
15. POISSON ANCOVA 

 

15.1. INTRODUCTION 

We may call a Poisson ANCOVA a Poisson regression with both discrete and continuous covariates. In 

most practical applications, Poisson models will have several covariates and of both types. Therefore, 

here we look at this important variety of a GLM. To stress the similarity with the normal linear case, 

we only slightly alter the inferential setting sketched in chapter 11. We assume that instead of 

measuring body mass in Asp vipers in three populations in the Pyrenees, Massif Central and the Jura 

mountains, leading to a normal model, we had instead assessed ectoparasite load in a dragonfly, the 

Sombre Goldenring (Fig. 15-1), leading to a Poisson model. We are particularly interested in whether 

there are more or less little red mites on dragonflies of different size (expressed as wing length) and 

whether this relationship differs among the three mountain ranges. (Actually, dragonflies don’t vary 

that much in body size, but let’s assume there is sufficient variation to make such a study worthwhile.) 

 

 
Fig. 15-1: Sombre goldenring (Cordulegaster bidentata), Switzerland, 1995 (Photo F. Labhardt) 



We will fit the following model to mite count iC  on individual i : 

1. Distribution:   ~ ( )i iC Poisson λ  

2. Link function:   log, i.e., log( )iλ  = log( ( ))iE C  = linear predictor 

3. Lin. predictor: 1 2 3 4 5log( ) * * * * * * *i Pyr MC Jura wing wing MC wing Jurax x x x x x xλ α β β β β β= + + + + +  

Note the great similarity between this model and the one we fitted to the mass of asps in chapter 11. 

Apart from the link function, the main other difference is simply that for this model we don’t have a 

dispersion term; the Poisson already comes with a built-in variability. We could model overdispersion 

in the mite counts by using a Poisson-lognormal formulation as in the previous chapter, but we omit 

such added complexity here. 

 

15.2. DATA GENERATION 

We assemble the data set. 
 
n.groups <- 3 
n.sample <- 100 
n <- n.groups * n.sample 
 
x <- rep(1:n.groups, rep(n.sample, n.groups)) # Population indicator 
pop <- factor(x, labels = c("Pyrenees", "Massif Central", "Jura")) 
 
length <- runif(n, 4.5, 7.0)    # Wing length (cm) 
length <- length - mean(length) # Centre by subtracting the mean 
 
We build the design matrix of an interactive combination of length and population: 

 
Xmat <- model.matrix(~ pop*length) 
print(Xmat, dig = 2)  
 

Select the parameter values, i.e., choose values for Pyrα , 1β , 2β , 3β , 4β , 5β  

 
beta.vec <- c(-2, 1, 2, 5, -2, -7) 
 

Here’s the recipe for assembling the mite counts in three steps: 

1. we add up all components of the linear model to get the linear predictor, which is the 

expected mite count on a (natural) log scale, 

2. we exponentiate to get the actual value of the expected mite count and  



3. we add Poisson noise. 

We again obtain the value of the linear predictor by matrix multiplication of the design matrix (Xmat) 

and the parameter vector (beta.vec) (As in the viper example, don’t be too harsh on me in case we 

achieve unnatural levels of parasitation …): 

 
lin.pred <- Xmat[,] %*% beta.vec  # Value of lin.predictor 
lambda <- exp(lin.pred)    # Poisson mean 
C <- rpois(n = n, lambda = lambda)  # Add Poisson noise 
 
# Inspect what we’ve created 
par(mfrow = c(2,1)) 
hist(C, col = "grey", breaks = 30, xlab = "Parasite load", main = "", las = 1) 
plot(length, C, pch = rep(c("P","M","J"), each=n.sample), las = 1, col = 
rep(c("Red","Green","Blue"), each=n.sample), ylab = "Parasite load", xlab = "Wing 
length", cex = 1.2) 
par(mfrow = c(1,1)) 
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Fig. 15-2: Top: Frequency distribution of ectoparasite load in sombre goldenrings.  

Bottom: Relationship between parasite load and wing length (deviation from mean, in cm) in three 

mountain ranges (P – Pyrenees, M – Massif Central, J – Jura mountains). 

 

 



We have created a data set where parasite load increases with wing length in the South (Pyrenees, 

Massif Central) but decreases in the North (Jura mountains); see Fig. 15-2. 

 

15.3. ANALYSIS USING R 

Again, the R code to fit the model is very parsimonious and the estimates resemble the input values 

reasonably well (coefficients can be compared directly with beta.vec). Obviously, with larger 

sample sizes the correspondence would be better still (you could try that out, e.g., by setting 

n.sample = 1000). 
 
summary(glm(C ~ pop * length, family = poisson)) 
beta.vec 
 
> summary(glm(C ~ pop * length, family = poisson)) 
 
Call: 
glm(formula = C ~ pop * length, family = poisson) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-2.1471  -0.6680  -0.1961   0.2141   2.8843   
 
Coefficients: 
                         Estimate Std. Error z value Pr(>|z|)     
(Intercept)               -1.8540     0.2554  -7.260 3.87e-13 *** 
popMassif Central          0.6386     0.3463   1.844   0.0652 .   
popJura                    1.8046     0.2851   6.330 2.46e-10 *** 
length                     4.8199     0.2505  19.244  < 2e-16 *** 
popMassif Central:length  -1.6938     0.3516  -4.817 1.46e-06 *** 
popJura:length            -6.9059     0.2859 -24.156  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 2402.99  on 299  degrees of freedom 
Residual deviance:  205.35  on 294  degrees of freedom 
AIC: 684.25 
 
Number of Fisher Scoring iterations: 5 
 
> beta.vec 
[1] -2  1  2  5 -2 -7 

 

Don’t forget that the difference between the coefficients and the beta vector is due to the combined 

effect of sampling and estimation error. The former means that due to natural variation 300 dragonflies 

sampled in large populations can impossibly represent the population values perfectly. 



 

15.4. ANALYSIS USING WINBUGS 

15.4.1. Fitting the model 

We simply adapt the code for the normal linear case (chapter 11) to the Poisson case and again fit a 

reparameterized model with three separate log-linear regressions. 
 
# Define model 
sink("glm.txt") 
cat(" 
model { 
 
# Priors 
 for (i in 1:n.groups){   
    alpha[i] ~ dnorm(0, 0.01)  # Intercepts 
    beta[i] ~ dnorm(0, 0.01)  # Slopes 
 } 
  
 
# Likelihood 
 for (i in 1:n) { 
    C[i] ~ dpois(lambda[i])  # The random variable 
    lambda[i] <- exp(alpha[pop[i]] + beta[pop[i]]* length[i]) 
 } # Note double-indexing: alpha[pop[i]] 
 
# Derived quantities 
# Recover effects relative to baseline level (no. 1) 
 a.effe2 <- alpha[2] - alpha[1] # Intercept Massif Central vs. Pyr. 
 a.effe3 <- alpha[3] - alpha[1] # Intercept Jura vs. Pyr. 
 b.effe2 <- beta[2] - beta[1]  # Slope Massif Central vs. Pyr. 
 b.effe3 <- beta[3] - beta[1]  # Slope Jura vs. Pyr. 
 
# Custom test 
 test1 <- beta[3] - beta[2]  # Slope Jura vs. Massif Central 
} 
",fill=TRUE) 
sink() 
 
# Bundle data 
win.data <- list(C = C, pop = as.numeric(pop), n.groups = n.groups, length = 
length, n = n) 
 
# Inits function 
inits <- function(){list(alpha=rlnorm(n.groups,3,1), beta=rlnorm(n.groups,2,1))} 
 
# Parameters to estimate 
params <- c("alpha", "beta", "a.effe2", "a.effe3", "b.effe2", "b.effe3", "test1") 
 
# MCMC settings 
ni <- 4500 
nb <- 1500 
nt <- 5 
nc <- 3 
 
# Start Gibbs sampling 



out <- bugs(data = win.data, inits = inits, parameters.to.save = params, model.file 
= "glm.txt", n.thin = nt, n.chains = nc, n.burnin = nb, n.iter = ni, debug = TRUE) 
 
This is still a simple model that converges fairly rapidly. We inspect the results and compare them with 

“truth” in the data-generating random process as well as with inference from R’s function glm(). 
 
print(out, dig = 3)    # Bayesian analysis 
beta.vec      # Truth in data-generating process 
print(glm(C ~ pop * length, family = poisson)$coef, dig = 4) # The ML solution 
 
Remember that alpha[1] and beta[1] in WinBUGS correspond to the intercept and the length 

main effect in the analysis in R and a.effe2, a.effe3. b.effe2, b.effe3 to the 

remaining terms of the analysis in R. To ease comparison, these terms are shown in bold-face. 
 
> print(out, dig = 3)    # Bayesian analysis 
Inference for Bugs model at "glm.txt", fit using WinBUGS, 
 3 chains, each with 4500 iterations (first 1500 discarded), n.thin = 5 
 n.sims = 1800 iterations saved 
            mean    sd    2.5%     25%     50%     75%   97.5%  Rhat n.eff 
alpha[1]  -1.844 0.261  -2.384  -2.016  -1.852  -1.666  -1.360 1.017   120 
alpha[2]  -1.252 0.233  -1.744  -1.399  -1.235  -1.089  -0.821 1.016   130 
alpha[3]  -0.050 0.130  -0.321  -0.136  -0.046   0.037   0.186 1.002  1400 
beta[1]    4.808 0.258   4.329   4.628   4.809   4.974   5.329 1.015   140 
beta[2]    3.159 0.245   2.712   2.987   3.141   3.322   3.661 1.015   140 
beta[3]   -2.087 0.141  -2.367  -2.176  -2.083  -1.987  -1.811 1.002   940 
a.effe2    0.592 0.344  -0.063   0.356   0.590   0.825   1.264 1.005   440 
a.effe3    1.793 0.291   1.231   1.597   1.793   1.989   2.371 1.015   140 
b.effe2   -1.649 0.352  -2.324  -1.887  -1.647  -1.403  -0.970 1.004   530 
b.effe3   -6.895 0.296  -7.470  -7.092  -6.891  -6.690  -6.336 1.011   190 
test1     -5.246 0.282  -5.823  -5.439  -5.240  -5.044  -4.720 1.015   140 
deviance 678.382 3.450 673.597 675.800 677.800 680.200 686.202 1.003  1200 
 
For each parameter, n.eff is a crude measure of effective sample size, 
and Rhat is the potential scale reduction factor (at convergence, Rhat=1). 
 
DIC info (using the rule, pD = Dbar-Dhat) 
pD = 6.1 and DIC = 684.5 
DIC is an estimate of expected predictive error (lower deviance is better). 
 
> beta.vec# Truth in data-generating process 
[1] -2  1  2  5 -2 -7 
 
> print(glm(C ~ pop * length, family = poisson)$coef, dig = 4) # The ML solution 
             (Intercept)        popMassif Central                  popJura  
                 -1.8540                   0.6386                   1.8046  
                  length popMassif Central:length           popJura:length  
                  4.8199                  -1.6938                  -6.9059 
 

As expected, we find fairly concurrent estimates between the two modes of inference. 

 

15.4.2. Forming predictions 



Finally, let’s summarize our main findings from the analysis in a graph. We illustrate the posterior 

distribution of the relationship between mite load and wing length for each of the three study areas. To 

do that, we predict mite load for 100 dragonflies in each of the three mountain ranges and plot these 

estimates along with their uncertainty. We compute the predicted relationship between mite count and 

wing-length for a sample of 100 of all MCMC draws of the involved parameters and plot that (Fig. 15-

3). 

 
# Create a vector with 100 wing lengths 
original.wlength <- sort(runif(100, 4.5, 7.0)) 
wlength <- original.wlength - 5.75 # 5.75 is approximate mean (correct would be 
that from the original data really) 
 
# Create matrices to contain prediction for each winglength and MCMC iteration 
sel.sample <- sample(1:1800, size = 100) 
mite.load.Pyr <- mite.load.MC <- mite.load.Ju <- array(dim = c(100, 100)) 
 
# Fill in these vectors: this is clumsy, but it works 
for(i in 1:100) { 
   for(j in 1:100) { 
     mite.load.Pyr[i,j] <- exp(out$sims.list$alpha[sel.sample[j],1] + 
out$sims.list$beta[sel.sample[j],1] * wlength[i]) 
     mite.load.MC[i,j] <- exp(out$sims.list$alpha[sel.sample[j],2] + 
out$sims.list$beta[sel.sample[j],2] * wlength[i]) 
     mite.load.Ju[i,j] <- exp(out$sims.list$alpha[sel.sample[j],3] + 
out$sims.list$beta[sel.sample[j],3] * wlength[i]) 
   } 
} 
 
matplot(original.wlength, mite.load.Pyr, col = "grey", type = "l", las = 1, ylab = 
"Expected mite load", xlab = "Wing length (cm)") 
for(j in 1:100){ 
   points(original.wlength, mite.load.MC[,j], col = "grey", type = "l") 
   points(original.wlength, mite.load.Ju[,j], col = "grey", type = "l") 
} 
points(original.wlength, exp(out$mean$alpha[1] + out$mean$beta[1] * wlength), col = 
"red", type = "l", lwd = 2) 
points(original.wlength, exp(out$mean$alpha[2] + out$mean$beta[2] * wlength), col = 
"green", type = "l", lwd = 2) 
points(original.wlength, exp(out$mean$alpha[3] + out$mean$beta[3] * wlength), col = 
"blue", type = "l", lwd = 2) 
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Fig. 15-3: Predicted relationship between mite load and the size of a dragonfly in three mountain 

ranges: Pyrenees (red), Massif Central (green) and Jura mountains (blue). Shaded grey lines illustrate 

the uncertainty in these relationships based on a random sample of 100 from the posterior distribution 

and colored lines represent posterior means. 

 

I find this a rather nice plot, but if an editor asks for conventional 95% credible intervals instead, you 

can give the results of this code: 
 
LCB.Pyr <- apply(mite.load.Pyr, 1, quantile, prob=0.025) 
UCB.Pyr <- apply(mite.load.Pyr, 1, quantile, prob=0.975) 
LCB.MC <- apply(mite.load.MC, 1, quantile, prob=0.025) 
UCB.MC <- apply(mite.load.MC, 1, quantile, prob=0.975) 
LCB.Ju <- apply(mite.load.Ju, 1, quantile, prob=0.025) 
UCB.Ju <- apply(mite.load.Ju, 1, quantile, prob=0.975) 
 
mean.rel <- cbind(exp(out$mean$alpha[1] + out$mean$beta[1] * wlength), 
exp(out$mean$alpha[2] + out$mean$beta[2] * wlength), exp(out$mean$alpha[3] + 
out$mean$beta[3] * wlength)) 
covar <- cbind(original.wlength, original.wlength, original.wlength) 
 
matplot(original.wlength, mean.rel, col = c("red", "green", "blue"), type = "l", 
lty = 1, lwd = 2, las = 1, ylab = "Expected mite load", xlab = "Wing length (cm)") 
points(original.wlength, LCB.Pyr, col = "grey", type = "l", lwd = 1) 
points(original.wlength, UCB.Pyr, col = "grey", type = "l", lwd = 1) 



points(original.wlength, LCB.MC, col = "grey", type = "l", lwd = 1) 
points(original.wlength, UCB.MC, col = "grey", type = "l", lwd = 1) 
points(original.wlength, LCB.Ju, col = "grey", type = "l", lwd = 1) 
points(original.wlength, UCB.Ju, col = "grey", type = "l", lwd = 1) 
 
 

15.5. SUMMARY 

We have generalized the general linear model from the normal to the Poisson case to model the effects 

on grouped counts of a continuous covariate. The changes involved in doing so in WinBUGS were 

minor and the inclusion of further covariates is straightforward. The Poisson ANCOVA is an important 

intermediate step for your understanding of the Poisson GLMM. 

 

 

Exercises 

 

1. Multiple Poisson regression: Invent a new covariate called nonsensex , for instance, and fit this model: 

* *i j j wing nonsensey x xα β δ= + + . You can simply create values for nonsensex  by sampling a normal or 

uniform random variable; you don’t need to assemble a new data set. 

 

2. Polynomial Poisson regression: In addition to the linear effect (on a log-scale) of wing length, check 

for a quadratic effect also. You may or may not re-assemble the data to include that effect. 

 

3. Swiss hare data: Take a single count per year and site and fit a Poisson ANCOVA to the counts by 

expressing counts as a function of site and year. You may ignore the variable site area or incorporate 

this source of variation by fitting an offset. 

 


