
15. POISSON ANCOVA

15.1. INTRODUCTION

We may call a Poisson ANCOVA a Poisson regression with both discrete and continuous covariates. In

most practical applications, Poisson models will have several covariates and of both types. Therefore,

here we look at this important variety of a GLM. To stress the similarity with the normal linear case,

we only slightly alter the inferential setting sketched in chapter 11. We assume that instead of

measuring body mass in Asp vipers in three populations in the Pyrenees, Massif Central and the Jura

mountains, leading to a normal model, we had instead assessed ectoparasite load in a dragonfly, the

Sombre Goldenring (Fig. 15-1), leading to a Poisson model. We are particularly interested in whether

there are more or less little red mites on dragonflies of different size (expressed as wing length) and

whether this relationship differs among the three mountain ranges. (Actually, dragonflies don’t vary

that much in body size, but let’s assume there is sufficient variation to make such a study worthwhile.)

Fig. 15-1: Sombre goldenring (Cordulegaster bidentata), Switzerland, 1995 (Photo F. Labhardt)

We will fit the following model to mite count iC on individual i :

1. Distribution: ~ ()i iC Poisson λ

2. Link function: log, i.e., log()iλ = log(())iE C = linear predictor

3. Lin. predictor: 1 2 3 4 5log() * * * * * * *i Pyr MC Jura wing wing MC wing Jurax x x x x x xλ α β β β β β= + + + + +

Note the great similarity between this model and the one we fitted to the mass of asps in chapter 11.

Apart from the link function, the main other difference is simply that for this model we don’t have a

dispersion term; the Poisson already comes with a built-in variability. We could model overdispersion

in the mite counts by using a Poisson-lognormal formulation as in the previous chapter, but we omit

such added complexity here.

15.2. DATA GENERATION

We assemble the data set.

n.groups <- 3
n.sample <- 100
n <- n.groups * n.sample

x <- rep(1:n.groups, rep(n.sample, n.groups)) # Population indicator
pop <- factor(x, labels = c("Pyrenees", "Massif Central", "Jura"))

length <- runif(n, 4.5, 7.0) # Wing length (cm)
length <- length - mean(length) # Centre by subtracting the mean

We build the design matrix of an interactive combination of length and population:

Xmat <- model.matrix(~ pop*length)
print(Xmat, dig = 2)

Select the parameter values, i.e., choose values for Pyrα , 1β , 2β , 3β , 4β , 5β

beta.vec <- c(-2, 1, 2, 5, -2, -7)

Here’s the recipe for assembling the mite counts in three steps:

1. we add up all components of the linear model to get the linear predictor, which is the

expected mite count on a (natural) log scale,

2. we exponentiate to get the actual value of the expected mite count and

3. we add Poisson noise.

We again obtain the value of the linear predictor by matrix multiplication of the design matrix (Xmat)

and the parameter vector (beta.vec) (As in the viper example, don’t be too harsh on me in case we

achieve unnatural levels of parasitation …):

lin.pred <- Xmat[,] %*% beta.vec # Value of lin.predictor
lambda <- exp(lin.pred) # Poisson mean
C <- rpois(n = n, lambda = lambda) # Add Poisson noise

Inspect what we’ve created
par(mfrow = c(2,1))
hist(C, col = "grey", breaks = 30, xlab = "Parasite load", main = "", las = 1)
plot(length, C, pch = rep(c("P","M","J"), each=n.sample), las = 1, col =
rep(c("Red","Green","Blue"), each=n.sample), ylab = "Parasite load", xlab = "Wing
length", cex = 1.2)
par(mfrow = c(1,1))

Parasite load

Fr
eq

ue
nc

y

0 5 10 15 20 25 30 35

0
50

10
0

15
0

20
0

P
PP

P

P PP
P

P PP

P

P PP PP PPP

P

PP PP PPP PPPPP
P

P PPP P
P

P P PP

P

P
P

P

P

P PPP P

P

P

P

P PP

P

PP
P

P

P

PP

P
P

P
PP

P

PP P PPP

P

PP

P

PP PP P
P

P

P P P P

P

P
P

P

P M
MM

M

M M

M

M MM M MM MM
M

M
M

MMMM

M

MM
MMM M MMM

M

MM MMM
M

M
M

M
M

M MMMM M
M

M
MM

M

M
M

MM

M

MM
M

M

M
MM

M
M M M

M
M

MM
M

M M MMM MM
M

MM MMMM

M

M M MMM MM

M

MM J
J

J J
J

J

J
J

J
J

JJ
JJ

J J
J

J JJJJ J JJJJ JJ
J

J

J
J

J

J
J JJJ

J

J

JJ J
J

JJ J
J

J

J

JJ

J J

JJ J J
J

J

J

J

J

J JJJ J

J

JJ JJ J J J

J J

JJ
JJ JJJJJ JJ JJJ J JJJ

J
J

J

-1.0 -0.5 0.0 0.5 1.0

0

10

20

30

40

Wing length

Pa
ra

si
te

 lo
ad

Fig. 15-2: Top: Frequency distribution of ectoparasite load in sombre goldenrings.

Bottom: Relationship between parasite load and wing length (deviation from mean, in cm) in three

mountain ranges (P – Pyrenees, M – Massif Central, J – Jura mountains).

We have created a data set where parasite load increases with wing length in the South (Pyrenees,

Massif Central) but decreases in the North (Jura mountains); see Fig. 15-2.

15.3. ANALYSIS USING R

Again, the R code to fit the model is very parsimonious and the estimates resemble the input values

reasonably well (coefficients can be compared directly with beta.vec). Obviously, with larger

sample sizes the correspondence would be better still (you could try that out, e.g., by setting

n.sample = 1000).

summary(glm(C ~ pop * length, family = poisson))
beta.vec

> summary(glm(C ~ pop * length, family = poisson))

Call:
glm(formula = C ~ pop * length, family = poisson)

Deviance Residuals:
 Min 1Q Median 3Q Max
-2.1471 -0.6680 -0.1961 0.2141 2.8843

Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8540 0.2554 -7.260 3.87e-13 ***
popMassif Central 0.6386 0.3463 1.844 0.0652 .
popJura 1.8046 0.2851 6.330 2.46e-10 ***
length 4.8199 0.2505 19.244 < 2e-16 ***
popMassif Central:length -1.6938 0.3516 -4.817 1.46e-06 ***
popJura:length -6.9059 0.2859 -24.156 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

 Null deviance: 2402.99 on 299 degrees of freedom
Residual deviance: 205.35 on 294 degrees of freedom
AIC: 684.25

Number of Fisher Scoring iterations: 5

> beta.vec
[1] -2 1 2 5 -2 -7

Don’t forget that the difference between the coefficients and the beta vector is due to the combined

effect of sampling and estimation error. The former means that due to natural variation 300 dragonflies

sampled in large populations can impossibly represent the population values perfectly.

15.4. ANALYSIS USING WINBUGS

15.4.1. Fitting the model

We simply adapt the code for the normal linear case (chapter 11) to the Poisson case and again fit a

reparameterized model with three separate log-linear regressions.

Define model
sink("glm.txt")
cat("
model {

Priors
 for (i in 1:n.groups){
 alpha[i] ~ dnorm(0, 0.01) # Intercepts
 beta[i] ~ dnorm(0, 0.01) # Slopes
 }

Likelihood
 for (i in 1:n) {
 C[i] ~ dpois(lambda[i]) # The random variable
 lambda[i] <- exp(alpha[pop[i]] + beta[pop[i]]* length[i])
 } # Note double-indexing: alpha[pop[i]]

Derived quantities
Recover effects relative to baseline level (no. 1)
 a.effe2 <- alpha[2] - alpha[1] # Intercept Massif Central vs. Pyr.
 a.effe3 <- alpha[3] - alpha[1] # Intercept Jura vs. Pyr.
 b.effe2 <- beta[2] - beta[1] # Slope Massif Central vs. Pyr.
 b.effe3 <- beta[3] - beta[1] # Slope Jura vs. Pyr.

Custom test
 test1 <- beta[3] - beta[2] # Slope Jura vs. Massif Central
}
",fill=TRUE)
sink()

Bundle data
win.data <- list(C = C, pop = as.numeric(pop), n.groups = n.groups, length =
length, n = n)

Inits function
inits <- function(){list(alpha=rlnorm(n.groups,3,1), beta=rlnorm(n.groups,2,1))}

Parameters to estimate
params <- c("alpha", "beta", "a.effe2", "a.effe3", "b.effe2", "b.effe3", "test1")

MCMC settings
ni <- 4500
nb <- 1500
nt <- 5
nc <- 3

Start Gibbs sampling

out <- bugs(data = win.data, inits = inits, parameters.to.save = params, model.file
= "glm.txt", n.thin = nt, n.chains = nc, n.burnin = nb, n.iter = ni, debug = TRUE)

This is still a simple model that converges fairly rapidly. We inspect the results and compare them with

“truth” in the data-generating random process as well as with inference from R’s function glm().

print(out, dig = 3) # Bayesian analysis
beta.vec # Truth in data-generating process
print(glm(C ~ pop * length, family = poisson)$coef, dig = 4) # The ML solution

Remember that alpha[1] and beta[1] in WinBUGS correspond to the intercept and the length

main effect in the analysis in R and a.effe2, a.effe3. b.effe2, b.effe3 to the

remaining terms of the analysis in R. To ease comparison, these terms are shown in bold-face.

> print(out, dig = 3) # Bayesian analysis
Inference for Bugs model at "glm.txt", fit using WinBUGS,
 3 chains, each with 4500 iterations (first 1500 discarded), n.thin = 5
 n.sims = 1800 iterations saved
 mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
alpha[1] -1.844 0.261 -2.384 -2.016 -1.852 -1.666 -1.360 1.017 120
alpha[2] -1.252 0.233 -1.744 -1.399 -1.235 -1.089 -0.821 1.016 130
alpha[3] -0.050 0.130 -0.321 -0.136 -0.046 0.037 0.186 1.002 1400
beta[1] 4.808 0.258 4.329 4.628 4.809 4.974 5.329 1.015 140
beta[2] 3.159 0.245 2.712 2.987 3.141 3.322 3.661 1.015 140
beta[3] -2.087 0.141 -2.367 -2.176 -2.083 -1.987 -1.811 1.002 940
a.effe2 0.592 0.344 -0.063 0.356 0.590 0.825 1.264 1.005 440
a.effe3 1.793 0.291 1.231 1.597 1.793 1.989 2.371 1.015 140
b.effe2 -1.649 0.352 -2.324 -1.887 -1.647 -1.403 -0.970 1.004 530
b.effe3 -6.895 0.296 -7.470 -7.092 -6.891 -6.690 -6.336 1.011 190
test1 -5.246 0.282 -5.823 -5.439 -5.240 -5.044 -4.720 1.015 140
deviance 678.382 3.450 673.597 675.800 677.800 680.200 686.202 1.003 1200

For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

DIC info (using the rule, pD = Dbar-Dhat)
pD = 6.1 and DIC = 684.5
DIC is an estimate of expected predictive error (lower deviance is better).

> beta.vec# Truth in data-generating process
[1] -2 1 2 5 -2 -7

> print(glm(C ~ pop * length, family = poisson)$coef, dig = 4) # The ML solution
 (Intercept) popMassif Central popJura
 -1.8540 0.6386 1.8046
 length popMassif Central:length popJura:length
 4.8199 -1.6938 -6.9059

As expected, we find fairly concurrent estimates between the two modes of inference.

15.4.2. Forming predictions

Finally, let’s summarize our main findings from the analysis in a graph. We illustrate the posterior

distribution of the relationship between mite load and wing length for each of the three study areas. To

do that, we predict mite load for 100 dragonflies in each of the three mountain ranges and plot these

estimates along with their uncertainty. We compute the predicted relationship between mite count and

wing-length for a sample of 100 of all MCMC draws of the involved parameters and plot that (Fig. 15-

3).

Create a vector with 100 wing lengths
original.wlength <- sort(runif(100, 4.5, 7.0))
wlength <- original.wlength - 5.75 # 5.75 is approximate mean (correct would be
that from the original data really)

Create matrices to contain prediction for each winglength and MCMC iteration
sel.sample <- sample(1:1800, size = 100)
mite.load.Pyr <- mite.load.MC <- mite.load.Ju <- array(dim = c(100, 100))

Fill in these vectors: this is clumsy, but it works
for(i in 1:100) {
 for(j in 1:100) {
 mite.load.Pyr[i,j] <- exp(out$sims.list$alpha[sel.sample[j],1] +
out$sims.list$beta[sel.sample[j],1] * wlength[i])
 mite.load.MC[i,j] <- exp(out$sims.list$alpha[sel.sample[j],2] +
out$sims.list$beta[sel.sample[j],2] * wlength[i])
 mite.load.Ju[i,j] <- exp(out$sims.list$alpha[sel.sample[j],3] +
out$sims.list$beta[sel.sample[j],3] * wlength[i])
 }
}

matplot(original.wlength, mite.load.Pyr, col = "grey", type = "l", las = 1, ylab =
"Expected mite load", xlab = "Wing length (cm)")
for(j in 1:100){
 points(original.wlength, mite.load.MC[,j], col = "grey", type = "l")
 points(original.wlength, mite.load.Ju[,j], col = "grey", type = "l")
}
points(original.wlength, exp(out$mean$alpha[1] + out$mean$beta[1] * wlength), col =
"red", type = "l", lwd = 2)
points(original.wlength, exp(out$mean$alpha[2] + out$mean$beta[2] * wlength), col =
"green", type = "l", lwd = 2)
points(original.wlength, exp(out$mean$alpha[3] + out$mean$beta[3] * wlength), col =
"blue", type = "l", lwd = 2)

4.5 5.0 5.5 6.0 6.5 7.0

0

20

40

60

Wing length (cm)

Ex
pe

ct
ed

 m
ite

 lo
ad

Fig. 15-3: Predicted relationship between mite load and the size of a dragonfly in three mountain

ranges: Pyrenees (red), Massif Central (green) and Jura mountains (blue). Shaded grey lines illustrate

the uncertainty in these relationships based on a random sample of 100 from the posterior distribution

and colored lines represent posterior means.

I find this a rather nice plot, but if an editor asks for conventional 95% credible intervals instead, you

can give the results of this code:

LCB.Pyr <- apply(mite.load.Pyr, 1, quantile, prob=0.025)
UCB.Pyr <- apply(mite.load.Pyr, 1, quantile, prob=0.975)
LCB.MC <- apply(mite.load.MC, 1, quantile, prob=0.025)
UCB.MC <- apply(mite.load.MC, 1, quantile, prob=0.975)
LCB.Ju <- apply(mite.load.Ju, 1, quantile, prob=0.025)
UCB.Ju <- apply(mite.load.Ju, 1, quantile, prob=0.975)

mean.rel <- cbind(exp(out$mean$alpha[1] + out$mean$beta[1] * wlength),
exp(out$mean$alpha[2] + out$mean$beta[2] * wlength), exp(out$mean$alpha[3] +
out$mean$beta[3] * wlength))
covar <- cbind(original.wlength, original.wlength, original.wlength)

matplot(original.wlength, mean.rel, col = c("red", "green", "blue"), type = "l",
lty = 1, lwd = 2, las = 1, ylab = "Expected mite load", xlab = "Wing length (cm)")
points(original.wlength, LCB.Pyr, col = "grey", type = "l", lwd = 1)
points(original.wlength, UCB.Pyr, col = "grey", type = "l", lwd = 1)

points(original.wlength, LCB.MC, col = "grey", type = "l", lwd = 1)
points(original.wlength, UCB.MC, col = "grey", type = "l", lwd = 1)
points(original.wlength, LCB.Ju, col = "grey", type = "l", lwd = 1)
points(original.wlength, UCB.Ju, col = "grey", type = "l", lwd = 1)

15.5. SUMMARY

We have generalized the general linear model from the normal to the Poisson case to model the effects

on grouped counts of a continuous covariate. The changes involved in doing so in WinBUGS were

minor and the inclusion of further covariates is straightforward. The Poisson ANCOVA is an important

intermediate step for your understanding of the Poisson GLMM.

Exercises

1. Multiple Poisson regression: Invent a new covariate called nonsensex , for instance, and fit this model:

* *i j j wing nonsensey x xα β δ= + + . You can simply create values for nonsensex by sampling a normal or

uniform random variable; you don’t need to assemble a new data set.

2. Polynomial Poisson regression: In addition to the linear effect (on a log-scale) of wing length, check

for a quadratic effect also. You may or may not re-assemble the data to include that effect.

3. Swiss hare data: Take a single count per year and site and fit a Poisson ANCOVA to the counts by

expressing counts as a function of site and year. You may ignore the variable site area or incorporate

this source of variation by fitting an offset.

