majority of applications, species may remain

undetected at sites where present. This means that the state

‘occupied’ in the Markov chain is not perfectly observed. In

the dynamic occupancy modelling framework imperfect detec-

tion is accounted for by an explicit description of the observa-

tion process. Detection/non-detection data from repeat

surveys at occupied sites are modelled as a series of indepen-

dent Bernoulli trials with probability p. The model is therefore

a ‘hidden Markov model’ (MacDonald & Zucchini, 1997); that

is, a Markov model in which, rather than observing the states

directly, an output dependent on the state is observed.

In its simplest form, the model involves four probability

parameters: occupancy in the first season w1, colonization c,
local extinction e and detectability p. The probabilistic

description of the data according to the model, and therefore

the construction of its likelihood function, is straightforward.

For instance, let us assume a two-season study with three

replicate surveys per site and season. The probability of

observing in site i a detection history hi = 110 000 is

Prðhi ¼ 110 000Þ ¼ w1p
2ð1� pÞ � feþ ð1� eÞð1� pÞ3g;

that is, the probability that the site was initially occupied

and the species was detected in two replicate surveys and

missed in one, and either the site became empty in the sec-

ond season or it remained occupied and the species was

missed in all surveys. MacKenzie et al. (2003) provide more

examples, along with a matrix form of the likelihood func-

tion and alternative parameterizations.

The model allows species range dynamics to be studied by

incorporating site-specific covariates to describe the parame-

ters governing occupancy (w, e, c). Colonization and local

extinction probabilities can also be expressed as a function of

interseason-specific covariates to reflect their time variation.

Very conveniently, the model allows differences in the detec-

tion process to be modelled as a function of site- and sur-

vey-specific characteristics. Covariates can be incorporated

following a generalized linear modelling (GLM) approach.

When dealing with binary data, like here, the most com-

monly used link function is the logit, which leads to a logis-

tic regression. Note that the linear predictor can include

both continuous and discrete explanatory variables (factors)

as well as polynomial relationships with the covariates (e.g.

quadratic and interactions).

Analysis of European crossbill data in Switzerland

There are free ready-made software packages that allow

dynamic occupancy models to be fitted in the frequentist

method of inference (e.g. mark, White & Burnham, 1999;

presence, Hines, 2012). Models can also be easily implemented

in tools for Bayesian inference such as WinBUGS (Lunn et al.,

2000), OpenBUGS (Lunn et al., 2009) or JAGS (Plummer,

2003); code can be found in Royle & K�ery (2007), Royle & Dor-

azio (2008) and K�ery & Schaub (2012). In our study we used

the function colext in the new R-package unmarked (Fiske &

Chandler, 2011) to obtain maximum-likelihood estimates

Site 
occupied

Site not 
occupied

detected
not 

detected

OBSERVATION

PROCESS

STATE

PROCESS

ε

γ

1

1 − ε 1 − γ

p 1 − p

Figure 1 Hidden Markov model for site occupancy dynamics
under imperfect detection. Circles are the states representing the

occupancy status of a particular site. Squares represent the
possible observations. Solid arrows represent the transitions

describing occupancy dynamics. Dashed arrows represent the
observation process at each survey replicate. The probability that

the Markov chain is initialized in the state ‘Site occupied’ is the
initial occupancy psi1.
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(MLEs). The package comes with an extensive tutorial on

colext.

We fitted models with increasing complexity in terms of

covariates and used Akaike’s information criterion (AIC) for

model selection. Covariates were fitted with a linear and a

quadratic effect to allow for possibly non-monotonic rela-

tionships. We started by fitting a model with constant

parameters and compared it with a model where coloniza-

tion, extinction and detection were time-dependent. Then we

successively added to detection probability (p) the linear and

quadratic effects of survey date, elevation, forest cover and

finally of the interaction terms between elevation and forest

cover, as well as the effect of route length. We kept the

detection model structure that was best in terms of AIC and

went on to model the parameters describing occupancy

dynamics. We fitted models of increasing complexity to the

initial occupancy parameter (w1), in terms of elevation, for-

est cover and the interactions of these covariates. After that,

in one variant we followed the same step-up modelling

approach first for the probability of colonization (c) and

then for the probability of local extinction (e) and in

another, in reverse order. For simplicity, within each model

component (i.e. p, w1, c, e) we introduced covariates in a

fixed sequence. On identifying a preferred model, we then

tried all possible single-term deletions (in a backwards step-

wise fashion) and retained the overall most parsimonious

model (see Appendix S1).

We used the predict function in unmarked to obtain pre-

dictions of all primary model parameters (initial occupancy,

colonization, local extinction and detection) and their associ-

ated statistical uncertainty, which we then used to produce

maps and plots of the environmental relationships.

unmarked yields estimates of uncertainty for the annual

average values of extinction, colonization and detection,

which are a function of the primary parameters. To charac-

terize the uncertainty in the estimates of annual average occu-

pancy probability, we used a nonparametric bootstrap with

1000 replicates coded in R. To assess the goodness of fit of

the best model, we used a parametric bootstrapping approach

(K�ery et al., 2005) based on a chi-square test statistic for the

AIC-best model, which yielded a P-value of 0.88, indicating

no evidence of lack of fit of our model as a description of our

data set. Finally, to illustrate the effect of disregarding imper-

fect detection we re-ran the analysis as above but imposing

p = 1. Such a ‘traditional’ metapopulation model can be

fitted easily by duplicating the aggregated annual data (i.e.

whether a crossbill was ever detected at a site during a year).

We adopted the analogous model selection strategy as above.

RESULTS

There was strong evidence for time-dependence in coloniza-

tion, extinction and detection probability. Detection proba-

bility was affected by survey date, elevation, forest cover

(both linear and quadratic) and by all interaction terms

between elevation and forest cover, but not by route length.

The latter suggests that heterogeneity in route length was not

an issue for our analysis. Initial occupancy, colonization and

extinction probability were also affected by elevation and for-

est, including quadratic and interaction terms. Interestingly,

interactions between the two environmental covariates were

important for all parameters of the dynamic occupancy

model (see Appendix S1 in the Supporting Information for

model selection results and Table 1 for best model parameter

estimates). Using the traditional metapopulation model

resulted in a similar most parsimonious model, but substan-

tially different parameter estimates.

There was considerable annual variation in all parameters,

including occupancy probability (Fig. 2). The annual means

were in the range of 0.31–0.42 (mean 0.40) for occupancy,

0.30–0.62 (mean 0.43) for colonization, 0.13–0.61 (mean

0.35) for local extinction and 0.31–0.61 (mean 0.49) for

detection. Detection probability varied not only by year but

also over the breeding season, although the magnitude of the

interannual variation was greater than was the seasonal varia-

tion (Fig. 3). In the traditional metapopulation model,

ignoring detection, occupancy was underestimated while

extinction and colonization tended to be over- and under-

estimated, respectively (Fig. 2).

There were complex relationships between the responses

and the continuous covariates elevation and forest cover

(Fig. 4). Initial occupancy (year 2000) and detection were

greatest at mid–high elevations with mid–high forest cover.

Colonization was lowest at low elevations irrespective of for-

est cover and at high elevation with low forest cover. Extinc-

tion was greatest at low elevations and with low forest cover.

Figure 5 contains a sample of predictive maps of all model

components of crossbill range dynamics in Switzerland (the

full set of maps, under both the occupancy and the tradi-

tional metapopulation model, can be found in Appendix S2).

These maps translate the complex relationships among the

responses and the covariates (environmental space), shown

in Fig. 4, into the spatial domain of Switzerland (geographi-

cal space). For instance, as a broad observation, colonization

probability is estimated to be lower in the north of the coun-

try compared to the south, while extinction probability is

higher. This is consistent with the occupancy pattern, which

indicates that crossbill occupancy is higher in the south. Fig-

ure 6 shows the uncertainty for the prediction of detection

probability (Fig. 5, bottom right), illustrating how produc-

tion of uncertainty maps is straightforward. The results of

the analysis assuming perfect detection (i.e. p = 1) demon-

strate substantial discrepancies in the predictions of range

dynamics when imperfect detection is disregarded. This is

shown most clearly in the difference maps (Appendix S2,

right panels), which are highly patterned for all parameters

and can be thought of as maps of bias for the model that

does not accommodate imperfect detection.

The total range of a species can be estimated simply by

adding up the predicted values of occupancy over the spatial

domain studied. For the whole of Switzerland, this yielded

values of between 11,869 and 17,542 km2 for the occupancy
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model and between 6770 and 13,107 km2 for the traditional

metapopulation model ignoring imperfect detection, repre-

senting proportional underestimates in the latter of around

31% on average.

DISCUSSION

The study of range dynamics is highly topical in ecology and

conservation, as it attempts to shed light on the processes gov-

erning the changes in the observed patterns of species distribu-

tions. Such understanding is particularly relevant in the face of

current and future climatic and environmental change. We

have showcased dynamic occupancy models (MacKenzie et al.,

2003) as a flexible and rigorous framework for modelling range

dynamics. These models contain a mechanistic description of

changes in occurrence as a function of previous occurrence

and parameters for colonization and local extinction probabil-

ity, which are embedded in a description of the observation

process that accommodates false-negative detection errors.

Unlike species distribution models that do not accommodate

imperfect detection, this modelling framework results in

parameters that have a more explicit biological meaning, as

the bias that would be induced by imperfect detection on the

estimators of occupancy and its dynamics is avoided (K�ery

et al., 2010a). In addition, covariate effects can be flexibly

introduced into all model parameters, and site-specific param-

eter estimates and their uncertainties (e.g. standard errors) can

be projected onto a larger region to produce a map, for

instance, of the species distribution, but also of detection (Olea

& Mateo-Tom�as, 2011; Chen et al., 2013), colonization and

extinction probabilities. In this study we have illustrated the

production of predictive maps of all these quantities. Of

course, as with any modelling technique, extrapolations

beyond the sampled range of the covariates or geographical

extent have to be interpreted with care (Elith & Leathwick,

2009) and were avoided here by masking mapped areas beyond

the normal elevational range of the modelled data.

Table 1 Parameter estimates (maximum-likelihood estimates,

MLEs, with asymptotic standard errors, ASEs) of the best
dynamic occupancy (Dynocc) model, in terms of Akaike’s

information criterion (AIC), for the range dynamics of the
European crossbill (Loxia curvirostra) in Switzerland from 2000

to 2007. For comparison, MLEs and ASEs are also given for the
best traditional, ‘naı̈ve’ metapopulation model that assumes

perfect detection (i.e. p = 1). Terms not in the model selected
by AIC are denoted by –. Models contain parameters for

elevation (elev), forest cover (forest), year and survey date
(date). Dots denote interactions.

Parameter

Dynocc model

(p estimated)

‘Na€ıve’ model

(p = 1 fixed)

MLE ASE MLE ASE

Initial occupancy (w1)

Intercept �0.199 0.243 �0.244 0.281

elev 1.869 0.354 1.994 0.338

elev2 – – �0.140 0.341

forest 0.813 0.255 0.215 0.360

forest2 �0.142 0.197 0.005 0.210

elev.forest 0.548 0.254 0.501 0.277

elev.forest2 �0.621 0.243 �0.444 0.276

elev2.forest – – 1.018 0.373

elev2.forest2 – – – –
Colonization (c)
year2000 �0.432 0.345 �0.917 0.295

year2001 0.487 0.345 0.006 0.239

year2002 0.204 0.363 0.047 0.252

year2003 �0.834 0.510 �0.812 0.314

year2004 �0.708 0.434 �0.236 0.260

year2005 �0.106 0.426 �0.672 0.281

year2006 �0.511 0.520 �0.125 0.240

elev 0.509 0.227 0.939 0.163

elev2 �0.841 0.313 �0.769 0.230

forest �0.825 0.324 �0.357 0.209

forest2 0.092 0.265 0.034 0.168

elev.forest 0.563 0.273 0.033 0.137

elev.forest2 0.031 0.268 �0.151 0.132

elev2.forest 1.466 0.406 0.959 0.213

elev2.forest2 �0.833 0.399 �0.314 0.206

Extinction (e)
year2000 0.442 0.322 0.742 0.278

year2001 �0.453 0.377 �0.181 0.326

year2002 �1.889 0.484 �1.176 0.312

year2003 �1.240 0.400 �0.411 0.250

year2004 �0.983 0.330 �0.572 0.286

year2005 �0.962 0.537 0.188 0.270

year2006 �1.565 0.471 �0.915 0.329

elev �1.102 0.225 �0.972 0.193

elev2 – – 0.074 0.192

forest �0.616 0.169 �0.907 0.184

forest2 – – 0.323 0.118

elev.forest 0.524 0.198 �0.687 0.218

elev.forest2 – – 0.356 0.164

elev2.forest – – – –
elev2.forest2 – – – –

Detection

year2000 0.386 0.175 – –

year2001 �0.348 0.204 – –
year2002 �0.123 0.180 – –

year2003 0.168 0.160 – –

Table 1 Continued

Parameter

Dynocc model

(p estimated)

‘Na€ıve’ model

(p = 1 fixed)

MLE ASE MLE ASE

year2004 �0.188 0.180 – –
year2005 0.461 0.176 – –

year2006 �0.783 0.213 – –
year2007 0.110 0.165 – –

elev 0.575 0.122 – –
elev2 �0.091 0.135 – –

forest 0.107 0.162 – –
forest2 �0.042 0.090 – –

date 0.037 0.057 – –
date2 0.117 0.048 – –

elev.forest 0.243 0.192 – –
elev.forest2 �0.021 0.116 – –

elev2.forest 0.651 0.199 – –

elev2.forest2 �0.243 0.130 – –
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Imperfect detection in species distribution modelling

Almost all current species distribution models make strong

assumptions about species detectability (p): that it is either

perfect (p = 1) or at least that it does not vary over the time

interval covered by the study and the environmental gradi-

ents surveyed. By explicitly accounting for the detection pro-

cess, site-occupancy models do not require such, usually

untested, assumptions. On the other hand, the site-occu-

pancy modelling framework requires replicate observations

to be made at least at some sites and for at least some time

periods, within which closure (i.e. no change in the occur-

rence status of a site) can be assumed. These requirements

are not as restrictive as they may first appear. Additionally,

most importantly and in spite of assertions to the contrary

(e.g. G�omez-Rodr�ıguez et al., 2012), replicate observations

need not be made at all sites nor during all primary periods

(i.e. breeding seasons in our study). The model may be fitted

to data sets that lack replicates for some sites and/or times.

The information about detectability is obtained from the

sites and times where replication is available and the model

assumes that detection probability at sites and times without

replication is identical to those where there is replication or,

alternatively, variation in detection may be modelled using

covariates that are also available at those sites or times. As

an example, the analyses reported in K�ery et al. (2010a,b)

had replicated observations for only 30–60% of the sites.

Second, replicates may sometimes be deduced from databases

containing records from multiple species (e.g. K�ery et al.,

2010b). And third, the closure assumption may sometimes

be relaxed: if during the periods within which closure is

assumed the species moves in and out of the sample plots,

and surveys are conducted such that those movements can

be considered random, the occupancy estimator remains

unbiased; it simply needs to be interpreted as probability of

use, rather than of permanent occurrence (MacKenzie et al.,

2006, p. 105). Closure issues can be entirely avoided by mod-

elling occupancy via estimation of the rate of detections

within single survey visits (Garrard et al., 2008; Guillera-Ar-

roita et al., 2011, 2012).

Figure 2 Annual variation in range
dynamics and detection parameters for the

European crossbill (Loxia curvirostra) in
Switzerland from 2000 to 2007 under the

dynamic occupancy model where detection
probability (p) is estimated (filled circles)

and under the traditional metapopulation
model with the assumption that p = 1

(open circles). Lines represent 95%
confidence intervals based on asymptotic

standard errors except for occupancy
probability, where they are based on

nonparametric bootstrapping (1000
replicates).
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Figure 3 Relationship between detection probability, year and
survey date for the European crossbill (Loxia curvirostra) in

Switzerland from 2000 to 2007. The thick black line shows the
average over all years (figure based on parameter estimates in

Table 1). Predictions were made at average values of the other

covariates (i.e. elevation and forest).
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Imperfect detection also has implications regarding the

methods traditionally used for model validation in other spe-

cies distribution modelling approaches. For instance, one

could compute the area under the receiver operating charac-

teristic curve (AUC) for the ability to predict detections (Rota

et al., 2011). This can be taken as a vague indication of

goodness of fit but it is not a direct measure of predictive

performance for species occurrences. Rather, it expresses how

well a model predicts the product of occurrence probability

and conditional detection probability (Yackulic et al., 2012).

Other goodness-of-fit tests are available, such as the one used

in this study, but there is scope for further research in this

area.

Species detectability is the product of various mechanisms,

including local abundance, animal behaviour and surveyor

skills, with the variation in abundance often being a key fac-

tor leading to its spatial or temporal variation (K�ery et al.,

2010a). By using the dynamic occupancy modelling frame-

work we were able to investigate the range dynamics of the

European crossbill accounting for its imperfect detection.

Disregarding the issue of imperfect detection when modelling

range dynamics from detection/non-detection data can lead

to biased inferences, with false absences inducing negative

bias in the estimators of occupancy and survival probabilities

(1�e) and the slope of covariate relationships and a positive

bias in turnover rates (Royle & K�ery, 2007; K�ery & Schaub,

2012). Analyses of presence-only data are similarly affected

by imperfect detection. Consider the extreme case of the spe-

cies preferring habitat B over A, but being much harder to

detect in B. No amount of sophisticated modelling will pre-

vent us from concluding that A is highly preferred over B.

The inability to disentangle the occupancy and detection

processes would then be propagated to the estimation of the

processes underlying occupancy dynamics (Yackulic et al.,

2012).

Note that, while the model accounts for false negatives, it

assumes that there are no false positives in the data. We

believe that this assumption is reasonable for our study, as

the European crossbill is the only Loxia species present in

Switzerland and is easily identifiable owing to its distinctive

calls, which are hard to misidentify. However, misidentifica-

tions leading to false positives may not be rare in other

studies or for other species and it has been shown that

these can induce severe bias in the estimators of occupancy,

colonization and extinction (McClintock et al., 2010).

Accounting for this source of error can therefore be critical

in some applications. Miller et al. (2011) propose tech-

niques to do this for single-season occupancy models that

can be readily incorporated into the dynamic occupancy

modelling framework.

Although large-scale studies of species range dynamics

have traditionally disregarded imperfect detection, two recent

exceptions that account for this issue using the dynamic

occupancy model are Eraud et al. (2007) and Altwegg et al.

(2008), both studying bird species with expanding ranges.

However, neither of these studies produces predictive maps

for the parameters that govern range dynamics, like we do

for the crossbill in Switzerland, and which we believe provide

a useful tool for understanding and communicating the

results of these analyses.

Figure 4 Predicted response in

environmental space: joint effects of
elevation and forest cover on the range

dynamics and detection parameters for the
European crossbill (Loxia curvirostra) in

Switzerland from 2000 to 2007 (based on
parameter estimates in Table 1): first-year

occupancy probability (top left),
colonization probability (top right),

extinction probability (bottom left) and
detection probability (bottom right). Plots

for colonization, extinction and detection
are averaged over all study years. Detection

probability was computed for the mean
survey date. The range of grey to red colour

corresponds to a range of low to high
probability (same scale as in Fig. 5). Circles

represent the observed covariate values at
the 267 sample plots.
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Modelling of range dynamics

The concept of range dynamics involves different aspects. Let

us first consider a case in which the overall extent of occur-

rence of the species is relatively stable. Even if the probabili-

ties of colonization (c) and local extinction (e) are constant

within the timeframe of the study, this does not necessarily

imply that such system is at equilibrium in the sense that

species occupancy may still be in a transient stage. In this

connection, we would like to draw attention to a common

misconception in the interpretation of the parameters gov-

erning Markovian dynamics, namely that one can extract

conclusions regarding the increase/decline in the number of

sites occupied by a species simply by comparing the value of

colonization and local extinction probabilities. For instance,

Eraud et al. (2007, p. 1083) claim that ‘local extinction was

lower than local colonization, thus explaining the positive

trend in site occupancy’, while Altwegg et al. (2008, p. 582)

state that ‘colonization exceeded extinction, and [the species]

thus occupied more sites over time’. Relating the increase in

species occupancy over time simply to the fact that coloniza-

tion c is greater than local extinction e is incorrect. In the

absence of time-variation in the range dynamics parameters,

site occupancy will tend over time to an equilibrium value

weq = c/(c + e). This has implications not always realized by

all. The fact that c is greater than e only implies that occu-

pancy will tend to a value weq > 0.5. Likewise, e > c does

not imply that the species will disappear from the study area,

only that weq < 0.5. The actual direction of the change in

occupancy over time will depend on whether initial occu-

pancy w1 is above or below weq. For example, a decline in

occupancy is experienced if w1 > weq, regardless of c being

larger or smaller than e. Note also that, even if a system

has reached the equilibrium, this does not mean that the
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Figure 5 Predicted response in geographical space: visualization of the range dynamics of the European crossbill (Loxia curvirostra) in
Switzerland in 2002–2003. Occupancy probability in 2003 (top left), colonization probability for the interval 2002–2003 (top right),

extinction probability for the interval 2002–2003 (bottom left), and detection probability in 2003 (computed at the mean survey date;
bottom right). Areas at elevations greater than 2250 m a.s.l. are masked in white.
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of variation, in %) in detection probability of the European
crossbill (Loxia curvirostra) in Switzerland in 2003 (asymptotic

standard errors; see Fig. 5, bottom right). Crosses show the
locations of the 267 sampled quadrats.
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occupancy status of individual sites does not change, but that

the overall proportion of occupied sites remains constant.

Checking whether the estimated current occupancy and

the computed equilibrium occupancy probabilities match is

thus one way of telling whether a species is at equilibrium.

In the crossbill example, taking the mean values of the col-

onization and extinction probabilities yields an equilibrium

occupancy of 0.57. This is more than the mean observed

occupancy of 0.42 and might lead us to conclude that the

Swiss range of the crossbill will increase in the future.

However, this ignores the annual variation in colonization

and extinction, a further driver of range dynamics. In the

short term, crossbills exhibit a highly dynamic distribution

in Switzerland which changes from year to year in

response to local factors (e.g. spruce mast) and to coarser

scale factors (e.g. irruptions from other European coun-

tries; Schmid et al., 1998). A possible approach to gauge

the ‘equilibrium’ question in this case would be to model

annual variability in extinction and colonization as random

effects and then conduct stochastic projections of the sys-

tem ahead in time to explore the characteristics of the

‘equilibrium’ regime attained under the current mean and

variance of the colonization and extinction probabilities.

This could be carried out more conveniently within the

Bayesian framework, e.g. using WinBUGS or JAGS (K�ery &

Schaub, 2012).

Finally, our study has focused on exploring the processes

governing range dynamics for a species with considerable

dispersal potential, which is well established across the area

of the study, so we can assume independence in the occu-

pancy status of our sites. However, the occupancy dynamics

modelling framework lends itself to extensions that allow the

investigation of spatially correlated range changes, such as in

the spread of invasive species. This has previously been done

by incorporating in the dynamics parameters a covariate rep-

resenting the interaction of time and distance from the point

of release (MacKenzie et al., 2006, pp. 201–203) and more

recently using a more mechanistic model which incorporates

a latent auto-covariate that reflects the influence of the occu-

pancy status of neighbouring cells (Bled et al., 2011). One

further important avenue for progress is to model range

dynamics by combining presence–absence data and time ser-

ies of population counts in a spatially explicit model of pop-

ulation dynamics and dispersal (e.g. Pagel & Schurr, 2012).

Nevertheless, such models require much more and different

data (i.e. population counts), while the data required for

occupancy modelling are ‘cheaper’ to obtain.

Dynamic occupancy model of European crossbills

in Switzerland

Fitting the dynamic occupancy model to data for the Euro-

pean crossbill at a 1 km2 scale in Switzerland, it became

obvious that detection probability varied in space and time

and was therefore an important source of variation in the

observed data. There were pronounced spatial patterns in

detection probability related to the environment (elevation,

forest cover) which, if not accounted for, could have led to

biased inferences about the parameters driving range dynam-

ics and their relationship with covariates. The discrepancies

with the predictions obtained assuming perfect detection

illustrate the relevance of accounting for the detection pro-

cess. The variation in crossbill detectability is likely to reflect

differences in abundance, being higher in areas of mid–high

elevation with high forest cover where occupancy is also

higher. There has not been any formal assessment in the lit-

erature about the effects of abundance-induced detection

heterogeneity for the dynamic occupancy model; however,

one could expect bias to be induced in the estimators, as

happens in static models where occupancy can be underesti-

mated (Royle, 2006; Dorazio, 2007). By incorporating covari-

ates that are likely to reflect abundance, we are at least

partially controlling for this in our study.

Our crossbill models do not contain a very elaborate suite

of explanatory variables, but simply elevation and forest

cover. We emphasize, though, that the main aim of our

study is to illustrate the use of dynamic occupancy models

and the ability to produce maps including those of coloniza-

tion and extinction probabilities. Although elevation explains

a large amount of the variability in occurrence in any species

in such a mountainous country as Switzerland, and forest

cover is similarly a powerful explanation for a forest species,

we would not want to argue that just two covariates, plus

their interactions, are always enough to produce useful maps

of species distributions and their dynamic components. In

our study we did not have information about the proportion

of conifers per quadrat, which we would expect to be a bet-

ter predictor for crossbill occupancy. Nevertheless, the inter-

actions between elevation and forest cover may partly have

accommodated the fact that the proportion of conifers is a

function of elevation, being much higher at medium to high

elevations. Not surprisingly, interactions between elevation

and forest cover proved significant in all model components.

Our model reflects a situation in which the species spreads

out from a consistent core into more marginal areas in

‘good’ years, retracting to the core during ‘bad’ years. Note

that, if the relationship with the environment is expected to

change over time, interactions between environmental vari-

ables and year can be added to the model.

CONCLUSIONS

We have emphasized that any model of abundance or occur-

rence with spatially indexed covariates is a species distribu-

tion model that allows distribution maps to be obtained

simply by projecting its estimates onto a wider region or

even an entire country. In particular, in dynamic occupancy

models, maps of the dynamics parameters underlying change

in distributions may be drawn as well; these may give impor-

tant insights for instance into the dynamics of a population

of stable distribution at large spatial scales, or into

the expansion and contraction areas of species subject to
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directional range changes (e.g. the invasion of the collared

dove Streptopelia decaocto in the USA; Bled et al., 2011). Dif-

ferent processes can lead to similar occupancy patterns and

mapping the dynamic parameters can be a useful tool for

better understanding of the species distribution. We note

that maps of detection probability (p) can also be produced;

these can be thought of as an indication of the relative bias

of a modelling method that would have ignored imperfect

detection, with larger bias to be expected wherever p is small.

Such maps provide an indication of the amount of survey

effort needed to detect the species in different areas (Olea &

Mateo-Tom�as, 2011). It is also relevant to realize that the

very same covariates that affect detectability may also affect

the biological states and their dynamics, as illustrated by our

crossbill study; for species distributions this is almost to be

expected, as detection probability will often reflect the under-

lying spatial distribution of population abundance, poten-

tially governed by the same effects as occupancy and its

range dynamics. Finally, within the realm of parametric sta-

tistical models, it is straightforward to produce maps of the

uncertainty of the predictions (e.g. standard error or confi-

dence interval ranges) for all parameters considered. Quanti-

fying and honestly communicating the uncertainty in species

distribution maps is a greatly under-appreciated but very

important issue.
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Appendix S1 Model selection results. 

 

Model selection results for European crossbill (Loxia curvirostra) range dynamics in Switzerland 

from 2000 to 2007 with two variants: colonization first or extinction first. Model selection was 

approached sequentially. After an initial comparison of a fully time‐dependent and a fully 

constant model, we first optimized the submodel for detection ( ) and then that for initial (first‐

year) occupancy ( 1), colonization ( ) and local extinction probability ( ) (or, in a variant, 

extinction before colonization). At each step, we retained the best model structure,based on 

Akaike’s information criterion, from the previous step. At the end of each section, all possible 

single‐term deletions were tried (subject to the rules of marginality, McCullagh & Nelder, 1989), 

and if they resulted in a more parsimonious model, it was retained. Information for the most 

parsimonious model in each section is printed in bold‐face. Column headings denote the 

number of estimated parameters (Npar), the maximum value of the negative log‐likelihood 

(NLL), AIC score (AIC) and the difference between the AIC and the lowest‐AIC model in each 

subsection of the table (∆AIC). Effects are denoted  (year), e (elevation), f (forest cover), d 

(survey date) and r (route length). Quadratic terms are denoted by a superscript 2 and 

interactions by dots. Ellipses (...) denote identical structure of a submodel as in the model 

above. 

Model  Npar  NLL   

(a) Modelling time dependence in parameters         

1(.) (.) (.) (.)p     4  2630  4729  57.0 

1(.) (Y) (Y) (Y)p     23  2313  4672  0.0 

(b) Modelling patterns in detection probability ( p )         

Y

AIC AIC
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1(.) (Y) (Y) (Y)p     23  2313  4672  361.8 

1(.) (Y) (Y) (Y+d)p   24  2303  4653  343.1 

2
1(.) (Y) (Y) (Y+d+d )p     25  2300  4650  340.5 

2
1(.) (Y) (Y) (Y+d+d +r)p  

 
26  2300  4651  341.5 

2
1(.) (Y) (Y) (Y+e+d+d +r)p  

 
27  2232  4518  207.8 

2 2
1(.) (Y) (Y) (Y+e+e +d+d +r)p     28  2224  4503  193.6 

2 2
1(.) (Y) (Y) (Y+e+e +f+d+d +r)p  

 
29  2185  4429  118.9 

2 2 2
1(.) (Y) (Y) (Y+e+e +f+f +d+d +r)p     30  2163  4387  76.9 

2 2 2
1(.) (Y) (Y) (Y+e+e +f+f +d+d +r+e.f )p     31  2159  4380  70.6 

2 2 2 2
1(.) (Y) (Y) (Y+e+e +f+f +d+d +r e.f+e.f )p    32  2150  4364  54.0 

2 2 2 2 2
1(.) (Y) (Y) (Y+e+e +f+f +d+d +r+e.f+e.f e .f )p    33  2129  4323  13.2 

2 2 2 2 2 2 2
1(.) (Y) (Y) (Y+e+e +f+f +d+d +r+e.f+e.f e .f +e .f )p    34  2121  4310  0.0 

2 2 2 2 2 2 2
1(.) (Y) (Y) (Y+e+e +f+f +d+d +e.f+e.f e .f +e .f )p    33  2121  4308  ‐1.9 

(c) Modelling patterns in first‐year occupancy probability ( )         

  33  2121  4308  30.5 

1(e) (Y) (Y) (...)p     34  2106  4280  2.3 

2
1(e+e ) (Y) (Y) (...)p     35  2106  4282  4.1 

2
1(e+e +f ) (Y) (Y) (...)p     36  2103  4279  1.3 

2 2
1(e+e +f+f ) (Y) (Y) (...)p     37  2103  4280  2.9 

2 2
1(e+e +f+f +e.f ) (Y) (Y) (...)p     38  2103  4281  4.1 

2 2 2
1(e+e +f+f +e.f+e.f ) (Y) (Y) (...)p     39  2100  4278  0.3 

2 2 2 2
1(e+e +f+f +e.f+e.f +e .f ) (Y) (Y) (...)p     40  2099  4277  0.0 

2 2 2 2 2 2
1(e+e +f+f +e.f+e.f +e .f+e .f ) (Y) (Y) (...)p     41  2099  4279  2.0 

2 2
1(e+f+f +e.f+e.f ) (Y) (Y) (...)p  

 
38  2100  4276  ‐1.2 

Model selection variant 1: colonisation before extinction         

(d 1) Modelling patterns in colonization probability ( ) before extinction         

2 2
1(e+f+f +e.f+e.f ) (Y) (Y) (...)p     38  2100  4276  44.4 

1(...) (Y+e) (Y) (...)p     39  2091  4260  27.8 

1
2 2 2 2 2 2 2

1(.) (Y) (Y) (Y+e+e +f+f +d+d +e.f+e.f e .f +e .f )p   


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2
1(...) (Y+e+e ) (Y) (...)p     40  2085  4249  17.6 

2
1(...) (Y+e+e +f ) (Y) (...)p     41  2085  4251  19.6 

2 2
1(...) (Y+e+e +f+f ) (Y) (...)p     42  2082  4247  15.4 

2 2
1(...) (Y+e+e +f+f +e.f ) (Y) (...)p     43  2076  4238  5.8 

2 2 2
1(...) (Y+e+e +f+f +e.f+e.f ) (Y) (...)p     44  2075  4239  6.9 

2 2 2 2
1(...) (Y+e+e +f+f +e.f+e.f +e .f ) (Y) (...)p     45  2072  4234  2.2 

2 2 2 2 2 2
1(...) (Y+e+e +f+f +e.f+e.f +e .f+e .f ) (Y) (...)p     46  2070  4232  0.0 

(e 1) Modelling patterns in extinction probability ( ) after colonization         

2 2 2 2 2 2
1(...) (Y+e+e +f+f +e.f+e.f +e .f+e .f ) (Y) (...)p     46  2070  4232  13.5 

1(...) (...) (Y+e) (...)p     47  2065  4224  5.6 

2
1(...) (...) (Y+e+e ) (...)p     48  2065  4226  7.6 

2
1(...) (...) (Y+e+e +f ) (...)p     49  2061  4220  1.7 

2 2
1(...) (...) (Y+e+e +f+f ) (...)p     50  2061  4222  3.6 

2 2
1(...) (...) (Y+e+e +f+f +e.f ) (...)p     51  2058  4218  0.0 

2 2 2
1(...) (...) (Y+e+e +f+f +e.f+e.f ) (...)p     52  2058  4220  2.0 

2 2 2 2
1(...) (...) (Y+e+e +f+f +e.f+e.f +e .f ) (...)p     53  2058  4222  4.0 

2 2 2 2 2 2
1(...) (...) (Y+e+e +f+f +e.f+e.f +e .f+e .f ) (...)p     54  2057  4223  4.6 

2
1(...) (...) (Y+e+f+f +e.f ) (...)p  

 
50  2058  4216  ‐1.9 

1(...) (...) (Y+e+f+e.f ) (...)p  
 

49  2058  4214  ‐3.9 

Model selection variant 2: extinction before colonisation         

(d 2) Modelling patterns in extinction probability ( ) before colonization         

2 2
1(e+f+f +e.f+e.f ) (Y) (Y) (...)p     38  2100  4276  18.7 

1(...) (Y) (Y+e) (...)p     39  2092  4262  4.8 

2
1(...) (Y) (Y+e+e ) (...)p     40  2090  4260  2.9 

2
1(...) (Y) (Y+e+e +f ) (...)p     41  2088  4257  0.0 

2 2
1(...) (Y) (Y+e+e +f+f ) (...)p     42  2088  4259  1.5 

2 2
1(...) (Y) (Y+e+e +f+f +e.f ) (...)p     43  2087  4261  3.2 

2 2 2
1(...) (Y) (Y+e+e +f+f +e.f+e.f ) (...)p     44  2087  4261  3.6 


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2 2 2 2
1(...) (Y) (Y+e+e +f+f +e.f+e.f +e .f ) (...)p     45  2086  4261  3.9 

2 2 2 2 2 2
1(...) (Y) (Y+e+e +f+f +e.f+e.f +e .f+e .f ) (...)p     46  2085  4262  4.5 

(e 2) Modelling patterns in colonization probability ( ) after extinction         

2
1(...) (...) (Y+e+e +f ) (...)p     41  2088  4257  37.6 

1(...) (Y+e) (...) (...)p     42  2084  4252  32.1 

2
1(...) (Y+e+e ) (...) (...)p     43  2076  4238  17.9 

2
1(...) (Y+e+e +f ) (...) (...)p     44  2075  4239  18.8 

2 2
1(...) (Y+e+e +f+f ) (...) (...)p     45  2073  4237  16.6 

2 2
1(...) (Y+e+e +f+f +e.f ) (...) (...)p     46  2068  4228  7.8 

2 2 2
1(...) (Y+e+e +f+f +e.f+e.f ) (...) (...)p     47  2067  4228  8.0 

2 2 2 2
1(...) (Y+e+e +f+f +e.f+e.f +e .f ) (...) (...)p     48  2062  4221  0.9 

2 2 2 2 2 2
1(...) (Y+e+e +f+f +e.f+e.f +e .f+e .f ) (...) (...)p     49  2061  4220  0.0 
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Appendix S2 Range dynamics of the European crossbill (Loxia curvirostra) in Switzerland from 2000 to 2007. Predictions of all main 
parameters under the dynamic occupancy model (left panel) and under a traditional metapopulation model where detection is 
implicitly assumed to be equal to 1 (central panel). The right panels show the absolute difference between the maps of the two models. 
Detection maps are shown only for the dynamic occupancy model because there is no detection parameter in the traditional 
metapopulation model. Areas above 2250 m a.s.l. are masked in white. 

 

M1: Dynamic occupancy model  M2: Traditional metapopulation model  Map of absolute differences (M2 − M1) 
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