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Introduction 

• So far: 

• Took raw counts as true population size 

• But: not accounting for observation error reduces power to 

detect effects / spurios detection of density-dependence 

 

• State-space model:  

• A model that runs two time series in parallel, one captures the 

dynamics of the true (latent) state, the other the observations 

• Is a hierarchical model 

 

•  Composed of 2 sets of equations: 

• State equation: describes the true state of a system 

• Observation equation: relates the true state to the observation 

 

• Very general framework 

• Time-series of counts 

• Capture-recapture data (broad sense) 

• Occupancy data 
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Introduction 

• The principle to estimate survival is fairly easy:  

•  Follow individuals across time 

•  Count individuals at time t (Ct) and assess how many of 

them are still alive after time t (Lt+t) 

•  Survival probability is then 
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• However, there is a major problem: all individuals that are 

still alive, but not seen, are classified as dead 

• Typically, we do not know Lt+t, but only p * Lt+t, where p is 

the detection probability 

• Detection can be estimated, if we extend the experiment to 

at least one further occasion 

 

 



Individual capture history: result of 2 processes 
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State-space likelihood to analyse CR data 

1. Survival process 
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where, 
zi,t: matrix, indicating whether individual i is alive at time t (z = 1), or 

dead (z = 0) 
i,t: apparent survival probability for individual i from time t to t+1 

2. Observation process 

 , , , ,i t i t i t i t
y z Bernoulli z p

where, 
yi,t: is the observed capture history for individual i at time t 
pi,t: recapture probability for individual i at time t 
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Modelling 

along time axis 
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time axis: 
• temporal variation (fixed, random) 
• temporal covariates 
• time-constant 

individual axis: 
• groups (fixed, random) 
• individual covariates 

interaction of time and individual axis: 
• age effect (transients) 
• additive effects (group + time) 
• cohort effects 
• trap-response 
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• Mortality and permanent emigration are confounded. 

Therefore we estimate «apparent», but not true survival. 

 

• Design: 

• No mark lost 

• Identity of individuals recorded without error 

• Captured individuals are a random sample 

• Model: 

• Homeogeneity of survival and recapture probabilities 

• Independence 

 

 

Assumptions 



Multinomial likelihood to analyse CR data 

From the capture-histories to the m-array data format 
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Multinomial likelihood to analyse CR data 
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Multinomial likelihood to analyse CR data 
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Multinomial likelihood to analyse CR data 

From the capture-histories to the m-array data format 

1 0 1 0 
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Multinomial likelihood to analyse CR data 

Cell probabilities of the m-array: 

 Recapture occ. 

Rel. 2 3 4  Never 

 

1 1p1 1(1-p1)2p2  1(1-p1)2(1-p2)3p3  1-1 
 

2 - 2p2  2(1-p2)3p3  1-2 
 

3 - - 3p3   1-3 

Likelihood of the m-array: 

   t t tP m array Multinomial pr released, ,,

where  
prt, are the cell probabilities of the m-array for release occasion t 
releasedt are the number of released individuals at occasion t 



Posterior predictive model checking 

• we should check the fit of the model: goodness-of-fit test 

• are the model assumptions fulfilled? 

• posterior predictive model checking is a possibility to assess the model 

 

• compare the data (Y) with expected values (E) derived from the 
model using an appropriate discrepancy measure 

• in order to assess whether the size of the discrepancy measure is 
unusual, we simulate replicate data (Yrep) under the model and 
compute the same discrepancy measure using E 

• this second comparison shows us how far apart Y and E can be if the 
assumptions are met 

• as possible discrepancy measure is e.g. d = (Y2-E2)0.5 

• if the data are consistent with the model then d and drep are the 
same (on average) 

• the proportion of [d > drep] gives us a Bayesian P-value  

How does it work? Key idea 
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Conditional nature of the 2 processes 

State process 

Alive 
 
Dead 

Stochastic process 

Deterministic process 

Observation process 

Recovered 
 
Not recovered 



State-space likelihood to analyse MR data 

1. Survival process 
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where, 
zi,t: matrix, indicating whether individual i is alive at time t (z = 1), or 

dead (z = 0) 
si,t: survival probability for individual i from time t to t+1 

2. Observation process 
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where, 
yi,t: is the observed capture history for individual i at time t 
ri,t: recovery probability for individual i at time t 
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Multinomial likelihood to analyse MR data 

From the recovery-histories to the m-array data format 
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Multinomial likelihood to analyse MR data 

From the recovery-histories to the m-array data format 

1 0 1 0 

1 1 0 0 

1 0 0 0 

0 1 0 0 

Recovery histories 

 Recovery occ. 

Release occ. 2  3 4 Never recovered 

1   1 

2 - 

3 -  -   

m-array 



Multinomial likelihood to analyse MR data 

From the recovery-histories to the m-array data format 
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Multinomial likelihood to analyse MR data 

From the recovery-histories to the m-array data format 
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Multinomial likelihood to analyse MR data 

From the recovery-histories to the m-array data format 
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Multinomial likelihood to analyse MR data 

From the recovery-histories to the m-array data format 

1 0 1 0 

1 1 0 0 

1 0 0 0 

0 1 0 0 

Recovery histories 

 Recovery occ. 

Release occ. 2  3 4 Never recovered 

1 1  1 0 1 
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3 -  - 0 0 

m-array 



Multinomial likelihood to analyse MR data 

Cell probabilities of the m-array: 

 Recovery occ. 

Rel. 2 3 4  Never 

 

1 (1-S1)r1 S1(1-S2)r2  S1S2(1-S3)r3  1-1 
 

2 - (1-S2)r2  S2(1-S3)r3  1-2 
 

3 - - (1-S3)r3  1-3 

Likelihood of the m-array: 

   t t tP m array Multinomial pr released, ,,

where  
prt, are the cell probabilities of the m-array for release occasion t 
releasedt are the number of released individuals at occasion t 
St is the survival probability from t to t+1 
rt is the recovery probability at occasion t 
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Conditional nature of the 2 processes 

State process 
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Observation process 
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Possible re-parameterisation 

• xy,t: probability to be in state y at time t+1, given presence 
in state x at time t 
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• x: probability to survive from time t to time t+1, given 
presence in state x at time t 

• xy,t: probability to move from state x to state y shortly 
before time t+1, given survival from time t to time t+1 



Multistate models are very flexible: some examples 
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1. Age-dependent survival 



Multistate models are very flexible: some examples 

State process 

States at time t 

States at time t+1 

2. Movement among 3 sites 
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Multistate models are very flexible: some examples 

2. Movement among 3 sites 

The parameters AB and AC (as well as BA & BC and CA & CB) 
must be in the interval [0, 1] and their sum must be ≤ 1. Two 
possible options: 
 
- Multinomial link function 
- Dirichlet prior 
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Multistate models are very flexible: some examples 

State process 
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3. Combination of life and dead encounters 



Multistate models are very flexible: some examples 

State process 
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4. Temporary emigration 



Multistate models are very flexible: some examples 

State process 
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5. Immediate trap response 
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Multievent models 

• Most general capture-recapture models 

• All capture-recapture models introduced so far can be seen as a 
special case of a multievent model 

• Is a multistate model that allows for state assignment errors 

• Seminal paper: Pradel (2005), Biometrics 

• In contrast to multistate models, we need a model of state 
assignment at the first encounter 

• Additional parameters (state assignment probabilities) 

• Ecological examples: 

• Sex assignment uncertainty (Pradel et al. 2008, Can. J. Stat.) 

• Disease status uncertainty (Cooch & Conn 2009, J. Appl. Ecol.) 

• Memory models (Rouan et al. 2009, JABES) 

• Heterogeneity / finite mixtures (Péron et al. 2010, Oikos) 

 



Conditional nature of the 2 processes 
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At first encounter 
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An example: uncertain disease status 

• An individual that does not have the disease is seen, we will never 
diagnose that the individual is infected. 

• Yet, we may fail to diagnose the disease in infected individuals. 

• Interest: disease dependent survival 

• Disease state dynamics 

 

States: 
- Alive, without disease (Alive -) 
- Alive, with disease (Alive +) 
- Dead 

Observations: 
- Seen without disease (Seen -) 
- Seen with disease (Seen +) 
- Not seen 



Initial state probability 

Disease state: 1 0    

At first encounter 

D
e
a
d
 

A
liv

e
 +

 

A
liv

e
 - 

: Probability of being infected at first encounter 
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At first encounter 

State assignment 
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: Probability of not diagnosing the disease 

Observations at first encounter 

States at first encounter 
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State process 
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States at time t 

States at time t+1 

After first encounter 

H: survival probability of healthy individuals 
D: survival probability of individuals infected with the disease 
HD: infection probability 
DH: probability to become healthy 
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Observation process 
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Observations at time t 

After first encounter 

pH: probability to encounter a healthy individual 
pD: probability to encounter an individual infected with the disease 
: Probability of not diagnosing the disease  
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Bayesian population analysis using WinBUGS  
 

Chapter 10: 
Estimation of survival, 

recruitment and population 
size using capture-recapture 

data  

 
 
 
 

 
 



Introduction 

• The open capture-recapture models seen so far conditioned 

on first capture 

 

• Leading zeros contain information about the arrival time of 

individuals in the population 

 

• Jolly-Seber model: 

• Unconditional 

• Information about recruitment related parameters and 

survival 

• Estimation of population size 

 



True capture history (z) 

0 1 1 1 0 

1 1 1 1 0 

0 0 1 0 0 

0 0 1 1 1 

Summary statistics 

Ns (Superpopulationsize): 4 

N (Annual population size): {1, 2, 4, 3, 1} 

B (Annual number of new recruits): {1, 1, 2, 0, 0} 

b (proportion of new recruits [relative to Ns]): {0.25, 0.25, 0.5, 0, 0} 

Ф (Survival probability): {1.0, 1.0, 0.75, 0.33} 

 s
B Multinomial N ,b



Observed capture history (y) 

0 0 1 1 0 

1 0 0 1 0 

0 0 1 1 0 

0 1 1 1 0 

1 1 1 1 0 

0 0 1 0 0 

0 0 1 1 1 

Problem: 
The multinomial distribution does not work with MCMC, as 
the total (Ns) is unknown. 



Data augmentation 
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n 

Ns 

M 

observed true augmented 
• The data set has now 

a fixed dimension 
(length M) 

• B can now be 
modelled as a removal 
process from M 



Conditional nature of the 2 processes 

State process 

Not yet entered 
 
Alive 
 
Dead 

Stochastic process (transition and recapture) 

Deterministic process 

Observation process 

Seen 
 
Not seen 



The CJS model for comparison 

State process 

Not yet entered 
 
Alive 
 
Dead 

Stochastic process (transition and recapture) 

Deterministic process 

Observation process 

Seen 
 
Not seen 



The entry process 

 Different types of JS models, based on how the entry to the 
population is defined. 

1. Restricted occupancy formulation 
 
Imagine there is a pool of M individuals from which animal are 
recruited to enter the population 
 
t is the probability that an available individual is recruited at 
occasion t 
 
B1 = M1 

B2 = M(1-1) 2 

... 
Removal process 



1. State process (entry and survival) 

 


 



 
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 

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k

z z Bernoulli z z
1

, , 1 , 1 , ,
1

1

where, 
zi,t: matrix, indicating whether individual i is alive at time t (z = 1), or 

dead (z = 0) or has not yet entered (z = 0) 
i,t: apparent survival probability for individual i from time t to t+1 
t: «removal» entry probability at time t 
 

2. Observation process 

 , , , ,i t i t i t i t
y z Bernoulli z p

where, 
yi,t: is the observed capture history for individual i at time t 
pi,t: recapture probability for individual i at time t 

 
i

z Bernou lli
,1 1

1. Restricted occupancy formulation 



Derived parameters 
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2. Formulation as multistate model 
 

State process 
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2. Formulation as multistate model 
 

1 0 0 1 

0 1 0 1 

1 0 0 0 

... 

0 0 0 0 

0 0 0 0 

Problem: 
Multistate model is conditional 
on initial capture 

0 

0 

0 

. 

0 

0 Practical solution: 
Add a dummy occasion 

Another solution: 
Do not add a dummy occasion, but model the first occasion 

  ,1 1 11 0iz cat   



3. Superpopulation approach (Schwarz & Arnason 1996) 
 
Ns: Number of individual that are alive during the study 
(superpopulation) 
 
bt: Probability that a member of Ns enters the population at 
occasion t (entry probability) 
 
Bt: Number of entered individuals at occasion t 
  

 ,smultinomial NB b



3. Superpopulation approach (Schwarz & Arnason 1996) 
 

To still use the augmented data set, we define: 
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Bayesian population analysis using WinBUGS  
 

Chapter 11: 
Integrated population models  

 
 
 
 

 
 



• Focus on population growth rates 

– Data: time series from a population 

– Relevant factors operating at the population level can be 
identified 

– Demographic mechanism remains unknown 

 

Population analyses 

 

• Focus on demographic parameters 

– Data: capture-recapture, brood success, … 

– Link between environment and demography can be 
identified 

– Relevance at population scale remains unknown (mostly) 

 

 

• Integrated analysis: combination of the two 

– Data: time series, capture-recapture, brood success, … 

– Describe population dynamics as a result of varying 
demographic rates 

 



The traditional approach… 

Observed population development 

• Estimate demographic rates 

time 
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Estimated demographic parameters 
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• Use a population model to reconstruct population development 

Population model 

time 
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• Compare with observed population development 

Comparisons 



Observed population development 

time 
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…and its disadvantages 

Estimated demographic parameters 
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Population model 

• Inefficient 

time 
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. 
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• Difficult to account for uncertainty in the inputs, or for 
representing uncertainty about the conclusions 

Point estimates used as input 

• Some demographic rates may not be estimable 



The new wave: fully integrated models 

• Set up a population model with which count and 
demographic data are analysed simultaneously 

 

 

 

Basic idea 

• More comprehensive use of available information  

– More demographic rates become estimable (e.g. fecundity) 

– Increased precision of estimates 

• Formal representation of uncertainty 
 

Potential advantages 

• More complicated  

– Complex structure 

– Computer calculation power 

 

 

 

Potential disadvantages 



 
An IPM for wrynecks:  

Available data: 
• Population counts 

• Capture-recapture data of nestling and 
adults 

• Data on reproductive output 

© M. Kestenholz 

3 basic steps: 
• Set up a population model 

• Write the likelihood for the single data sets 

• Write the joint likelihood 



1. Set up a population model 

Nad N1 

Sad 

Sad 

Sjuvf/2 

Parameters 
S: survival probability 
f: productivity 
N1: population size of 1y 
Nad: population size of adults 

1 1 1

1 1

2 2




 

 

, , , , ,

, , , , ,

t t
t t juv t ad t juv t

ad t t ad t ad t ad t

f f
N N S N S

N N S N S
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2
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t t ad t juv t

f
N N N S

To model demographic stochasticity, we write 

generates an integer number between 0 and  

1, ,t ad tN Ngenerates an integer number between 0 and 

  , 1 1, , ,~ Bin ,ad t t ad t ad tN N N S

Sjuvf/2 

Pre-breeding census 
Female-based 
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State process equations: 

Observation process equation: 
 

   2
1, ,~ N ,t t ad t yy N N

Parameters 
S: survival probability 
f: productivity 
N1: population size of 1y 
Nad: population size of adults 
2

y: census/residual error 

2. Likelihood for the different data sets 
 
 

A. Counts: state-space model 

        2 2, , , , , , ,SS y OB y SYL L Ljuv ad juv ady N S S f y N N S S f

Likelihood: 

Data 
y: counts 



 
 

B. Capture-recapture data 

•  As introduced in chapter 7 
•  Better use multinomial likelihood 

Likelihood: 
  , ,CMRL juv adm S S p

C. Data on reproductive output 

•  Poisson regression model 

 ~t t tJ Pois R f

Likelihood: 
  ,RSL J R f

Parameters 
S: survival probability 
p: recapture probability 
f: productivity 

Data 
m: m-array 
J: # nestlings 
R: # broods 



• Assume independence among data sets 

3. Joint likelihood 

• Joint likelihood 

     

   
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
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CMR RS
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L L

juv ad juv ad

juv ad

y m J R N S S f p y N N S S f

m S S p J R f

Parameters 
S: survival probability 
p: recapture probability 
f: productivity 
N1: population size of 1y 
Nad: population size of adults 
2

y: census/residual error 

Data 
y: counts 
m: m-array 
J: # nestlings 
R: # broods 
 



3. Joint likelihood 

Parameters 
S: survival probability 
p: recapture probability 
f: productivity 
N1: population size of 1y 
Nad: population size of adults 
2

y: census/residual error 

Data 
y: counts 
m: m-array 
J: # nestlings 
R: # broods 
 

N 

Y 

J m 

f 

Count data: 

State-space model 

Productivity data: 

Poisson model 

Capture-recapture data: 

Cormack-Jolly-Seber model 

S1 Sa 
p 

Graphical relationship between data and parameters: 
(Directed acyclic graph (DAG) without priors) 

R 


