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Outline of talk

e Intro: What's the fuss ?

« Role of models in science

« Analysis of models: frequentist and Bayesian

« Bayesian computation

o« WIinBUGS

o Hierarchical models

 Concluding remarks on Bayesian/frequentist choice
« BUGS frees the hierarchical modeler in you
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What’s the fuss ?

e« A simple example
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What’s the fuss ?

e« A simple example

Trend estimate
b=-1.754

Occupied sites (%)

y=a+b*X +¢
g~N(0,o5°)
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What’s the fuss ?

e« A simple example

Trend estimate
b=-1.754
b=-1.756

= MLE
=== Posterior mean

Occupied sites (%)
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What’s the fuss ?

o Statistical models exist independently from method of
statistical analysis !

« There are no "Bayesian models” or “frequentist models”

« May choose to analyse a model (e.g., linear regression) in
Bayesian way

o Typically, Bayesian and frequentist analyses yield
numerically very similar estimates
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Role of models In science

e Science: explain nature, so you can better understand
and/or predict

« Management (e.g., conservation): ... SO you can better
manage Nature

o Nature too complex to understand
e« Must reduce complexity

« A model (broadly): greatly simplified version of nature,
should help understand/predict

« Every model has an objective:
e.g. understanding ® mechanism
e.g. predicting = description
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Everybody is a modeler !

« Model = set of assumptions
o Description of model: words, graphs, algebra, ...
« Any explanation is based on a model, stated or unstated

To make sense of an observation,
everybody needs a model ...
Whether he knows it or not !

o Interpretation of data without a model is impossible
e [oOrisit?..... what about data mining ?]

o Explicit models are better than implicit models (e.qg.,
assumptions more transparent, can test them)

. vogelwarte.ch




Mathematical and statistical models

« Mathematical models: written in algebra, e.qg.,
y=o+p*xX

« Advantage: clarity greatly increased over description in
words

o Algebraic model descriptions enforce clarity of thought
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Mathematical and statistical models

Mathematical models: written in algebra, e.qg.,
y=o+p*xX

« Advantage: clarity greatly increased over description in
words

o Algebraic model descriptions enforce clarity of thought

o Statistical models: acknowledge stochasticity in systems,
e.q.

Yy=a+p*xX+e
e ~ Normal(0, o2)
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Statistical models

o Statistical models:
Yy=a+p*X+e
e ~ Normal(0, c2)

Response = systematic part + random part

o Parametric statistical model: Description of the processes
thought to have produced y
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Statistical models

o Statistical models:
Yy=a+p*X+e
e ~ Normal(0, o2)

Response = systematic part + random part

o Parametric statistical model: Description of the processes
thought to have produced y

o Generalized linear model (GLM):
quintessential statistical model
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Statistical models

Three most frequent GLMs:

« Normal response:
Random part: y ~ Normal(u, c?)
Systematic part: u=o+p*x

e Poisson response:
Random part: y ~ Poisson(A)
Systematic part: log(A) =a + B * X

« Binomial response:
Random part: y ~ Binomial(p, N)
Systematic part: logit(p) = a + B * X
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Analysis of a statistical model

Sketch of a model
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 Data viewed as result of random process(es)

o Input x, output y, parameters 6

« Parameters (B) fixed and unknown constants

« How should we guess at value(s) of 8 ?

... at missing covariates (x) ? ... at missing response (y) ?

--> Statisticians devise many procedures for guessing, e.qg.,
- method of moments

) -
- 4 U1 CJ

mimum likelihood, naximum partial likelihood, pseudo-
Heelheeds—penalized likelihood, ...
Bayesian analysis
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Freguentist analysis of a model

« Example: Estimate probability of detection (8) of tadpoles
-> Release n=50 in artificial pond, later resight y=20

=
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Freguentist analysis of a model

(One) Frequentist way of gquessing at 8: maximum likelihood

Parametric model describes data-generating probabilistic
mechanism: sampling distribution p(y|8)

e ‘probability of observing data y, given fixed param. value 8"

« Note: probability statement about the data, not about
parameter 6

« Probability defined as long-run frequency in hypothetical
replicate data sets

E.g., binomial sampling distribution:
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Freguentist analysis of a model

Maximum likelihood

« ldea: good choice of 6 is that which maximises function
value of sampling distribution for my data set

B 50! 20 5020
P(20[6) = 20!(50—20)!9 (1-6)

o Likelihood function: read sampling distribution “in
reverse”, i.e., as a function of 6

L(O|Y) = 0’ (1-0)""

yl(n—y)!
o Call maximiser of L the Maximum Likelihood estimate (MLE)
« MLE makes actual, observed data most probable
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Freguentist analysis of a model

Maximum likelihood
e How to find the MLE ?
- Analytically (sometimes)

- Numerically (most of the times)
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Frequentist analysis of a model

Maximum likelihood

« Numerical estimation by brute force:
try out and plot large number of values for 6

Likelihood function in tadpole example
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Freguentist analysis of a model

Maximum likelihood

« Numerical estimation by function minimisation: e.g. optim()
in R (also nim() and others)

# Define the data
r <- 20
N <- 50

# Define negative log-likelihood function
nll <- function(p) -dbinom(r, size = N, prob = p, log = TRUE)

# Minimize function for observed data and return MLE
fit <- optim(par = 0.5, fn = nll, method = "BFGS")

VVVVVVVVYV

Maximum likelithood estimate of p: 0.4000000
>

> Fit

$par

[1] 0.4000000

$value
[1] 2.166669

. vogelwarte.ch




Freguentist analysis of a model

Maximum likelihood

« Numerical estimation using special functions: R gIm(Q)

> # Estimate parameter on link scale
> fm <- gIm(cbind(20,30) ~ 1, family = binomial)
> summary (fm)

Call:
glm(formula = cbind(20, 30) ~ 1, family = binomial)

Deviance Residuals:

[1] O
Coefficients:

Estimate Std. Error z value Pr(cj|z|)
(Intercept) -0.4055 0.2887 -1.405 0.16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 0.0000e+00 on O degrees of freedom
Residual deviance: 4.4409e-15 on O degrees of freedom
AIC: 6.3333

Number of Fisher Scoring i1terations: 2
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Freguentist analysis of a model

Some characteristics of maximum likelihood
e Long history (Fisher, 1920s)
Much theory, well studied and understood

« “Automatic inference”: simply define likelihood function
and then find parameter values that maximise it

e Produces “good estimates”, e.g., asymptotically unbiased,
consistent, transformation invariant

e “Gold standard” in statistics

Most statistical modeling in ecology is based on MLE
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Freguentist analysis of a model

BUT:
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MLEs can be hard or impossible for complex models

SEs and CIs asymptotic (valid for infinite sample size),
unknown how good for your ecological data set

Functions of parameters difficult to obtain, i.e., error
propagation can be hard

“Indirect” probability statements about data, rather than
about params: p(y|06)

959% CI does not contain 6 with P=0.95

Impossible in principle to say things like "I am 95% certain
that this population is declining”

Appeal to large number of hypothetical replicate data
unsatisfactory in many practical cases: e.g., what does a
“replicate population of the Florida panther” mean ?




Bayesian analysis of a model

Sketch of model

D

X

Y

« Data viewed as result of random process(es)
 Input X, output y, parameters 6
« Parameters (6) fixed and unknown constants

« How should we guess at values of 8 ? ... or missing x ?
... or predicty ?
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Bayesian analysis of a model

Sketch of model

X > e > y

« Data viewed as result of random process(es)
 Input X, output y, parameters 6
« Parameters (6) fixed and unknown constants

« How should we guess at values of 8 ? ... or missing x ?
... or predicty ?

« Bayesian approach: in the face of uncertainty about
magnitude of 6 use conditional probability, p(0|y)

e "“"Guess” at 6 conditions on what is certain or
what we know (i.e., data x and y)
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Bayesian analysis of a model

Recipe of every Bayesian analysis:

. vogelwarte.ch

1. What is known ? The data (y=20, n=50)
2. What is unknown ?  Prob. of detection (8)
3. What to do ? Calculate p(6]y)

/4

“Prob. of parameter, given data

Note: probability statement about the parameter
Data, once collected, are fixed

Degree-of-belief concept of probability:
Express imperfect knowledge (about 0) using probability
distribution

Hence, parameters treated as if they were random variables
How should p(6|y) be computed ?




Bayesian analysis of a model

Bavyes rule

p(BIA)p(A) _ p(A B)
p(B) p(B)

p(A|B) =

« Mathematical fact of probability

e E.g., can be deduced from p(A,B) = p(B | A) * p(A)
(joint prob. = conditional prob. * marginal/unconditional prob.)

« Can be applied in non-Bayesian probability calculations for
observable quantities, e.g., clinical testing
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Bayesian analysis of a model

« Example: football and birdwatching (from Pigliucci)

Good weather Bad weather (b)
(9)
Go birdwatching 0.5 0.7
(B)
Watch football (F)
0.6

« What is p(b|F) ?

. vogelwarte.ch




Bayesian analysis of a model

« Example: football and birdwatching (from Pigliucci)

Good weather Bad weather (b)
(9)
Go birdwatching 0.5 0.2 0.7
(B)
Watch football (F) 0.1 0.2 0.3
0.6 0.4 1.0

« What is p(b|F) ?
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Bayesian analysis of a model

« Bayes rule
P(B|A)p(A)
AlB)=
P(A|B) o(B)

« Thomas Bayes, English minister/mathematician
(1702-1761)

« Thomas Bayes applied the rule to unobservables such as
parameters, i.e., for parameter estimation
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Bayesian analysis of a model

Bavyes rule for statistical inference:

p@ly) =

o Posterior distribution:

o Likelihood function:
e Prior distribution:

e Prob. of data:

p(y|9)p(0) _ p(y.0)
p(y) p(y)

p(@1y)
0(y|0)

0(6)
p(y) = [ p(y|6)p(6)d6

« NOTE: Use probability to express imperfect knowledge

e Direct probability statements about unknown quantites:
Can say "... I am 95% certain that prob of detection > 0.2" |
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Bayesian analysis of a model

Formal steps in Bayesian analysis

B p(@1]y) =

Use probability as a universal measure of uncertainty about
unknown quantities (here: 6)

Treat all statisical inference (estimation, testing, ...) as a
simple probability calculation

Express your knowledge about parameter 6 (excluding
information contained in y) by a probability distribution:
the prior p(0)

Use Bayes rule to update that knowledge with the
information contained in the data y and embodied by the
likelihood function, p(y|06)

Result is probability distribution, p(8|y), for every unknown
Unlike ML, where result is single value

p(y|O)p(o)
p(y)




Bayesian analysis of a model

Heuristic appeal of Baves rule as model for inference

“"Human” concept of probability (*I am 95% certain that...”)
« p(Bly) o p(y| 8) x p(©)

“Posterior = Likelihood x prior”
o Like human learning:

- Conclusion is combination of experience and new
information (e.g., 3 m tall man)

- New information changes (“updates”) my previous state
of knowledge to my current state of knowledge

- Every analysis could be a meta-analysis:
synthesizes all existing knowledge
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Bayesian analysis of a model

Advantage of prior distribution:

« Bayesian inference allows formal incorporation of external
knowledge into estimation via prior distribution

o Strength of Bayesian analysis !
« E.g., small sample sizes (ecology of rare species)
« Advantage of ‘informative priors’:

- Don’t feign to be stupid

- More precise estimates

- Can estimate additional parameters

p(y|8)p(0)
p(y)

p@ly)=
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Bayesian analysis of a model

Disadvantage of prior distribution (?):

e ‘Results’ (i.e., estimates) always depend on priors !

« Have to choose priors --> analysis ‘subjective’

e But can specify ‘non-informative’ (vague etc.) priors
e (though may be difficult to specify “non-information”)
e Must report priors for every analysis

o Justify choice of informative priors

« Here (as Royle & Dorazio 2008): specify vague priors,
typically on “natural®™ scale

o Estimates then (very much) resemble MLEs

p(y|O)p(O)
p(y)

p@ly)=
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Graphical illustration of 4 Bayesian analyses of tadpole EX.

Density

Density
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Bayesian computation

« So why has not everyone always been a Bayesian ?
--> Bayes rule was hard to apply in practice

« Denominator: n-dimensional integral for a model with
n parameters

p(y[6)p()

0|y) =
pa|y) @

p(y) = [ p(y|6)p(6)de

o Integrals impossible to compute for most realistic models

 For centuries, Bayesian analysis of complex models not
possible
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Bayesian computation

o Early 1990s: statisticians rediscover work from the 1950’s in
physics

--> Use stochastic simulation to draw dependent samples
from posterior distribution

« Don't actually evaluate integrals in Bayes rule

 Instead, approximate posterior to arbitrary degree of
accuracy by drawing large sample

« Markov chain Monte Carlo (MCMCQ)
« Boost to Bayesian statistics in statistics community

0(9y) = LY10)P©)
B o p(y)




Bayesian computation

e MCMC: Stochastic algorithm to produce sequence of
dependent random numbers (= Markov chain)

o Converge to equilibrium distribution (usually)

o Equilibrium distribution = desired posterior distribution
(if algorithm constructed well)

lambda[2] chains 1:3

80.0
60.01
40.01
20.0r

0.0

T T T
2 500 1000
iteration

0(9y) = LY10)P©)
B o p(y)




Bayesian computation

« When is equilibrium attained ?

« Run multiple chains from arbitrary starting places (inits)
« Assume convergence when all cover same ground

e Discard initial ‘burn-in” phase

« Summarize remainder (mean: point estimate; sd: analogue
of SE)

lambda[2] chains 1:3

80.0
60.0
40.0[
20.0f

0.0

T T T
2 500 1000
iteration

0(9y) = LY10)P©)
B o p(y)




Bayesian computation

> p

.9265
-4042
-4935
.4579

.4088
.3593
.2831
.3605

.3885 0.3482
-.3580 0.3880
.4827 0.4632
.4488 0.3914

.3850
.3688
.3765
.3474

-3311
.3793
.4186
.4444

[1]
L7]
[13]
[19]

O O O O
O O O O
O O O O
O O O O
O O O O

o

[2983] 0.3866 0.3265 0.3121 0.2337 0.3255 0.3912
[2989] 0.3446 0.3584 0.3839 0.4920 0.4068 0.3202
[2995] 0.3844 0.5067 0.4212 0.5759 0.2485 0.2362

o
o
o
o

o
o
o
o
o

0(9y) = LY10)P©)
B o p(y)




Bayesian computation

Histogram of posterior samples

> p
[1] 0.5265 0.4088 0.3885 0.3482 o
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Bayesian computation

Histogram of posterior samples

> p
[1] 0.5265 0.4088 0.3885 0.3482 © - - nlhir
[7] 0.4042 0.3593 0.3580 0.3880 I VT{
[13] 0.4935 0.2831 0.4827 0.4632 . | I
[19] 0.4579 0.3605 0.4488 0.3914 ,f R
1l
[2983] 0.3866 0.3265 0.3121 0.2337 /‘ \_
[2989] 0.3446 0.3584 0.3839 0.4920 o &: _\
[2995] 0.3844 0.5067 0.4212 0.5759 ! '\-
o~ - \_
_h'l
> mean(p) .
[1] 0.4047 . | . | !
> sd(p) 0.2 0.3 04 05 06
[1] 0-0674 Detection probability
> quantile(p, probs = c¢(0.025, 0.975))
2.5% 97 .5%
0.2771 0.5375 ( | (9) p(H)

B o p(y)




Bayesian computation

e Custom MCMC code for binomial proportion (tadpoles)
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The BUGS project

« Boost in Bayesian statistics initially not in ecology

« To code MCMC algorithms, need to know something about
statistics and especially about computing

« Change due to BUGS project:
Bayesian inference using Gibbs sampling

e Gibbs sampling: variant of MCMC
o Statisticians/Epidemiologists in Cambridge/UK
« Lunn et al. (2009), Statistics in Medicine, 3049-3067
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The BUGS project

e BUGS: Flexible, generic software, does:

1. Simple and intuitive model description language
(BUGS language)

2. Automatic development of MCMC algorithms
(algorithmic black box)

3. Run algorithm: produce posterior samples

e Three variants:

- WInBUGS: www.mrc-
bsu.cam.ac.uk/bugs/winbugs/contents.shtml

- OpenBUGS: www.openbugs.info/w/
- JAGS: mcmc-jags.sourceforge.net/
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The BUGS language

« Simple and intuitive model description language

o Implicit description of likelihood of model by nested
sequence of simple probability statements and deterministic
relationships between quantities

o Unexpected side-effect: BUGS language great to really
understand GLMs, random-effects/mixed models

e BUGS is not a black box in terms of the model fitted !

o Rather:
One of the most transparent ways of building a model
is by describing it in the BUGS language.
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Hierarchical models (HMs)

BUGS particularly good (natural) for hierarchical models

« HM: Nested sequence of observed and unobserved r.v.s:

o Factorization of joint distribution [x,y] to marginal ([x]) *
conditional distribution ([y|x])

o Flexible modeling of hidden structure and correlations
o Latent effects, random effects, mixed models ...

e« Can describe a large class of models as HM

« E.g., site-occupancy model:

z. ~ Bern(y)
. vogelwarte.ch y; ~ Bern(z; x p;)




Why we have become Bayesians
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Why we have become Bayesians

... and why you might want to become one, too !
(Quote from Bill Link)
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Why we have become Bayesians

3 types of advantages of Bayesian analysis by MCMC in BUGS:

(1) Bayesian paradigm:

- ‘Natural’ use of probability
- Formal introduction of prior information possible
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Why we have become Bayesians

3 types of advantages of Bayesian analysis by MCMC in BUGS:

(1) Bayesian paradigm:

- ‘Natural’ use of probability

- Formal introduction of prior information possible
(2) Bayesian computation (MCMC):

- Easy to fit HMs

- Trivial to compute functions of parameters
(with exact uncertainty intervals: error propagation)

. vogelwarte.ch




Why we have become Bayesians

3 types of advantages of Bayesian analysis by MCMC in BUGS:

(1) Bayesian paradigm:

- ‘Natural’ use of probability

- Formal introduction of prior information possible
(2) Bayesian computation (MCMC):

- Easy to fit HMs

- Trivial to compute functions of parameters
(with exact uncertainty intervals: error propagation)

(3) BUGS language and software (WinBUGS, OpenBUGS, JAGS):

- Implementation of complex, custom models
within reach of ecologists

- Enforces understanding of model
- WINnBUGS frees the modeler in you !

. vogelwarte.ch




Why we are not real Bayesians

e Seldom use informative priors
« Plus, some inconveniences of Bayesian analysis in BUGS:
- Take long time to run (often less for ML)
- Model selection is a pain (cf. AIC with ML)
- Sensitivity of results to prior choice (not with ML)
- Harder to explain
- BUGS so flexible that may fit nonsensical models
e Hence, happy to use maximum likelihood as well
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Conclusion on the Bayesian/frequentist choice

e Be eclectic !

e Choose what is most
useful for you

o Usually will not use BUGS
for trivial problems

« BUGS is fantastic
for more complex models
(except for large data sets !)

« BUGS language is great
to actually understand
your models

o Stay tuned: in the future,
there will (hopefully 1) - '
be better MCMC and even likelihood software for complex
models, e.g., HMs
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Should you learn to write your own MCMC samplers ?

« Claims made by one anonymous statistician:
“should discontinue use of BUGS software"

“only writing own sampler allows you to understand what’s
going on"

“writing own samplers is really easy"

e [TWO answers:
- emphatic no !
- cautious yes
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NO: you should NOT learn to write your own MCMC
samplers

CLEARLY, writing own samplers is NOT always easy, because
otherwise no statistician would EVER use BUGS

. IS not easy for everybody

. IS error-prone

. IS time-consuming

... hobody codes up his own Newton-Raphson algorithm for
GLM or Laplace approximation for mixed models

e ... IS apure waste of time !

e ... takes away time that could be used for exploring more
models and better understand them, write more or better
papers etc. ....

« BUGS lingua franca of Bayesian modeling: BUGS code usable
and adaptable for many more people than MCMC code
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YES: you should learn to write your own MCMC
samplers

e BUGS can be painfully slow
« even hacked MCMC algorithms can be much faster

o writing MCMC can give you much more insights and prevent
errors of interpretation

« more things can go wrong in BUGS than in simple GLM
Newton-Raphson or mixed-model-Laplace approximation in R

« Hence, if you are savvy statistically and programming-wise,
yves, by all means do learn to write your own samplers !

e (but may still use BUGS for exploration and dissemination)
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BUGS frees the (hierarchical) modeler in you

o Can build statistical model in (almost) exactly the way you
imagine data-generating process, i.e. as an HM

e Invites a principled and mechanistic approach
to statistical modeling, novel to most ecologists, i.e. HM

o Can allow ecologists to go in creative statistical modeling
where they have never even dreamt to go, i.e., by HM
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Want to learn WinBUGS/JAGS (and HMs) ?

Marc Kéry Marc Kéry

Michael Schaub

BAYESIAN POPULATION
ANALYSIS USING

WinBUGS

A hierarchical perspective

INTRODUCTION TO

WIinBUGS
FOR ECOLOGISTS

A Bayesian appreach to regression, ANOVA,

mixed models and related analyses
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