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Outline of talk

• Intro: What’s the fuss ?
• Role of models in science
• Analysis of models: frequentist and Bayesian
• Bayesian computation
• WinBUGS
• Hierarchical models
• Concluding remarks on Bayesian/frequentist choice
• BUGS frees the hierarchical modeler in you
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What’s the fuss ?

• Statistical models exist independently from method of 
statistical analysis !

• There are no “Bayesian models” or “frequentist models”
• May choose to analyse a model (e.g., linear regression) in 

Bayesian way
• Typically, Bayesian and frequentist analyses yield

numerically very similar estimates



Role of models in science

• Science: explain nature, so you can better understand
and/or predict

• Management (e.g., conservation): … so you can better 
manage Nature

• Nature too complex to understand
• Must reduce complexity
• A model (broadly): greatly simplified version of nature, 

should help understand/predict
• Every model has an objective:

e.g. understanding ≈ mechanism
e.g. predicting  ≈ description



Everybody is a modeler !

• Model = set of assumptions
• Description of model: words, graphs, algebra, ...
• Any explanation is based on a model, stated or unstated

To make sense of an observation, 
everybody needs a model ...

Whether he knows it or not !

• Interpretation of data without a model is impossible
• [or is it ? ..... what about data mining ?]
• Explicit models are better than implicit models (e.g., 

assumptions more transparent, can test them)



Mathematical and statistical models

• Mathematical models: written in algebra, e.g., 

y =  +  * x

• Advantage: clarity greatly increased over description in 
words

• Algebraic model descriptions enforce clarity of thought



Mathematical and statistical models

• Mathematical models: written in algebra, e.g., 

y =  +  * x

• Advantage: clarity greatly increased over description in 
words

• Algebraic model descriptions enforce clarity of thought
• Statistical models: acknowledge stochasticity in systems, 

e.g.

y =  +  * x + 
 ~ Normal(0, 2)



Statistical models

• Statistical models:
y =  +  * x + 
 ~ Normal(0, 2)

Response = systematic part + random part

• Parametric statistical model: Description of the processes 
thought to have produced y



Statistical models

• Statistical models:
y =  +  * x + 
 ~ Normal(0, 2)

Response = systematic part + random part

• Parametric statistical model: Description of the processes 
thought to have produced y

• Generalized linear model (GLM): 
quintessential statistical model



Statistical models

Three most frequent GLMs:

• Normal response:
Random part: y ~ Normal(, 2)

Systematic part:  =  +  * x

• Poisson response:
Random part: y ~ Poisson()

Systematic part: log() =  +  * x 

• Binomial response:
Random part: y ~ Binomial(p, N)

Systematic part: logit(p) =  +  * x 



Analysis of a statistical model

• Sketch of a model

• Data viewed as result of random process(es)
• Input x, output y, parameters θ
• Parameters (θ) fixed and unknown constants
• How should we guess at value(s) of θ ?
• ... at missing covariates (x) ? ... at missing response (y) ?
--> Statisticians devise many procedures for guessing, e.g., 

- method of moments
- least-squares
- maximum likelihood, maximum partial likelihood, pseudo-

likelihood, penalized likelihood, ...
- Bayesian analysis
- ...

θx y



Frequentist analysis of a model

• Example: Estimate probability of detection (θ) of tadpoles
-> Release n=50 in artificial pond, later resight y=20



Frequentist analysis of a model

(One) Frequentist way of guessing at θ: maximum likelihood
• Parametric model describes data-generating probabilistic 

mechanism: sampling distribution p(y|θ)
• “probability of observing data y, given fixed param. value θ”
• Note: probability statement about the data, not about 

parameter θ
• Probability defined as long-run frequency in hypothetical 

replicate data sets
• E.g., binomial sampling distribution:
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Frequentist analysis of a model

Maximum likelihood
• Idea: good choice of θ is that which maximises function 

value of sampling distribution for my data set

• Likelihood function: read sampling distribution “in 
reverse”, i.e., as a function of θ

• Call maximiser of L the Maximum Likelihood estimate (MLE)
• MLE makes actual, observed data most probable
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Frequentist analysis of a model

Maximum likelihood
• How to find the MLE ?

- Analytically (sometimes)
- Numerically (most of the times)



Frequentist analysis of a model

Maximum likelihood
• Numerical estimation by brute force: 

try out and plot large number of values for θ



Frequentist analysis of a model

Maximum likelihood
• Numerical estimation by function minimisation: e.g. optim() 

in R (also nlm() and others)

> # Define the data
> r <- 20
> N <- 50
> 
> # Define negative log-likelihood function
> nll <- function(p) -dbinom(r, size = N, prob = p, log = TRUE)
> 
> # Minimize function for observed data and return MLE
> fit <- optim(par = 0.5, fn = nll, method = "BFGS")

Maximum likelihood estimate of p:  0.4000000 

> 
> fit
$par
[1] 0.4000000

$value
[1] 2.166669



Frequentist analysis of a model

Maximum likelihood
• Numerical estimation using special functions: R glm()

> # Estimate parameter on link scale
> fm <- glm(cbind(20,30) ~ 1, family = binomial)
> summary(fm)

Call:
glm(formula = cbind(20, 30) ~ 1, family = binomial)

Deviance Residuals: 
[1]  0

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept)  -0.4055     0.2887  -1.405     0.16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 0.0000e+00  on 0  degrees of freedom
Residual deviance: 4.4409e-15  on 0  degrees of freedom
AIC: 6.3333

Number of Fisher Scoring iterations: 2



Frequentist analysis of a model

Some characteristics of maximum likelihood
• Long history (Fisher, 1920s)
• Much theory, well studied and understood
• “Automatic inference”: simply define likelihood function 

and then find parameter values that maximise it
• Produces “good estimates”, e.g., asymptotically unbiased, 

consistent, transformation invariant
• “Gold standard” in statistics
• Most statistical modeling in ecology is based on MLE



Frequentist analysis of a model

BUT:
• MLEs can be hard or impossible for complex models
• SEs and CIs asymptotic (valid for infinite sample size),

unknown how good for your ecological data set
• Functions of parameters difficult to obtain, i.e., error 

propagation can be hard
• “Indirect” probability statements about data, rather than 

about params: p(y|θ)
• 95% CI does not contain θ with P=0.95
• Impossible in principle to say things like “I am 95% certain 

that this population is declining”
• Appeal to large number of hypothetical replicate data 

unsatisfactory in many practical cases: e.g., what does a 
“replicate population of the Florida panther” mean ? 



Bayesian analysis of a model

• Sketch of model

• Data viewed as result of random process(es)
• Input x, output y, parameters θ
• Parameters (θ) fixed and unknown constants
• How should we guess at values of θ ? … or missing x ? 

… or predict y ?

θx y



Bayesian analysis of a model

• Sketch of model

• Data viewed as result of random process(es)
• Input x, output y, parameters θ
• Parameters (θ) fixed and unknown constants
• How should we guess at values of θ ? … or missing x ? 

… or predict y ?
• Bayesian approach: in the face of uncertainty about 

magnitude of θ use conditional probability, p(θ|y)
• “Guess” at θ conditions on what is certain or 

what we know (i.e., data x and y)

θx y



Bayesian analysis of a model

Recipe of every Bayesian analysis:
1. What is known ? The data (y=20, n=50)
2. What is unknown ? Prob. of detection (θ)
3. What to do ? Calculate p(θ|y)

“Prob. of parameter, given data”

• Note: probability statement about the parameter
• Data, once collected, are fixed
• Degree-of-belief concept of probability: 

Express imperfect knowledge (about θ) using probability 
distribution

• Hence, parameters treated as if they were random variables 
• How should p(θ|y) be computed ?



Bayesian analysis of a model

• Bayes rule

• Mathematical fact of probability
• E.g., can be deduced from p(A,B) = p(B | A) * p(A)

(joint prob. = conditional prob. * marginal/unconditional prob.)
• Can be applied in non-Bayesian probability calculations for 

observable quantities, e.g., clinical testing
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• Example: football and birdwatching (from Pigliucci)

• What is p(b|F) ?

Good weather 
(g)

Bad weather (b)

Go birdwatching 
(B)

0.5 0.7

Watch football (F)

0.6

Bayesian analysis of a model



Good weather 
(g)

Bad weather (b)

Go birdwatching 
(B)

0.5 0.2 0.7

Watch football (F) 0.1 0.2 0.3

0.6 0.4 1.0

• Example: football and birdwatching (from Pigliucci)

• What is p(b|F) ?

Bayesian analysis of a model



• Bayes rule

• Thomas Bayes, English minister/mathematician 
(1702-1761)

• Thomas Bayes applied the rule to unobservables such as 
parameters, i.e., for parameter estimation
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Bayesian analysis of a model

Bayes rule for statistical inference:

• Posterior distribution:

• Likelihood function:

• Prior distribution:

• Prob. of data:

• NOTE: Use probability to express imperfect knowledge

• Direct probability statements about unknown quantites:
Can say “... I am 95% certain that prob of detection > 0.2” !
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Bayesian analysis of a model

Formal steps in Bayesian analysis
• Use probability as a universal measure of uncertainty about 

unknown quantities (here: θ)
• Treat all statisical inference (estimation, testing, ...) as a 

simple probability calculation
• Express your knowledge about parameter θ (excluding 

information contained in y) by a probability distribution: 
the prior p(θ) 

• Use Bayes rule to update that knowledge with the 
information contained in the data y and embodied by the 
likelihood function, p(y|θ)

• Result is probability distribution, p(θ|y), for every unknown
• Unlike ML, where result is single value

( | ) ( )( | )
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Bayesian analysis of a model

Heuristic appeal of Bayes rule as model for inference
• “Human” concept of probability (“I am 95% certain that ...”)
• p(θ|y)  p(y| θ) x p(θ)
• “Posterior = Likelihood x prior”
• Like human learning:

- Conclusion is combination of experience and new 
information (e.g., 3 m tall man)

- New information changes (“updates”) my previous state 
of knowledge to my current state of knowledge 

- Every analysis could be a meta-analysis: 
synthesizes all existing knowledge



Bayesian analysis of a model

Advantage of prior distribution:
• Bayesian inference allows formal incorporation of external 

knowledge into estimation via prior distribution
• Strength of Bayesian analysis !
• E.g., small sample sizes (ecology of rare species)
• Advantage of ‘informative priors’:

- Don’t feign to be stupid
- More precise estimates
- Can estimate additional parameters
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Bayesian analysis of a model

Disadvantage of prior distribution (?):
• ‘Results’ (i.e., estimates) always depend on priors !
• Have to choose priors --> analysis ‘subjective’
• But can specify ‘non-informative’ (vague etc.) priors
• (though may be difficult to specify “non-information”)
• Must report priors for every analysis
• Justify choice of informative priors
• Here (as Royle & Dorazio 2008): specify vague priors, 

typically on “natural“ scale
• Estimates then (very much) resemble MLEs
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Graphical illustration of 4 Bayesian analyses of tadpole Ex.



Bayesian computation

• So why has not everyone always been a Bayesian ?
--> Bayes rule was hard to apply in practice

• Denominator: n-dimensional integral for a model with 
n parameters

• Integrals impossible to compute for most realistic models
• For centuries, Bayesian analysis of complex models not 

possible
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• Early 1990s: statisticians rediscover work from the 1950’s in 
physics
--> Use stochastic simulation to draw dependent samples 
from posterior distribution

• Don’t actually evaluate integrals in Bayes rule
• Instead, approximate posterior to arbitrary degree of 

accuracy by drawing large sample
• Markov chain Monte Carlo (MCMC)
• Boost to Bayesian statistics in statistics community
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• MCMC: Stochastic algorithm to produce sequence of 
dependent random numbers (= Markov chain)

• Converge to equilibrium distribution (usually)
• Equilibrium distribution = desired posterior distribution 

(if algorithm constructed well)
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Bayesian computation
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• When is equilibrium attained ?
• Run multiple chains from arbitrary starting places (inits)
• Assume convergence when all cover same ground
• Discard initial ‘burn-in’ phase
• Summarize remainder (mean: point estimate; sd: analogue 

of SE)
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lambda[2] chains 1:3

iteration
2 500 1000

    0.0

   20.0

   40.0

   60.0

   80.0

Bayesian computation



> p
[1] 0.5265 0.4088 0.3885 0.3482 0.3850 0.3311
[7] 0.4042 0.3593 0.3580 0.3880 0.3688 0.3793
[13] 0.4935 0.2831 0.4827 0.4632 0.3765 0.4186
[19] 0.4579 0.3605 0.4488 0.3914 0.3474 0.4444
...

[2983] 0.3866 0.3265 0.3121 0.2337 0.3255 0.3912
[2989] 0.3446 0.3584 0.3839 0.4920 0.4068 0.3202
[2995] 0.3844 0.5067 0.4212 0.5759 0.2485 0.2362

( | ) ( )( | )
( )

p y pp y
p y
  

Bayesian computation



> p
[1] 0.5265 0.4088 0.3885 0.3482 0.3850 0.3311
[7] 0.4042 0.3593 0.3580 0.3880 0.3688 0.3793
[13] 0.4935 0.2831 0.4827 0.4632 0.3765 0.4186
[19] 0.4579 0.3605 0.4488 0.3914 0.3474 0.4444
...

[2983] 0.3866 0.3265 0.3121 0.2337 0.3255 0.3912
[2989] 0.3446 0.3584 0.3839 0.4920 0.4068 0.3202
[2995] 0.3844 0.5067 0.4212 0.5759 0.2485 0.2362
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> p
[1] 0.5265 0.4088 0.3885 0.3482 0.3850 0.3311
[7] 0.4042 0.3593 0.3580 0.3880 0.3688 0.3793
[13] 0.4935 0.2831 0.4827 0.4632 0.3765 0.4186
[19] 0.4579 0.3605 0.4488 0.3914 0.3474 0.4444
...

[2983] 0.3866 0.3265 0.3121 0.2337 0.3255 0.3912
[2989] 0.3446 0.3584 0.3839 0.4920 0.4068 0.3202
[2995] 0.3844 0.5067 0.4212 0.5759 0.2485 0.2362

> mean(p)
[1] 0.4047
> sd(p)
[1] 0.0674
> quantile(p, probs = c(0.025, 0.975))

2.5%     97.5% 
0.2771    0.5375 ( | ) ( )( | )

( )
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Bayesian computation



• Custom MCMC code for binomial proportion (tadpoles)
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Bayesian computation
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The BUGS project

• Boost in Bayesian statistics initially not in ecology
• To code MCMC algorithms, need to know something about 

statistics and especially about computing 
• Change due to BUGS project: 

Bayesian inference using Gibbs sampling
• Gibbs sampling: variant of MCMC
• Statisticians/Epidemiologists in Cambridge/UK
• Lunn et al. (2009), Statistics in Medicine, 3049–3067



The BUGS project

• BUGS: Flexible, generic software, does:
1. Simple and intuitive model description language 

(BUGS language)
2. Automatic development of MCMC algorithms 

(algorithmic black box)
3. Run algorithm: produce posterior samples

• Three variants: 
- WinBUGS: www.mrc-

bsu.cam.ac.uk/bugs/winbugs/contents.shtml
- OpenBUGS: www.openbugs.info/w/
- JAGS: mcmc-jags.sourceforge.net/



The BUGS language

• Simple and intuitive model description language
• Implicit description of likelihood of model by nested 

sequence of simple probability statements and deterministic 
relationships between quantities

• Unexpected side-effect: BUGS language great to really
understand GLMs, random-effects/mixed models

• BUGS is not a black box in terms of the model fitted !
• Rather: 

One of the most transparent ways of building a model
is by describing it in the BUGS language.



Hierarchical models (HMs)

• BUGS particularly good (natural) for hierarchical models
• HM: Nested sequence of observed and unobserved r.v.s:

• Factorization of joint distribution [x,y] to marginal ([x]) *
conditional distribution ([y|x])

• Flexible modeling of hidden structure and correlations
• Latent effects, random effects, mixed models …
• Can describe a large class of models as HM
• E.g., site-occupancy model:
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y g x


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Why we have become Bayesians



Why we have become Bayesians

… and why you might want to become one, too !
(Quote from Bill Link)



Why we have become Bayesians

3 types of advantages of Bayesian analysis by MCMC in BUGS:
(1) Bayesian paradigm:

- ‘Natural’ use of probability
- Formal introduction of prior information possible
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3 types of advantages of Bayesian analysis by MCMC in BUGS:
(1) Bayesian paradigm:

- ‘Natural’ use of probability
- Formal introduction of prior information possible

(2) Bayesian computation (MCMC):
- Easy to fit HMs
- Trivial to compute functions of parameters
(with exact uncertainty intervals: error propagation)



Why we have become Bayesians

3 types of advantages of Bayesian analysis by MCMC in BUGS:
(1) Bayesian paradigm:

- ‘Natural’ use of probability
- Formal introduction of prior information possible

(2) Bayesian computation (MCMC):
- Easy to fit HMs
- Trivial to compute functions of parameters
(with exact uncertainty intervals: error propagation)

(3) BUGS language and software (WinBUGS, OpenBUGS, JAGS):
- Implementation of complex, custom models

within reach of ecologists
- Enforces understanding of model
- WinBUGS frees the modeler in you !



Why we are not real Bayesians

• Seldom use informative priors
• Plus, some inconveniences of Bayesian analysis in BUGS:

- Take long time to run (often less for ML)
- Model selection is a pain (cf. AIC with ML)
- Sensitivity of results to prior choice (not with ML)
- Harder to explain
- BUGS so flexible that may fit nonsensical models

• Hence, happy to use maximum likelihood as well



Conclusion on the Bayesian/frequentist choice

• Be eclectic !
• Choose what is most 

useful for you
• Usually will not use BUGS

for trivial problems
• BUGS is fantastic 

for more complex models
(except for large data sets !)

• BUGS language is great 
to actually understand 
your models

• Stay tuned: in the future,
there will (hopefully !) 
be better MCMC and even likelihood software for complex 
models, e.g., HMs



Should you learn to write your own MCMC samplers ?

• Claims made by one anonymous statistician:
“should discontinue use of BUGS software“
“only writing own sampler allows you to understand what’s 
going on“
“writing own samplers is really easy“

• Two answers:
- emphatic no !
- cautious yes



NO: you should NOT learn to write your own MCMC 
samplers

• CLEARLY, writing own samplers is NOT always easy, because 
otherwise no statistician would EVER use BUGS

• ... is not easy for everybody
• ... is error-prone
• ... is time-consuming
• ... nobody codes up his own Newton-Raphson algorithm for 

GLM or Laplace approximation for mixed models
• ... is a pure waste of time !
• ... takes away time that could be used for exploring more 

models and better understand them, write more or better 
papers etc. .... 

• BUGS lingua franca of Bayesian modeling: BUGS code usable 
and adaptable for many more people than MCMC code 



YES: you should learn to write your own MCMC 
samplers

• BUGS can be painfully slow
• even hacked MCMC algorithms can be much faster
• writing MCMC can give you much more insights and prevent 

errors of interpretation
• more things can go wrong in BUGS than in simple GLM 

Newton-Raphson or mixed-model-Laplace approximation in R
• Hence, if you are savvy statistically and programming-wise, 

yes, by all means do learn to write your own samplers !
• (but may still use BUGS for exploration and dissemination)



BUGS frees the (hierarchical) modeler in you

• Can build statistical model in (almost) exactly the way you 
imagine data-generating process, i.e. as an HM

• Invites a principled and mechanistic approach 
to statistical modeling, novel to most ecologists, i.e. HM

• Can allow ecologists to go in creative statistical modeling 
where they have never even dreamt to go, i.e., by HM



Want to learn WinBUGS/JAGS (and HMs) ?


