
 1

Appendix to the books “Introduction to WinBUGS for ecologists” by Kéry (2010) and

“Bayesian population analysis using WinBUGS” by Kéry & Schaub (2011)

A list of WinBUGS tricks

Last change: 3 February 2011

We provide here a list of tips that hopefully allow you to love WinBUGS more unconditionally. We

would suggest you skim over the list now and then refer back to it later as necessary.

1. Do read the manual: WinBUGS may not have the best documentation available for a software, but

its manual is nevertheless very useful. Be sure to at least skim over most of it once when you start

getting into WinBUGS (i.e., now for many of you), so you may remember that the manual has

something to say about a particular topic when you need it. Don’t forget the sections entitled “Tricks:

Advanced Use of the BUGS Language” and “Tips and Troubleshooting”.

2. Always begin from a template: When starting a new analysis, always start from a template of a

similar analysis. Only ever try to write an analysis from scratch if you want to test yourself.

3. Make a clear distinction between BUGS and R code: We use the R function sink() to write into

the R working directory (which you can set yourself using setwd()) a text file containing the

model description in the BUGS language. We find it practical to have all our code in a single

document. Here is a sketch example of how this looks like (you see this kind of code for each

example where we use WinBUGS in the book).

Define the model in the BUGS language
sink("modelname.txt")
cat("

model { # BUGS model starts on this line

Priors

some priors

Likelihood

for (i in 1:n){

 some description of the likelihood

 }

} # BUGS model ends with this line
",fill = TRUE)
sink()

 2

Here, R code is left-aligned and BUGS code is indented one level and in bold. We don’t show this

indentation nor the bold type in the book, but show it here to clarify how everything inside the two

quotes after “cat” and before “,fill” is BUGS code and everything outside these two quotes is R

code. You have to be totally clear about which part of the code is in the BUGS language and which

is in the R language. This may be a little confusing at first, especially because the two languages are

quite similar (R is a dialect of S and BUGS is strongly inspired by S). Moreover, this way of writing

the BUGS model sometimes seems to cause problems when using the R editor Tinn-R.

4. Give initial values: The wise choice of initial values can be the key to success or failure of an

analysis in WinBUGS, although we don’t see this so much in the fairly simple models in Kéry (2010,

with the exception of the non-standard GLMMs in Chapters 20 and 21). With more complex models,

and many in Kéry & Schaub (2011) belong to these, WinBUGS needs to start the Markov chains not

too far away from their stationary distribution or it will crash or not even start to update. Of course,

the requirement to start the chains close to the solution goes counter the requirement to start them at

dispersed places in order to assess convergence, so some reasonable intermediate choice is

important.

5. Don’t select initial values that contradict the priors: Initial values must not be outside of the

possible range of a parameter. For instance, negative initial values for a parameter that has prior mass

only for positive values (such as a variance) will cause WinBUGS to crash and so do initial values

outside of the range of a Uniform prior.

6. Only provide initial values for quantities that appear in the model: Otherwise the “incompatible

copy” error may appear.

7. Don’t provide initial values for fixed elements of a vector-valued paramater: Sometimes some

elements of a vector-valued parameter are known or fixed at a certain value. Then, they are no longer

a parameter that is estimated and no initial value must be given for them. An example is a two-way

fixed-effects ANOVA, where you must set to zero the effect of one level (e.g., the first) of one factor

to avoid overparameterisation. In this case, no init is required for that effect. For a factor with four

levels, the first of which is set to zero, you can do this as follows: beta2 = c(NA, rnorm(3)

8. In your prior choice, be ignorant, but not too ignorant: When you want your Bayesian inference to

be dominated by your data and choose priors intended to be vague, don’t specify too much

ignorance, otherwise traps may result or convergence may not be achieved. For instance, don’t

specify the limits of a Uniform prior or the variance of a Normal prior to be too wide.

 3

9. How to deal with missing values (NAs): NAs are not an issue in Kéry (2010), since they do not

occur in “perfect”, simulated data sets. However, in your real-world data sets, and we have some of

them in Kéry & Schaub (2011), there will always be NAs. In WinBUGS, NAs are dealt with less

automatically than in conventional stats programs with which you are likely familiar, hence, it is

important to know how to deal with them: briefly, missing responses (i.e., missing y ’s) are no

problem, but NAs in the explanatory variables (the x ’s) need attention. A missing response is simply

estimated, and indeed, adding missing responses for selected covariate values is one of the simplest

ways to form predictions for desired values of explanatory variables. On the other hand, a missing

explanatory variable must either be replaced with some number, e.g., the mean observed value for

that variable, or else given some prior distribution. In general, the former is easier and should not

pose a problem unless the number of missing x ’s is large.

10. NAs and NaNs: When dealing with data in multidimensional arrays, a very useful R package is

‘reshape’. The newer versions the reshape package in R 2.9 use an NaN to fill in NAs. This makes

WinBUGS very unhappy - you must have NA, not NaN. In general, this is probably good to know

about BUGS and newer versions of other packages may be doing the same thing. So, if you use the

melt/cast functions in reshape to organize data, then you will need to update your code in the

newer R versions by adding "fill=NA_real_". Example: Ymat=cast(data.melt,

SppCode~JulianDate~GridCellID, fun.aggregate=mean, fill=NA_real_)

(Beth Gardner, pers. comm.).

11. Data in arrays; think in a box (and know your box): When coding an analysis in WinBUGS, you

often will have to deal with data that come in arrays, and these may have more than one dimension.

For instance, when analyzing animal counts from different sites, over several years and taken at

various months in a year, it may be useful to format them into a three-dimensional array. Some

covariates of such an analysis will then have two or even three dimensions, too. You must then be

absolutely clear about the dimensions of theses “boxes” in which your data are and not get confused

by the indexing of the data. In our experience, knowing how to format data into such arrays and then

not getting lost is one of the most difficult things to learn about the routine use of WinBUGS.

12. Loop order in arrays: In “serious” analyses, your modeling will often require the data to be

formatted in some multi-dimensional array. For instance, for a multi-species version of a site-

occupancy model (see chapter 20 in Kéry and chapter 13 in Kéry & Schaub, 2011), you will have at

least three dimensions corresponding to species (i), site (j) and replicate survey (k). It appears that

how you build your array, and especially, how you loop over that array in the definition of the

 4

likelihood can make a huge difference in terms of the speed with which your Markov chains in

WinBUGS evolve. It appears that you should loop over the longest dimension first and over the

shortest last. For instance, if you have data from 450 sites, 100 species and for two surveys each,

then it appears best to format the data as [, ,]y j i k and then loop over sites (j) first, then over species

(i) and finally over replicate surveys (k) (Beth Gardner and Elise Zipkin, pers. comm.).

13. Don’t define things twice: Every parameter in WinBUGS can only be defined once. For instance,

writing y ~ dnorm(mu, tau) and then adding y[3] <- 5 will cause an error. There is a

single exception to this rule, and that is the transformation of the response by some function such as

the log() or abs(). So in order to conduct an analysis of a log-transformed response, you may

write y <- log(y) and then y ~ dnorm(mu, tau). Beware of inadvertently defining

quantities multiple times when erroneously putting them within a loop that they don’t belong.

14. Problems with WinBUGS’ own logit function: In more complex models, we have fairly often

experienced problems when using WinBUGS’ own logit function, for instance with achieving

convergence (actually, problems may arise even with fairly simple models.). Therefore, it is often

better to specify that transformation explicitly by logit.p[i] <- log(p[i] / (1 – p[i])),

p[i] <- exp(logit.p[i]) / (1 + exp(logit.p[i])) or p[i] <- 1 / (1 + exp(-

logit.p[i])).

15. ‘Stabilizing’ the logit: To avoid numerical over- or underflow, you may “stabilise” the logit

function by excluding extreme values (Brendan Wintle, pers. comm.). Here’s a sketch of how to do

that. The Gibbs sampling will typically get slower, but at least WinBUGS will be less likely to crash:

logit(psi.lim[i]) <- lpsi.lim[i]
lpsi.lim[i] <- min(999, max(-999, lpsi[i]))
lpsi[i] <- alpha.occ + beta.occ * something[i]

16. Truncated priors for normal random effects: Similarly, in log- or logit-normal mixtures (which

we see when introducing a Normal random effect into the linear predictor), you may want to truncate

the zero-mean Normal distribution, e.g., at ± 20 (Kéry and Royle 2009). This can greatly help

convergence of the Markov chains.

17. Problems with Tinn-R: Users of the popular R editor Tinn-R 2.0 (or newer) may have problems

writing the text file containing the BUGS model description with the sink() function; Tinn-R adds

to that file some gibberish that will cause WinBUGS to crash. You must then use an alternative way

of writing the model file. As an example, here is a workaround for the BUGS description of the

 5

model of the mean in chapter 5 (Kéry 2010) that should be compatible with Tinn-R (Wesley

Hochachka, pers. comm.):

modelFilename = 'model.txt'
cat("
model of the mean {

Priors

 population.mean ~ dunif(0,5000)
 precision <- 1 / population.variance
 population.variance <- population.sd * population.sd
 population.sd ~ dunif(0,100)

Likelihood

 for(i in 1:nobs){
 mass[i] ~ dnorm(population.mean, precision)
 }
}
",fill=TRUE, file=modelFilename)

An alternative solution due to Jérôme Guélat is this: The "R send" functions available in Tinn-R

allow sending commands into R. However the "(echo=TRUE)" versions of these functions should

not be used when sending the sink() function and its content into R. For example: one should use

"R send: selection" instead of "R send: selection (echo=TRUE)".

18. Run trial analyses first: Run very short chains first, e.g., of length 12 with a burnin of 2, just to

confirm that there are no coding or other errors. Only when you are satisfied that your code works

and your model does what it should, increase the chain length to get a production run.

19. How to choose the burnin length: We have chosen Markov chain lengths so that convergence

appears to be achieved. You may ask yourself how we decided on adequate chain lengths? The

answer is simple: we always conduct trial runs first and based on that decide on the chain length for a

production run of the analysis.

20. Avoid long Windows addresses: WinBUGS doesn’t seem to like very long Windows addresses

(C:\My harddisk\Important stuff\Less important stuff\ …) for its working directory. Hence, you

should not bury your WinBUGS analyses too much down in a tree hierarchy.

21. Use of native WinBUGS (1): A feature of both Kéry (2010) and Kéry & Schaub (2011) is that

WinBUGS is run exclusively from within program R. We believe that this is much more efficient

than running native WinBUGS. However, with some complex models and/or large sets, WinBUGS

will be extremely slow. This may be the one exception where it is perhaps more efficient to run

WinBUGS natively. You may still prepare the analysis in R as shown in this book, but only request

WinBUGS to run very short Markov chains. When you set the option DEBUG = TRUE in the

 6

function bugs(), then WinBUGS will stay open after the requested number of iterations have been

conducted. Then, you can request more iterations to be executed directly in WinBUGS (i.e., using

the Update Tool; see chapter 4 in Kéry 2010). You can then incrementally increase the total chain

length and monitor convergence as you go. Once convergence has been achieved, do the required

additional number of iterations and save them into coda files. You must do this latter, since when

exiting WinBUGS, the bugs() function will only import back into R the (small) number of

iterations that you originally requested. When you have your valuable samples of your complex

model’s posterior distribution in coda files, use facilities provided by R packages boa or coda to

import them into R and process them (e.g., compute Brooks-Gelman-Rubin convergence tests or

posterior summaries for inference about the parameters).

22. Use of native WinBUGS (2): Use of native WinBUGS can also be helpful to diagnose why a

model does not run properly or produces unexpected results. If WinBUGS has been successfully

called from R, there will be three (or more) text files in your current working directory (type

getwd() if you are not sure which one this is). The first is the file with the BUGS model and has

the name that you have specified just after the sink command. The second file with the name

data.txt contains the data in WinBUGS format. Finally, the third file contains the initial values in

WinBUGS format and is named inits1.txt. If you have specified more than one chain, there

will be more files of this type. To make use of native WinBUGS, you open it, and select “file”,

“new”. Then you copy the model text file, the data text file and the text file with the initial values

into the empty window. You have then all information to start with a native WinBUGS analysis. See

the WinBUGS documentation and chapter 4 in Kéry (2010) if you do not know, how to proceed

within WinBUGS.

23. Be flexible in your modeling: Try out different priors, e.g., for parameters representing

probabilities try a Uniform(0,1), a flat Normal for the logit transform or a Beta(1,1). Sometimes, and

for no obvious reason, one may work while another doesn’t. Similarly, WinBUGS is very sensitive

to changes in the parameterization of a model. Sometimes, one way of writing the model may work

and the other doesn’t, for unknown reasons, or one works much faster than the other (which, usually,

is mostly an issue for more complex models than most of those featured in Kéry, 2010).

24. Don’t know how to specify the linear model ? If you have trouble seeing how to specify a linear

model in WinBUGS, use of the very handy R function model.matrix() may help. For instance,

if you want to fit a model with four factors, A, B, C and D, with all main effects and interactions

 7

A.B, C.D, do this to see how the linear model looks like: model.matrix(~ A + B + C + D

+ A:B + C:D).

25. Scale continuous covariates: Scaling continuous covariates, so that their range does not extend

too far away on either side of zero, can greatly improve mixing of the chains and often only makes

convergence possible (see, e.g., chapter 11.4. in Kéry 2010 and chapter 3.2.1 in Kéry & Schaub

2011).

26. What if WinBUGS hangs after compiling ? Try a restart and if that doesn’t work, find better

starting values (this tip is from the manual).

27. How to debug a WinBUGS analysis (1): If something went wrong, you need to attentively read

through the entire WinBUGS log file from the top to identify the first thing that went wrong. Other

errors may follow, but they may not be the actual cause of the failure.

28. How to debug a WinBUGS analysis (2): When something doesn’t work, the simplest and best

advice (see also Gelman and Hill 2007) is to go back to a simpler version of the same model, or to a

similar model, that did work, and then incrementally increase the complexity of that model until you

arrive at the desired model. That is, from less complex models sneak up on the model you want.

Indeed, when using WinBUGS you learn to always start from the simplest version of a problem and

gradually build in more complexity until you are at the level of complexity that you require. We

think that this is actually a very good approach to learning in general.

29. DIC problems: Surprisingly, sometimes when getting a trap (including one with the very

informative title “NIL dereference (read)”), setting the argument DIC = FALSE in the bugs()

function has helped.

30. What it R2WinBUGS chokes on too much data ? Sometimes the R object created by

R2WinBUGS is too big for one’s computer. Then, use boa or coda to read in the coda files directly

and use their facilities to produce your inference in this way (e.g., convergence diagnostics, posterior

summaries).

31. Check of identifiability/estimability of parameters: To see whether two or more parameters are

difficult to estimate separately, you can plot the values of their Markov chains against each other.

32. Check of model adequacy: Do residual analysis, posterior predictive checks and cross-validation

to see whether your model appears to be an adequate representation of the main features in the data.

33. Predictions: They are a very important part of inference: i.e., the estimation of unobserved or

future data. One particularly useful way to examine predictions is to estimate what a response would

look like for a chosen combination of values of the explanatory variables. The generation and

 8

examination of such predicted values is an important method to understand complex models (for

instance, to see what a particular interaction means) and also needed to illustrate the results of an

analysis, e.g., as a figure in a paper.

34. Sensitivity analysis for priors: Consider assessing prior sensitivity, i.e., repeat your analyses, or

those for key models, with different prior specifications and see whether your inference is robust in

this respect. If it is not, then not all is lost, but you must report on that in the methods section of your

paper.

35. VISTA problems: Windows VISTA has caused all sorts of “challenges” in workshops taught –

be prepared ! One problem was that the default BUGS directory is not the same as that stated in

section 3.4. of Kéry (2010).

36. Use of the coda package: Some prefer to work with coda objects than with the results returned by

bugs(), as we do throughout Kéry (2010) and Kéry and Schaub (2011). Here is some R sample

code to summarize the posterior samples and to check convergence and sample autocorrelation (from

R.B. Chandler):

outmc <- as.mcmc.list(out)
summary(outmc)
plot(outmc, ask=TRUE)
outmc[,"alpha"]
autocorr.plot(outmc, ask=TRUE)
gelman.plot(outmc, ask=TRUE)
gelman.diag(outmc)
window(outmc, thin=5)

And, last but not least, you must have a healthy distrust in your solutions: Always inspect your

inference, e.g., plot predictions against observed values for quantities that can be observed, to make

sure that the WinBUGS solution is sensible. Also watch out for unexplained differences in parameter

estimates between neighboring models, e.g., those that differ by only one covariate or some other

rather minor model characteristic. This can be an indication that something went wrong or that there

are estimability problems with the model for your data set.

