Part 7. Application of Theory

7.1. Introduction

Several examples of real data taken from various experiments in the literature are
analyzed here to give insight and understanding into the statistical theory and the interpreta-
tion of experimental results. The examples here relate to studies where recaptures are made
over time (days, weeks, or years), whereas Parts 1 and 2 dealt mostly with recaptures recorded
spatially at a sequence of downstream dams. The duality between temporal and spatial sam-
pling was noted in Section 1.1.2. Examination of this material should provide the reader
experience with program RELEASE and a better perspective of the extent of this class of
experiments beyond the fisheries emphasis provided in Parts 1 and 2. Lastly, several subtle
points are made; and we mention some extended approaches.

The material presented here is not a critical reanalysis; our results are not in conflict
with the original work of the investigators. We refer the reader to the original publications for
biological conclusions. We can only briefly describe the more important features of these
experiments. Again, we encourage the reader to consult the original sources for detailed
information on methods and results.

We urge meticulous care in the processing of data before analysis by the statistical
methods presented here. Errors in data entry are always a concern. Computer scatter plots of
the my; versus m; often reveal mistakes that can be corrected or outliers that are cause for
concern. Generally we recommend that the data be recorded and entered into program
RELEASE in the form of a capture history matrix because hand summarization of the data
into an m,; matrix is error prone and does not allow full testing of model assumptions.

Many more-advanced models can be considered for well-designed studies supported by
adequate sample sizes and replication. We urge the reader to become acquainted with the
capabilities of program SURVIV (White 1983). Program RELEASE will prepare an input
file for program SURVIV. Modification of this input file allows estimation with more com-
plex models.

A series of contingency tables can be made to check for homogeneity and to suggest sub-
sets to be pooled in the final analysis. We refer the reader to Olson and Kaczynski (unpub-
lished report, 1980) for an example of the extensive testing that should be done before a final
analysis is attempted. As the investigator explores the experimental data, thought should be
given to what assumptions seem reasonable. Are chronic effects of the treatment likely? Has
the recapture effort across sampling occasions been nearly constant? (If so, perhaps all the
recapture rates can be modeled as a constant.) Is the treatment likely to affect the recapture
rates? These considerations are important in modeling the data, selecting an appropriate
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model, and interpreting the output of program RELEASE.

7.2. Lead-Dosing Experiments on Mallards

Bellrose (1959) conducted a series of experiments in the early 1950s to estimate the
mortality caused by ‘ingestion of lead shot by mallards Anas platyrhynchos. He used a
sequence of treatments with one, two, and four lead pellets, each with a separate control (zero
pellets). The experiments consisted of trapping and banding mallards during late fall and
winter; every other duck was a treatment bird and the others were controls. Treatment birds
were dosed with lead pellets and immediately released with control birds. The data came from
recoveries of birds shot during annual sport-hunting seasons and, therefore, represent the first
capture history protocol (see Table 7.1). The underlying parameterization is not exactly the
same as that described in Chapter 2.2, as band recoveries during the year of banding were
ignored in this example.

Estimates of treatment effect are made by using each treatment group versus its control
group, assuming that H,4 is the correct model. Here, it seems biologically reasonable to con-
sider H 4 as it corresponds to the direct effect

$e1 = Sée1

and

Table 7.1. - Summary of Bellrose’s (1959) data on lead-dosed mallards. The data represent recoveries
shot by sport hunters and fall under the first capture history protocol.

Number recovered in yeara

Experiment Banding Age at Number Number

number year banding pellets banded 2 3 4
1 1949 Adult 1 559 52 36 22
] 560 56 4 24
2 1950 Adult 2 277 12 9 4
0 27 4 22 7
3 1951 Adutlt 4 284 13 7 2
0 3% 30 16 7
4 1950 Young 2 115 14 10 4
0 111 12 12 2
5 1951 Young 4 220 14 8 2
0 207 28 14 8

3Numbers in this table were provided by F. C. Bellrose and differ slightly from those in Bellrose (1959).
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A1 =SA1.

Alternatively, if the harvest rate of dosed mallards were to increase and the annual survival
rate to decrease, one would have

P& > Pei
and
¢li < ¢cl"

and these conditions might result in ),; ~ A;;. If these conditions occur, the treatment effect,
H, versus H,4, would be difficult to detect.

If all the experiments for adults (or young) had been conducted the same year, all the
data from the control groups could have been pooled for increased statistical efficiency. Esti-
mates of treatment effect are given in Table 7.2. These estimates appear to show that lead pel-
lets decreased survival. The tests of the null hypothesis of no treatment effect (S = 1) were
rejected, except in experiment 4. A crude test of the null hypothesis can be computed by pool-
ing the data for all the treatment groups versus all the control groups. Pooling all recoveries
over the 3 years and five experiments results in the 2 x 2 table

t | 209 1246
c |.326 1226

which results in a chi-square value of 22.64, 1 df, P = <0.001, providing strong evidence of a
treatment effect. This test is recommended to provide the investigator insight into the experi-
mental results and to give background familiarity with the data.

Further insight is provided by examining the 2 x 2 contingency table for each treatment
level (one, two, or four pellets) versus its control (zero pellets). Data are pooled over age for
two- and four-pellet treatments as an example. In each treatment, the form of the table is
from TEST 1.R1.

It Ry -m
Te1r Rcl -Te1
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Table 7.2. - Summary of results of the survival experiments conducted by Bellrose (1959).

Hyversus H'yy H,4versus H' 3
Experiment Survival
number Dose s se) ¥ (Bdh P 2 (2df) P
1 1 0.889 0.1036 123 0.747 0.20 0.906
2 2 0.344 0.0741 29.69 <0.001 135 0.509
3 4 . 0579 0.1397 5.61 0.132 0.24 0.880
4 2 1.039 0.2470 0.95 0.812 0.93 0.629
5 4 0.452 0.1033 13.95 0.003 0.89 0.640

The contingency tables and test statistics are available through program RELEASE:

Contingency
Dose Vv table X df P (one-tailed)
1 t 110 449
c 124 436 103 1 0.155
2 t 53 339
c 99 290 17713 1 <0.001

4 t 46 458
¢ 103 500 1491 1 <0.001

From this summary, it seems clear that a treatment effect is indicated; however, the treatment
effect may be on survival or recapture rates, or both.

Estimates of § may be biased if H 4 is not the correct model. This condition may result
when the effect of the treatment is chronic rather than acute. The sum of TESTs 1.Ti
represents a goodness of fit test to model Hig, and these test results (Table 7.2) fail to provide
evidence of chronic effects. These goodness of fit tests have low power in this example due to
the small values of the m,s and m,4 (sec Table 7.1). If chronic effects of the treatment are
reflected in ¢ya, dys, Pi2, Pess OF Pra, then S = $y1 /@1 under model Hy4 may be a poor measure
of the magnitude of the treatment effect.

In experiments such as Bellrose’s where a sequence of treatments was involved, one
might consider estimating a function relating treatment survival to the number of pellets. We
would then expect survival to decrease as the number of lead pellets increases. A generalized
logistic model (Cox 1970) is often useful in modeling survival data (see discussion in Part 8).



7.3. LEAD-DOSING STUDY OF NORTHERN PINTAILS 335

The information above indicated a significant treatment effect, but not necessarily a
direct, acute effect, S = ¢ /¢.1. Thus, it is reasonable to consider § = X, /A.1, where

A = E(

This formulation ignores the fact that a few birds were recovered during and shortly after ini-
tial banding and release. We modeled treatment effect as a function of dosage (D = 1, 2, 4)
and age (4 = 0, 1), ignoring year effects, as

B @)= [ + et s o0 o0,

We estimated the parameters &;, using the ML approach suggested by Jennrich and Moore
(1975) as implemented in program BMDPLR (Dixon 1983). In this example @;, a5, and a5
are 2.23, -0.57, and -0.28, respectively. The respectively estimated standard errors are 0.15,
0.05, and 0.07. For a preliminary analysis, the variables can be transformed and run with a
linear regression program such as

A

Si

In |—
1-5;

=a; + az(D;) + ag(4;).

We do not recommend this analysis as a final procedure, but merely as one that enables quick
insight into the uses of this general modeling approach. Although both dose and age are
significant in this logistic model, the model is crude because the data are too sparse to support
much modeling (temporal effects are ignored as there are only five treatments involving two
age-classes). We use this logistic analysis only as an example of what can be done when
sequences of treatments are used.

Finally, we point out that the five treatment survival estimates in Bellrose’s studies were
independent (i.e., each treatment had a paired control). In other studies, several treatments
may have used a common control. The S; will then have sampling correlations that lead to a
weighted analysis where the weighting matrix is not diagonal.

7.3. Lead-Dosing Study of Northern Pintails

Deuel (1985) reported on a study that measured indirect mortality from ingested lead
shot in northern pintails Anas acuta. The ducks were caught in baited traps at seven areas in
California in the winter months in early 1979. Birds were banded with aluminum leg bands,
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and every other bird received a treatment consisting of two #5 lead shot pellets put directly
into the crops through a plastic tube inserted into the esophagus. Otherwise, all birds were
handled alike and released. In subsequent hunting seasons, some of the banded birds taken by
huntérs were reported to the Bird Banding Office of the U.S. Fish and Wildlife Service.

We use the data from five of Deuel's (1985) areas for male pintails to illustrate the
methodology presented in this monograph (relatively fewer females were banded and released,
and three of the areas were poorly represented by banding, even for males). The data we use
(Table 7.3) fall under the first capture history protocol. The numbers and the capture proba-
bility are both fairly small (e.g., p2 ~ 0.04).

Data collected under the first capture history protocol do not permit intensive tests of
model assumptions, nor are the capture and survival rates separately estimable. The only
estimable parameter of concern is S, the treatment effect. Estimates of this parameter under
model H,, and results of TEST 1, the test for a treatment effect, are provided Table 7.4 for
each of the five areas and the pooled data. There is no evidence of a significant treatment
effect for any of the five areas (Table 7.4). A pooled test statistic, computed by summing the
five chi-squared values and their degrees of freedom, yields X = 179, 20 df, and P = 0.60.
Thus, these data fit model H, quite well.

Table 7.3. — Summary of the experimental lead dosing study of male northern pintails banded in
California in 1979 (from Deuel 1985). These data fall under the first capture history protocol.

Number recovered in year j
Banding Number :

area Group released ji=2 3 4 5 6 Total
Mendota t 930 27 29 12 9 8 85
c 932 41 16 12 9 8 86
S. Grasslands t 759 31 16 6 12 7 72
c 759 28 16 8 9 8 69
Yolo Bypass t 558 17 15 8 9 1 50
c 562 20 8 4 7 4 43
Gray Lodge t 1,354 45 26 13 20 10 114
c 1,334 43 30 19 24 11 127
Delevan/ ¢ 72 23 17 5 7 7 59
Colusa c 783 19 14 6 11 7 57
Pooled t 4313 143 103 4 57 33 380
4 4,370 151 84 49 60 38 382
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Table 74. - Estimates of treatment survival under model Hy4 and the results of TEST 1 for treatment
effect for the lead dosing study of male northern pintails banded in California in 1979 (from Deuel 1985).

Estimated Standard Test of H, versus H's,
Banding survival error
area § $e(5) X daf P
Mendota 0.990 0.1444 6.67 5 0.246
S. Grasslands 1.043 0.1674 0.94 5 0.967
Yolo Bypass 1171 0.2333 5.90 5 0.316
Gray Lodge 0.884 0.1089 217 5 0.825
Delevan/ 1.138 0.2030 215 S 0.828
Colusa
Pooled data 1.008 0.0697 2385 S 0.722

Further extending this example, we note that the five estimates of treatment survival
computed under model H,4 are all near 1.0, considering the size of their standard errors. The
estimate of 1.008 for treatment survival computed by pooling the data over the five areas indi-
cates a lack of treatment effect due to dosing with two lead shot pellets. Alternatively, TEST
1.R1 of the null hypothesis that S = 1 (H, versus H;4) can be made for each area, and the
results of the individual TEST 1.R1 can then be pooled for an overall test:

Area x* df P
1 0.00 1 0.948
2 0.07 1 0.791
3 0.63 1 0.427
4 1.00 1 0.318
5 0.53 1 0.467
Total 223 5 0.816

Again, any indication of mortality due to the lead treatment appears to be lacking. Additional
details on this study were given by Deuel (1985). Although his approach differed from that
presented here, his conclusions were similar. Readers are encouraged to analyze these data by
using program RELEASE to gain additional insights and familiarity with the various models
and tests.

Deuel’s (1985) data can be used to illustrate several other technical issues because the
experiment was replicated over five areas. First we discuss estimates of treatment survival
over the entire experiment. In view of the replicated nature of the study, the individual esti-
mates of S; (by area i) and their standard errors, and the results of testing the null hypothesis
that § = 1, it is logical to pool the raw data and proceed to estimate S. This method yields an
estimate of 1.008, with a theoretical se(S) = 0.0697. Under the null hypothesis, this outcome
is satisfactory. However, the estimated standard error may be somewhat poor unless the
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se(f,-) is equal for all i.

Alternatively, a simple average of the five estimates gives 1.046, with an empirical §e(.§ )
= 0.0517. It can be argued that this procedure is poor because some of the estimates have
larger standard errors than others (observed range = 0.109 to 0.233), suggesting that some
estimates should be given more weight (and therefore requiring a weighted average). If we
assume all five estimates are of the same parameter, statistical theory states that the proper,
optimal weight (w) is var(S)?, i.e., the inverse of the true sampling variance. We can estimate

these weights as
1 1 1 1 7
~2
.= M — . — ¢ -
" {(St){’u Ry ra Ra ]}

and

— E W;é;
Sut = T

= 0.989 or 9% .

This procedure is flawed because the estimate of S; and its estimated sampling variance are
positively correlated. The result causes estimates that are too low to have an estimated sam-
pling variance that is too low and vice versa. Thus, low estimates receive a weight that is too
large, which causes estimates of the weighted average to be biased low. The reason for the
estimate being related to its own variance estimate can be seen by noting that the variance
estimator contains the term (S;)? (see equation above).

A reasonable alternative is to weight the individual estimates by the final term of Qar(§.-),
which is a measure of “sample size.” Actually, this final term is the (large-sample) variance of
" In(S) (see Part 3). Here the weights are defined as

and the weighted mean is computed as
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3'_ E W,'S','
w — Zw" *

‘When the pintail data are used, the weights are 47.1, 38.3, 25.2, 66.0, and 31.4. This procedure
yields a weighted mean of 1.015, close to the value obtained by pooling the data. Correspond-
ing to the estimator of the weighted mean is an empirical estimator of its sampling variance,

(S - Sur)?
var(?,,t) = i=15
[ZW:'] -1
i=1

For the pintail data, Var(S,;) = 0.00272, or §e(S,e) = 0.0522.

Another subject of concern is the degree to which theoretical sampling variances from
the model reflect the amount of variation in the experiment. Using the pintail data, we can
compare the sampling variance based on the model with the variance computed empirically.
The comparison below is based on the unweighted mean but the extension to weighted means
is straightforward.

Maximum hkehhood theory provides the five estimates, S,, and their associated sam-
pling variances, var(S ). If we take

J— 1 5 ~
S = g § ( s') s
then the ML estimator of the sampling variance of this average is estimated by
—_— 1 2 s A
var(S) = —] 3 var(Sy),
5) ia

because the five data sets are independent. The $e(S) = [¢ar(S)]"" = 0.079.
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Alternatively, an empirical variance of S could be computed as

N

var(S) = @& Z

Then, §¢(S) = [Qar(f)]m = 0.052, which is in reasonable agreement with the theoretical
(model-based) estimate of 0.079. However, one could question whether the theoretical vari-
ance (or standard error) is too large. A useful guideline here is to compute

(n -1) (empirical variance of S)
(theoretical variance of S) ’

which is asymptotically distributed as x? with n - 1 df, where » is the number of survival rates
being averaged. This procedure tests the null hypothesis that the theoretical variance and the
empirical variance are equal. Thus,

2
(5-1) (0052 _ |0
(0.079)?

However, a value of 1.73 for a chi-square variable with 4 df is not unusual (P = 0.785) and pro-
vides no evidence for rejecting the null hypothesis. Usually, one is more concerned over the
possibility that the empirical variance is larger than the theoretical (i.c., model-based) vari-
ance.

One possibility is that the true treatment survival varies among the five areas. This vari-
ation leads to a variance component we call 0,2, in contrast to the sampling variance associ-
ated with each estimate. (Statisticians would write this latter term as var[S; | S;] to indicate
that it is only sampling variation.) In this example, three estimates were >1.0; but the true
rates cannot, of course, exceed 1.0, unless one naively believes that lead enhances survival in
biological organisms. Nevertheless, a method of separating the variance components is
illustrated. Variance component estimation can be difficult; here we use a procedure given by
Anderson and Burnham (1976):
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2

“——E(S -5) -—[Evaf(s 1S3 |

A2 » . . . . . .
where o, is the estimator of the area-to-area population variance in S;. The estimator of 0,2 is
similar for the weighted approach

” ~ —
Swi(S: - Swe)®

&2_ 1 =1

¢ n-1 n
Wi
t=1

In this example, 3: = -0.01777 (if weighting is used, this estimate is similar at -0.0176). Vari-
ance is a positive quantity; however, an estimate can be negative. Here the estimate is close to
zero and we could conclude that we were unable to attribute any significant variation to an
area-to-area component. This conclusion is logical given the proximity of the areas and the
nature of the treatment and sampling program.

- % ['Z:)jar (§, IS,) .

The pintail data can be separated into 10 replicates based on the last digit of the band
number. Separation of data allows another assessment of the precision of the estimate of sur-
vival pooled over the five areas. These replicates can be considered as true replicates and are
summarized in Table 7.5. The individual estimates of treatment survival (Table 7.6) yielded an
unweighted average of 1.024. The standard error of this simple average can be computed in
two ways. First the model-based estimates of the sampling variance of each of the 10 esti-
mates can be used as

var(S) = [—~—] [Zvar(S )| = 0.0053
and

se(S) = V var(S) = 0.0729.

Second, the sampling variance of the mean can be computed empirically from the 10 indepen-
dent estimates as
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sar(S) = —— 3(5; - 5)? = 0.0063
vrS) = o9 B T

and

se(S) = V var(S) = 0.0794.

These estimates of precision are in close agreement with each other (0.073 versus 0.079) and
to the comparable estimate of 0.079 based on the theoretical variance and the empirical esti-
mates computed for the five areas (0.052).

Table 7.5. — Summary of the experimental lead dosing study of male northern pintails banded in
California in 1979 (Deuel 1985). The data are pooled over the five areas and segregated into 10
replicates, based on the last digit of their band number; Ry, = 431 and R, = 437 in each replicate.

Number recovered in year j

Replicate
number Group j=2 3 4 5 6 Total
0 t 18 14 2 10 4 48
c 13 9 1 6 3 32
1 t 13 S 4 7 1 30
c 19 5 5 8 4 41
2 ¢ 11 1 6 3 0 31
c 15 7 9 7 4 42
3 t 12 12 9 6 6 45
¢ 14 10 6 7 2 39
4 ¢ 17 12 6 7 4 46
c 18 9 4 5 6 42
5 t 9 9 2 5 3 28
c 15 7 6 7 1 36
6 t 17 11 4 7 1 40
c 18 7 8 5 S 43
7 t 16 10 3 3 5 37
c 9 9 5 4 5 32
8 t 11 10 4 4 S 34
c 12 11 4 9 4 40
9 t 19 9 4 5 4 41
c 18 10 1 2 4 35
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Table 7.6. — Estimates of treatment survival and associated statistics under H,, for the pintail dosing
experiment (Table 7.5). Replicates are derived by partitioning the data on the basis of the last digit in the
band number.

FEstimated Standard Null hypothesis § = 12
survival error
Replicate S $e(S) b'e df P
0 1.521 0.3314 395 S 0.557
1 0.742 0.1710 314 S 0.678
2 0.748 0.1698 8.45 5 0.133
3 1.170 0.2433 3.20 5 0.670
4 1.110 0.2247 1.68 S 0.891
5 0.789 0.1914 5.10 5 0.404
6 0.943 0.1970 527 5 0.383
7 1172 0.2716 2.78 5 0.734
8 0.862 0.1923 213 5 0.830
9 1.188 0.2612 342 S 0.636
Mean or v
total 1.025 39.12 50 0.867

3TEST 1.

7.4. Pesticide Dosing of Starlings

Stromborg et al. (in press) studied postfledgling survival of European starlings Sturnus
vulgaris deliberately exposed to an organophosphate pesticide. This novel study of the effect of
a pesticide under field conditions represents another example of other types of experiments
that fall under the general methodology developed here. In the starling experiment, relatively
small numbers of birds were released (R;; = 60; R,y = 61), but capture probabilities were
high (o = 0.78). Inasmuch as the recaptures were resightings of uniquely marked birds, the
experiment falls under what we have termed the complete capture history protocol (see
Nichols et al. 1981; Sandland and Kirkwood 1981; Buckland et al. 1983; and Clobert et al. 1985
for similar studies, but without treatments). The study was conducted on about 2,000 hectares
of the Patuxent Wildlife Research Center near Laurel, Maryland.

During summer 1984, investigators set out nest boxes to attract starlings. Boxes were
checked frequently during the nesting period to determine the date of hatching. All nestlings
were banded 16 days after hatching, and half the birds, chosen at random, were given an oral
dosage of organophosphate pesticide mixed in corn oil. Control birds were given pure corn oil
under similar conditions. Two days later, the surviving birds were tagged with individually
numbered wing tags (dead birds were tallied as “direct” mortality). The tags were made of
orange or red vinyl-like material, cut in a pear shape and measuring approximately 35 x 40
mm. Letters or numerals about 20 mm high were painted on each tag with flat black paint.
Tagged birds were sighted and their tag numbers were recorded over six sampling periods.
(Further details are given by Stromborg et al., in press.)
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Data from the study are presented in Table 7.7, taken directly from the output of pro-
gram RELEASE in the form of a reduced m-array and its associated summary statistics.
Stromborg et al. (in press) failed to find any significant treatment effect, and our analysis is in
agreement with their results. Results for TEST 1 are summarized in the series of 2 x 2 con-
tingency tables given in Table 7.8. Pooling of the chi-square values and their degrees of free-
dom results in an overall test of the null hypothesis of equality for all survival and capture pro-
babilities between the treatment and control groups. This procedure yields x? = 8.26, 9 df,
and P = 0.508; thus, there is no reason to suspect the validity of the null hypothesis. Either the
pesticide had no effect on the survival rate of fledged starlings or the effects were too small to
be detected in this limited experiment. :

The estimated treatment survival under model H,y4 is 0.906 (standard error, 0.1036),
which is not significantly different from 1.0 (in agreement with results of TEST 1.R1). If § <
1, a larger experiment is needed to provide a suitable measure of the treatment effect. Alter-
natively, a higher dose level or sequence of doses might be effective with the same sample
sizes.

If the treatment affected survival throughout the experiment, a comparison of the aver-
age survival rates of the two groups would provide an indication of the extent of that effect.
However, averaging the ¢ over the four estimates available yielded 0.862 and 0.880 for treat-
ment and control birds, respectively. Again, no indication of treatment-related mortality is
shown. Readers are encouraged to run the data in Table 7.7 through program RELEASE and
interpret the full output.

Table 7.7. — Data under the complete capture history protocol for survival studies of marked starlings
dosed with pesticide by Stromborg et al. (in press).

Ry Recaptures, my;; i

or or

i R ji=2 3 4 5 6 Tet

Treatment group

1 60 24 6 9 2 0 41

2 % 2 1 0 0 23

3 28 24 0 0 24

4 34 30 0 30

5 32 21 21
My 24 28 YR 32 21
Zj 17 12 2 4} 0

Control group

1 61 22 13 9 2 0 46

2 22 18 1 0 0 19

3 31 30 0 0 30

4 40 . 33 1 34

5 35 28 28
me; 22 31 40 35 29
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Table 7.8. — A series of 2 x 2 contingency tables and associated information related to the null hypothesis
that survival and capture (sighting) probabilities are equal for treatment and control groups of starlings.

Test 1 Contingency
component table x df P

1.RS 21 1

28 7 1.76 1 0.185
175 32 0

35 1 0.90 1 0.342
1R4 30 4 '

4 6 0.16 1 0.685
1.74 34 2

40 2 0.03 1 0.874
1.R3 24 4

3 1 2.32 1 0.128
1.73 28 12

31 12 0.04 1 0.834
1.R2 23 1 )

19 3 1.30 1 0.255
1.72 24 17

2 24 1.00 1 0.318
1.R1 41 19

46 15 0.75 1 0.387

- TEST1 8.26 9 0.508

We used program RELEASE to simulate 1,000 replications of this study to investigate
the performance of the statistical theory for several experiments similar to the starling study.
The results of these studies are used to illustrate a number of points and to allow additional
insight into the effect of a pesticide on young starlings. In general, we took the estimates of
parameters computed from the starling study as parameters for the simulations. Thus, ¢, =
094, ¢3 = 0.92, ¢, = 0.87, ¢s = 0.87 and p, = 0.5, p3 = 0.7, py = 095, p5 = pe = 0.98 for
both groups. We chose ¢; = 0.71 and ¢,; = 0.79, giving S = 0.899. The true model was then
H,4 and data sets were generated under this model. The total number released in each group
was studied at 60, 100, 200, and 400 individuals.

The statistical procedures performed well on the average, for all sample sizes studied
(Table 7.9). In addition, the empirical variance of the 1,000 estimates is in close agreement
with the average variance derived from the model and the ML method. The above results
indicate that the asymptotic theory does well when small numbers of animals are released if
the recapture rates are high. We recommend that simulations such as this one be performed
before a study is conducted and during the analysis of experimental data. Simulations con-
ducted during the design phase of an experiment allow appraisal of precision and sample size
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(e.g., note how precision increases in the final column of Table 7.9 as sample size increases).
Also, the power of various tests can be evaluated. The standard error of S is relatively large
when sample sizes are small.

Alternatively, the use of the option EXPECT in program RELEASE will provide very
reliable insight into the properties of estimators and tests. The theory for this is given in
Chapter 3.6. The use of the EXPECT option produces results in a few seconds of computer
time whereas simulation times may often exceed 3 hours. :

Table 7.9. - Monte Carlo results for four parameters and four sample sizes for experiments similar to
the study of the effect of a pesticide on starlings by Stromborg et al. (in press). One thousand
replications were generated with § = 0.899 and estimates were made under model Hyy (the true model).

Number released Average of Standard
Ry =R, Parameter estimates? error
60 p2=05 0.501 0.055
&y =071 0.708 0.063
¢ = 0.79 0.793 0.060
S =0.899 0.898 0.102
100 p3 =05 0.500 0.043
; =071 0.712 0.049
¢a = 0.79 0.790 0.048
S =0.899 0.903 0.080
200 pa=0S 0.501 0.031
dy =071 0.710 0.035
¢ = 0.79 0.792 0.034
B S =0.899 0.899 0.055
400 pa=0S5 0.501 0.022
dy = 0.7 0.709 0.025
¢a = 0.79 0.791 0.024
§ =089 0.896 0.040

3An estimate of the expected value of the estimator.
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Table 7.10. — Power of the test (TEST 1.R1) of model Hy, versus H, for five significance levels and four
sample sizes in Monte Carlo studies with parameters similar to those estimated from the starling data of

Stromborg et al. (in press). Data were simulated under modet H, where the survival rates averaged 0.9
and the recapture rates averaged 0.8. The treatment survival § = ¢y /dcs.

Significance level (@)
Treatment Number released
survival R, =R, 0.01 0.05 0.10 0.20 0.50
§=09 60 0.05 0172 0.24 0.38 0.65
(small effect)
100 0.09 0.22 0.33 045 0.72
200 0.20 0.40 0.53 0.68 0.87
400 0.47 0.70 0.80 0.89 0.97
§=08 60 0.22 0.44 0.58 0.72 0.88
(larger effect) .
100 042 0.68 0.79 0.87 0.96
200 0.80 0.93 0.96 0.99 1.0
400 0.98 1.0 1.0 1.0 1.0

3Comparable estimates of test power using the theory given in Chapter 3.6 are 0.16, 0.24, 0.42, 0.70, 0.47,

0.68, 0.93, and 1.00, respectively, for this column.

Simulated results on the power of the test of Hy4 versus Hy are shown in Table 7.10.
The top half of the table relates to the simulations in Table 7.9. The rest of the table relates to
a larger treatment effect, where S = ¢ /¢.1 = 0.63/0.79=0.797. The power of finding a
significant treatment effect, at the o = 0.05 level of significance where S = 0.9, is only about
0.17 for the starling experiment. Power increases with sample size and the magnitude of the
treatment effect. The ideal experiment would consist of a larger treatment effect (i.e., low S),
large samples released, high capture probabilities, many sampling sites or occasions, adequate
replication, and the use of unique marks. The use of ordered treatments also has advantages

(see Section 8.2.1).
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Data collected under the complete capture history protocol have the advantage that one
can make many tests of model assumptions, select an appropriate estimator, and make proper
estimates of parameters. As noted by Stromborg et al. (in press), the goodness of fit tests
indicate a poor fit of the data to the model. This matter is potentially serious. Stromberg et
al. (in press) simulated the lack of fit and concluded that, in their case, the results were little
affected. In this example, no treatment effect could be shown; thus, model H, was selected. If
a significant treatment effect were to exist, the investigator would have a choice of models:
Hyg, Hop, Hay, Hap, ..., Hy 4 4. In general, however, only models Hyy and Hy, have relatively
good precision unless the capture probabilities are high. For the starling data, the full output
from program RELEASE shows good precision for all estimators under all models because
the capture (sighting) probabilities are high. If capture probabilities are low (say < 0.1), then
good precision for S can be expected only when at least ¢,; = ¢,; forj = 2,3, ..., k and p;; = p,;
for j = 3, 4, ..., k. This same situation is also true for scheme A in the partial capture history
protocol. Under scheme B one can test ¢y; = ¢,; and pys = p.2 and also test that the other
parameters are the same by treatment and control group. With scheme B data, one can esti-
mate the relevant ¢, and ¢,; and the treatment survival rate S can be estimated under models
H 4 and Ho,; however, ¢,; for i > 1 cannot be estimated under any model.

7.5. Partitioning Lazuli Bunting Data

Allen W. Stokes banded Lazuli buntings Passerina amoena in his yard in Logan, Utah,
during winters from 1974 to 1980. Recaptures were recorded each year for 7 consecutive
years, and his data (personal communication), summarized as an m-array, are shown in Table
7.11. The result of the TEST 2 goodness of fit tests is summarized below:

TEST x* df P

2C2 174 1 0187
2C3 168 1 019%
2C4 032 1 0571
2C5 229 2 0130
2C6 021 1 0643
Total 625 5 0282

(with only an m-array such as in Table 7.11, only TEST 2 goodness of fit can be computed).
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Table 7.11, — The m-array for Lazuli buntings banded during winters of 1974-1980 by Allen W. Stokes in
Logan, Utah (personal communication).

Recaptures, m; 5

i R 1974 1975 1976 1977 1978 1979 1980 n
1 168 31 4 0 1 0 0 0 36
2 398 19 14 1 0 1 39
3 88 20 3 1 0 0 24
4 264 41 6 3 1 51
5 304 58 13 1 72
6 322 67 9 76
7 323 76 76

m; 31 23 34 49 66 83 88

z; 5 21 1 13 19 12 0

The above test results, taken from the output of program RELEASE, indicate a satisfactory fit
of the Jolly-Seber model (model Hy) to the data. The estimates of the recapture and survival
rate parameters are given in Table 7.12. The average annual survival is 0.399. At this point,
one might be satisfied with the model and proceed to make inferences about this banded
population. A further analysis, however, raises many questions.

We will use these Lazuli bunting data to illustrate several testing, model-building, and
model selection concepts. In particular, we use PROC SURVIV, an option in program
RELEASE, to generate input code to program SURVIV for the bunting data. The input file
is then analyzed with program SURVIV, which allows extended model building, testing, and
estimation. In this example, we do not claim to reach a completely satisfactory endpoint;
rather, these data are used to show a path that might be followed in the analysis of a set of real
data where complications arise.
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Table 7.12. — Estimates of annual survival (#) and recapture (p;) rates for the Lazuli bunting data
under the Jolly-Seber model (model Hy,), output from program RELEASE.

Maximum Likelihood Estimates under Model H7Phi

95% Confidence Intervals
Parameter Estimate Standard Error Lower Upper

Estimates for Group 1

I !
| Phi(D 488248 142347 .209248 .767248 |
| Phi(2) .222704 .049248 .126178 .319231 |
| Phi(3) .551159 .128118 .300047 .802270

| Phic4) .323701 .054803 .216288 431114 ]
| Phi(5) .408204 .058924 .292714 .523695 |
| Phi(6) .332919 .044263 .246163 419675 |
| p2 377931 .118809 . 145065 .610797

| p(3 .230000 .061706 . 109056 .350944 ]
| pt#) .373868 .086373 .204577 .543159 |
| p(5) 471658 .081868 311196 632119 |
| p(6) .450512 .069064 315146 .585878

| PN .619403 .076551 469364 769442 |
| Phi(7)p(8) 235294 .023602 . 189034 .281554 |
D ittt T e e +

The full m-array is shown in Table 7.13 along with some associated statistics. TEST 3
can be made from these further partitions of the data. The results are summarized below in
two components; first for TEST 3.5m:
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TEST ¥ d P

3.5m2 136 1 0243
3.5m3 164 1 0200
3.Sm4 028 1 0597
3.5m5 668 1 0010
3.5mé6 127 1 0260
Subtotal 1125 5  0.047

This component of TEST 3 shows some lack of fit but this is nearly all from release 5 (TEST
3.5m5). The second major component of TEST 3 is a contingency table where columns are 7;
and R; -7; while rows are newly caught and released birds, and previously captured and
released birds. The results of this test component (TEST 3.SRi) are summarized below:

TEST ) df _P
3SR3 2509 1 <0001
3SR4 1343 1 <0001
3SR5 3348 1 <0001
3SR6 1014 1 0006
3SR7T 2458 1 <0001
35R8 2189 1 <0001
Subtotal 12862 6  <0.001

The sum of these two test components (TEST 3) is x* = 139.87, 11 df, P < 0.001 and indicates
a serious lack of fit to the Jolly-Seber model. It is clear that the banded population consists of
a mixture of birds that are probably never seen again after banding and birds that are com-
monly recaptured. The new, unbanded birds that enter the study population are different from
those banded birds already in the marked study population. The birds that return and are
recaptured fit the Jolly-Seber model fairly well. The data in Table 7.11 can be partitioned into
two m-arrays: new captures and previous captures (Table 7.14). If we use the convention
v = 1 for new birds to be released and v = 2 for previously banded birds already in the popula-
tion at year j, we can compute the test Hy versus Hy, to examine the homogeneity of the two
data sets. Note that Ry = 0: no releases on occasion 1 for group v = 2. This test can also be
made using program RELEASE and results in x* = 130.26, 11 df, P < 0.001. This partitioning
of the data can be done in other applications to test assumptions about males versus females,
young versus adult, birds with versus without neck collars, etc. In each case, the relevant test is
Hy versus Hy 4
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Table 7.13. - The full m-array for the Lazuli bunting data. The total number of initial captures (r;) and
the number of birds never recaptured (R; - ;) are also shown.

Occasion
1 2 3 4 5 6 7 8 n R-n
168 31 4 0 1 0 0 0 3 132
{11} 31 7 4 0 0 0 0 1 20
{01} 367 12 10 4 1 0 1 28 339
{101} 4 1 0 1 0 0 2 2
(release 3) {111} 7 5 0 0 0 0 5 2
{011} 12 6 0 0 0 0 6 6
{001} 65 8 3 0 0 0o 1n 54
{1101} 4 4 0 0 0 4 0
{0101} 10 3 1 0 0 4 6
(release 4) {1011} 1 1 0 0 0 1 0
{1111} 5 3 0 0 0 3 2
{0111} 6 1 1 0 0 2 4
{0011} 4 1 0 0 S 3
{0001} 230 25 3 3 1 32 198
{10001} 1 1 0 0 1 0
{01001} 4 2 0 0 2 2
{00101} 3 1 0 0 1 2
{11011} 4 1 0 0 1 3
; {01011} 3 2 0 0 2 1
(release 5) {10111} 1 1 0 0 1 0
{11111} 3 1 0 0 1 2
{o1111} 1 0 0 0 o 1
{00111} 4 2 0 0 2 2
{00011} 25 9 o0 0 9 16
{00001} 255 38 13 1 52 203
{010001} 1 0 0 O 1
{101001} 1 0 0 0 1
{010101} 1 0 0 O 1
{011101} 1 1 0 1 0
{001101} 1 1 0 1 0
{000101} 3 0 1 1 2
{100011} 1 0 0 0 1
{010011} 2 0 0 0 2
(release 6) {001011} 1 0 0 0 1
{110111} 1 1 0 1 0
{010111} 2 1 0 1 1
{101111} 1 0 0 O 1
{111111} 1 1 0 1 0
{o01111} 2 1 1 2 0
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Table 7.13 — Continued.

{00011} 9 6 0 6 3
{000011} 33 16 0 16 22

{000001} 25%6 39 7 46 210

(0001001} 3 0 O 3

(0000101} 13 1 1 12

(o111011} 1 0 0 1

(0011011} 1 0 O 1

o111y 1 1 1 0

o111y 1 1 1 0

(release 7) (uuy 11 1 0
oo} 1 1 1 0

(ooo1111y 6 2 2 4

(0000111} 16 11 11 5

(0000011} 39 12 12 27

(0000001} 240 46 46 194

Table 7.14. — Partitioned m-arrays for the Lazuli bunting data. The data for birds recaptured only once
(v = 1) appear at the top, followed by birds recaptured after being rereleased (V' = 2). The statistics m;
and z; are also shown.

Recaptures, m,

i R j=2 3 4 5 6 7 8 n
1 168 31 .4 0 1 0 0 0 36
2 367 12 10 4 1 0 1 28
3 65 8 3 0 0 0 11
4 230 25 3 3 1 2
s 255 38 13 1 52
6 256 39 7 46
7 240 46 46
m; 31 16 18 3 42 55 56

z 5 17 10 9 19 10 0

2 31 7 4 0 0 0 11
3 23 12 0 1 0 0 13
4 ) 16 0 0 19
5 49 20 0 0 20
6 66 28 2 30
7 83 30 30

m 0 7 16 16 24 k?)

z 0 4 1 4 0 2 0
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With the two extracted data sets in Table 7.14, the following parameter estimates were
computed using program RELEASE:

v = v=2
i b Dii S Das
0.575

0270 0321 0454 _
0.544 0137 0591 0497
0255 0200 0.720 0.900
0494 0428 0408 0.621
0296 0284 0508 1.000
0.513 0.835

NN R W

Average 0406 0314 0536 0.771

Here, it appears that the average annual survival rates are somewhat similar (§; = 0.406
versus ¢; = 0.536) but the average capture rates are quite different (p; = 0.314 versus p, =
0.771). Although one might expect the estimated average survival for the pooled data (Table
7.12) to lie between 0.406 and 0.536, this is not the case (0.399). These results show the danger
of using the Jolly-Seber model without careful review of the results from TEST 3, which can
only be computed from the CH matrix or the full m-array.

The analysis of these data was extended using PROC SURVIV, an option in program
RELEASE (see Part 9). The following summarizes the parameters and indexing for the bunt-
ing data. ‘

Releases j= 3 4 5 6 7 8
GroupV =1
Rz, . Ryy ¢a $is N $is [ bur
Pus Pu P Pie P Pis
Group V = 2
Ry, ... Ry én $n bu ¢ b b
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PROC SURVIV was used to generate a computer file for analysis by program SURVIV
(White 1983). A listing of this file is shown in Table 7.15, which shows the code generated for
the expectations of each observed m,; value. Constraints were imposed to enable three
models to be analyzed using program SURVIV:

model A; ¢ and p constant over years, but p differing between groups;

model B: ¢ constant and the same for both groups; p year-specific and differing
between groups; '

model C: ¢ year-specific but the same for both groups; p year-specific and differing
between groups.

Thus, the unknown parameters of interest are

model A: ¢
Dy, V= 1,2
model B: ¢

DPois v=12andj=3..,8

modelC:  ¢;, j=2,..,6
Pwis» v=12andj=3.,7

In addition, the products (¢7p,s) are estimable for model C.

The parameter estimates under model A were ¢ = 0.447 (se = 0.0227), p1 = 0252 (se =
0.0241), and p, = 0.813 (se = 0.0563). Again, these results indicate differing capture probabil-
ities by group. However, this model does not fit the data (@ = 634, 19 df, P < 0.001). Con-
siderable pooling was required with an associated loss of 20 df.

The survival rate estimate under model B was 0.418 (se = 0.0217). The capture rates for
group 1 varied from 0.080 to 0.409 while the range for group 2 was 0.744 to 1.0. The fit of this
model was also poor (x? = 23.0, 9 df, P = 0.006) in spite of some pooling over cells with small
expected values (and, again, a loss of 20 df). Neither model A nor B seems useful in making
inference from these data.
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Table 7.15. - Listing of the input file to program SURVIV created by program RELEASE (see Part 9 for
additional information) for the Lazuli bunting data.

INPUT - proc title Al Stokes Bunting data;

INPUT — proc model npar=24;

INPUT -
INPUT -
INPUT -
INPUT —
INPUT
INPUT -
INPUT -
INPUT -
INPUT -
INPUT
INPUT -
INPUT -
INPUT -
INPUT
INPUT -~
INPUT -
INPUT —
INPUT -
INPUT -~
INPUT
INPUT -
INPUT -
~ INPUT -
INPUT -
INPUT —
INPUT -
INPUT --
INPUT ---
INPUT
INPUT —
INPUT -
INPUT -~
INPUT —
INPUT .-
INPUT -

cohort=367 /* Releases for group 1 on occasion 2 */;
12:s( D)*s(7);
10:s( D*(1.-s( 7))*s( 2)*s( 8);
4:s( 1)*(1.-s( 7))*s( 2)*(L.-s( 8))*s( 3)*s( 9);
Les( 1)*(L-s( ))*s( 2)*(1.-s( 8))*s( 3)*(1.-s( 9))*s(4)*s(10);
O:s( 1)*(L-s( 7))*s( 2)*(1.-s( 8))*s( 3)*(L.-s( 9))*s(4)*(1.-5(10))*s(5)*s(11);
L:s(1)*(1.-5(7))*s(2)*(1.-5(8)) *s(3)*(1.-5(9)) *s(4)*(1.-s(10))*s(5)*(1.-s(11) ) *s(6) *s (12);
cohort=65 /* Releases for group 1 on occasion 3 */;
8:s( 2)*s( 8);
3:5( 2)*(1.-s( 8))*s( 3)*s( 9;
0:5( 2)*(1.-s( 8))*s( 3)*(1.-s( 9))*s( 4)*s(10);
0:5( 2)*(1.-5( 8))*s( 3)*(1.-s( 9))*s( 4)*(1.-s(10))*s( 5)*s(11);
0:s( 2)*(L.-s( 8))*s( 3)*(1.-s( 9))*s( 4)*(1.-s(10))*s( 5)*(1.-s(11))*s( 6)*s(12);
cohort=230 /* Releases for group 1 on occasion 4 */;
25:5(3)*s(9);
3:s( 3)*(L.-s( 9))*s( 4)*s(10);
3:5( 3)*(L.-s( 9))*s( 4)*(1.-s(10))*s( 5)*s(11);
L:s( 3)*(1.-s( 9))*s( 9)*(1.-s(10))*s( 5)*(1.-s(11))*s( 6)*s(12);
cohort=255 /* Releases for group 1 on occasion 5 */;
38:s( 4)*s(10);
13:s( 4)*(1.-5(10))*s( 5)*s(11);
1zs( 4)*(1.-s(10))*s( 5)*(1.-s(11))*s( 6)*s(12);
cohort=256 /* Releases for group 1 on occasion 6 */;
39:s( 5)*s(11);
T:s( 5)*(L.-s(11))*s( 6)*s(12);
cohort=240 /* Releases for group 1 on occasion 7 */;
46:s( 6)*s(12);
cohort=31 /* Releases for group 2 on occasion 2 */;
T:s(13)*s(19);
4:5(13)*(1.-5(19)) *s(14)*s(20);
0:5(13)*(1.-5(19))*s(14)*(1.-5(20)) *s(15)*s(21);
0:5(13)*(1.-5(19))*s(14)*(1.-5(20))*s(15)*(1.-5(21))*s(16)*s(22);
0:5(13)*(1.-5(19))*s(14)*(1.-5(20)) *s(15)*(1.-s(21)) *s(16)*(1.-5(22) ) *s(17) *s(23);
0:5(13)*(1.-5(19))*s(14)*(1.-5(20))*s(15)*(1.-5(21)) *s(16)*(1.-5(22))*s(17)*(1.-5(23) ) *s(18) *s(24);
cohort=23 /* Releases for group 2 on occasion 3 */;
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Table 7.15 - Continued.
INPUT —  12:5(14)*s(20);
INPUT -  (O:s(14)*(1.-s(20))*s(15)*s(21);
INPUT - 1:s(14)*(1.-5(20))*s(15)*(1.-s(21))*s(16)*s(22);
INPUT —  0:s(14)*(1.-5(20))*s(15)*(1.-5(21))*s(16)*(1.-5(22)) *s(17)*s(23);
INPUT - 0:5(14)*(1.-5(20))*s(15)*(1.-5(21))*s(16)*(1.-5(22))*s(17)*(1.-5(23)) *s (18)*s(24);
INPUT --- cohort=34 /* Releases for group 2 on occasion4 */; )
INPUT —  16:s(15)*s(21);
INPUT —  3:5(15)*(1.-s(21))*s(16)*s(22);
INPUT - 0:s(15)*(1.-s(21))*s(16)*(1.-5(22))*s(17)*s(23);
INPUT -  0:s(15)*(1.-5(21))*s(16)*(1.-5(22))*s(17)*(1.-5(23))*s(18)*s(24);
INPUT - cohort=49 /* Releases for group 2 on occasion 5 */;
INPUT -  20:s5(16)*s(22);
INPUT —  0:5(16)*(1.-5(22))*s(17)*s(23);
INPUT —  0:5(16)*(1.-5(22))*s(17)*(1.-5(23)) *s(18)*s(24);
INPUT — cohort=66 /* Releases for group 2 on occasion 6 */;
INPUT ---  28:s5(17)*s(23);
INPUT - 2:5(17)*(1.-5(23))*s(18)*s(24);
INPUT - cohort=83 /* Releases for group 2 on occasion 7 */;
INPUT ---  30:s5(18)*s(24);
INPUT --- labels;
INPUT - s(1) =Phi(Group=1 Occasion=2);
INPUT --- s(2) =Phi(Group=1 Occasion=3);
INPUT ---  s(3)=Phi(Group=1 Occasion=4);
INPUT .- s(4) =Phi(Group=1 Occasion=5);
INPUT -  s(5) =Phi(Group= 1 Occasion=6);
INPUT - s(6) =Phi(Group=1 Occasion=7);
INPUT -  s(7)=p(Group=1 Occasion=3);
INPUT --- s(8) =p(Group=1 Occasion=4);
INPUT — s(9) =p(Group=1 Occasion=S5);
INPUT -  s(10)=p(Group=1 Occasion=6);
INPUT - s(11) =p(Group=1 Occasion=7);
INPUT - s(12) =p(Group=1 Occasion=8);
INPUT --- s(13) =Phi(Group=2 Occasion=2);
INPUT --- s(14) =Phi(Group=2 Occasion=3);
INPUT --- s(15) =Phi(Group=2 Occasion=4);
INPUT —- $(16) =Phi(Group =2 Occasion=5);
INPUT - s(17) =Phi(Group=2 Occasion=6);
INPUT - s(18) =Phi(Group=2 Occasion=7);
INPUT -- s(19) =p(Group=2 Occasion=3);
INPUT --- s(20) =p(Group=2 Occasion=4);
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Table 7.15. - Continued.

INPUT - s(21) =p(Group=2 Occasion=5);
INPUT -  5(22)=p(Group=2 Occasion=6);
INPUT - 5(23) =p(Group=2 Occasion=7);

INPUT ~- 5(24) =p(Group=2 Occasion=8);

The results for model C from program SURVIV are shown in Table 7.16. The average annual
survival is estimated to be 0.421 (assumed to be the same for both groups). The goodness of
fit statistics are shown in Table 7.17. Several expected values E (m,;) are less than two and
must be pooled to obtain a test statistic that is more nearly chi-square distributed (e.g., note
cohort 8, cell 3 gives x> = 14.97 when one bird was observed while 0.059 was expected).
Appropriate pooling results in x> = 22.1, 18 df, P = 0.228, indicating a good fit of model C to
the data.

The log-likelihood values for models A, B, and C are -95.1064, -66.2558, and -65.2174,
respectively. The results of log-likelihood tests between the three models are summarized
below:

Hg Hy . P

model A modelB 5770 10 <0.001
model A modelC 5978 14 <0.001
" modelB model C 2.08 4 0.721

These results, taken alone, support the use of either model B or C. The goodness of fit test
. tends to support only model C.-

Ideally, one might want to simulate data similar to those under, at least, models B and C
to further understand the performance of the various tests. Alternatively, one could take the
parameter estimates §; and p,; as input into the EXPECT option in program RELEASE. The
My arrays could be computed and then PROC SURVIV would set up the proper input file
for program SURVIV. This would allow bias and precision to be assessed approximately. In
addition, the chi-square statistics could be used with Table 3.4 to obtain approximations to the
power of tests. The combination of programs RELEASE and SURVIV offer the investigator
some powerful analysis tools.
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Table 7.16. — Estimates of model parameters for the Lazuli bunting data under model C. Parameters 1-5
and 13-17 are ¢y,j = 2, ..., 6; 7-12 are ﬁu, j =3,.,7 and 19-23 are 13,], j =3, ..., 7, respectively. Parame-
ters 12 and 24 are ($,p15) and (¢;pa), respectively. This output is from program SURVIV.
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1

-— e—h 1]
- O VBNV NN =

12
13
14
15
16
17
18
19
20
21
22
23
24

Parameter

1
12

vids nWNn =

14
15
16
17

13

(I
0.32832895
0.54410820
0.41158185
0.41867222
0.40113225

1.0000000
0.10198075
0.19840528
0.27146268
0.29674715
0.40027946
0.17369512
0.32832895
0.54410820
0.41158185
0.41867222
0.40113225

1.0000000
0.53822731
0.89278880
0.74418196

1.0000000
0.88363930
0.36914358

Standard Error
0.71477979€-01
0.10040752

0.66609613E-01
0.51833132E-01
0.50680044E-01
0.00000000E+00
0.35142248E-01
0.53712540€E-01
0.57229006€E-01
0.51903390E-01
0.64594367E-01
0.23052430E-01
0.71477979€-01
0.10040752

0.66609613E-01
0.51833132€-01
0.50680044E-01
0.00000000E+00
0.18980953

0.12672562

0.15468978

0.36776340E-08
0.96052303E-01
0.52853778E-01

95% Confidence Interval

Lower
0.18823211
0.34730946
0.28102701
0.31707928
0.30179936

1.0000000
0.33101943E-01
0.93128698E-01
0.15929383
0.19501650
0.27367450
0.12851235
0.18823211
0.34730946
0.28102701
0.31707928
0.30179936

1.0000000
0.16620062
0.64440658
0.44098998
0.99999999
0.69537679
0.26555017

Upper
0.46845279
0.74090694
0.54213670
0.52026516
0.50046514

1.0000000
0.17085956
0.30368186
0.38363154
0.39847779
0.52688442
0.21887788
0.46842579
0.74090694
0.54213670
0.52026516
0.50046514

1.0000000
0.91025400

1.1411710

1.0473739

1.0000000

1.0719018
0.47273699
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Table 7.17. ~ Goodness of fit statistics for the Lazuli bunting data under model C. This output is from
program SURVIV.

Cohort Cell Observed Expected Chi-square Note

1 1 12 12.288 0.007 0 <P <1
1 2 10 11.682 0.262 0<P <1
1 3 4 5.273 0.307 0<P <1
1 4 1 1.758 0.327 0<P<1
1 5 0 0.669 0.669 0<P<1
1 6 1 0.174 3.9 0<pP<1
1 7 339 335.156 0.044 0 <P <1
2 1 8 7.017 0.138 0 <P <1
2 2 3 3.168 0.009 0<P <1
2 3 0 1.056 1.056 0 <P <1
2 4 -0 0.402 0.402 0<P <1
2 5 0 0.105 0.105 0<P<1
2 6 54 53.253 0.010 0<pP<1
3 1 25 25.698 0.019 0<P<1
3 2 3 8.568 3.619 0<P <1
3 3 3 3.260 0.021 0<P<1
3 4 1 0.848 0.027 O0<P <1
3 5 198 191.625 0.212 0<P <1
4 1 38 31.681 1.260 0 <P <1
4 2 13 12.055 0.074 O0<P <1
4 3 1 3.137 1.456 0 <P <1
4 4 203 208.126 0.126 0 <P <1
5 1 39 41.105 0.108 0 <P <1
5 2 7 10.697 1.278 0<P <1
5 3 210 204.198 0.165 0 <P <1
6 1 46 41.687 0.446 0 <P <1
6 2 194 198.313 0.094 0 <P <1
7 1 7 5.478 0.423 0<P <1
7 2 4 2.283 1.291 0<P<1
7 3 0 0.084 0.084 O0<P<1
7 4 0 0.012 0.012 0<P <1
7 5 0 0.000 0.000 0 <P <1
7 6 0 0.000 0.000 0<P<1
7 7 20 23.143 0.427 0 <P <1
8 1 12 11.173 0.061 0<P <1
8 2 0 0.411 0.411 0 <P <1
8 3 1 0.059 14.967 0 <P <1
8 4 0 0.000 0.000 0<P<1
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Table 7.17. — Continued.

8 5 0 0.000 0.000 0<P<1
8 6 10 1.357 0.162 0<P <1
9 1 16 10.414 2.996 0 <P <1
9 2 3 1.499 1506 0<P <1
9 3 0 0.000 0.000 0<P<1
9 4 0 0.000 0.000 O0<P<1
9 5 15 22.087 2.276 0 <P <1
10 1 20 20.515 0.013 0<P <1
10 2 0 0.000 0.000 0<P <1
10 3 0 0.000 0.000 0<P<1
10 4 29 28.485 0.009 0<P<1
1 1 28 23.394 0.907 O0<pP <1
1" 2 2 1.137 0.655 0<P<1
1 3 36 41.469 0.721 0<P <1
12 1 30 30.639 0.013 0<P<1
12 2 53 52.361 0.008 0<P<1

7.6 Changes in Group Membership - Desert Tortoise Data

Desert tortoises Gopherus agassizii that were uniquely marked were identified near
Goffs in eastern San Bernardino County, California, in 1977 and 1980, and between 1983 and
1986 (Turner and Berry, unpublished report, 1986). Only the 1984-1986 data are analyzed in
this example.

The purpose of the Goffs study was to estimate sex- and age-specific survival of tortoises
for use in the construction of a life table for this species. Carapace lengths and live body
masses were recorded for all tortoises registered. The sex of tortoises with carapace lengths
less than 180 mm could not be ascertained with certainty, but the sex of all tortoises 180 mm
and longer was recorded. Measured carapace lengths ranged from 40 to 325 mm. The size of
tortoises affects their susceptibility to capture. Small tortoises are difficult to find and are
underrepresented in samples (Berry and Turner 1986). Adult tortoises are conspicuous and
have high probabilities of recapture. The size of tortoises also affects survival rates because
smaller individuals are more vulnerable to predation by birds, coyotes Canis latrans, and kit
foxes Vilpes macrotis.

Any attempt to estimate survival rates of tortoises should include body size as a variable,
and a reasonable approach would be to subdivide the population into groups based on lengths
of tortoises measured at time of first capture. Because of possible behavioral and social
differences between adult males and females, it would also be desirable to include sex in the
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analysis. The Goffs data were divided into 11 groups:

Group number Sex and size range

Males > 208 mm
Females > 208 mm
Males 180-208 mm
Females 180-208 mm
155-179 mm
140-154 mm
120-139 mm
100-119 mm

80-99 mm

60-79 mm

< 60 mm

EEvowuoawniswne

The basic data consist of

R,y myiz my3
Ry2 Mmy23

for each of the 11 groups (v = 1, .., 11) plus the average carapace length for each of the
groups. The basic data allow estimation of ¢,1, py2, and ¢,op,3, giving 33 parameters. We
seek a parsimonious model using size to reduce 33 parameters by incorporating growth into
the model.

The logistic model provides a reasonable approach to modeling capture and survival
probabilities as a function of size. Thus, the survival rate for group 6 during 1984-1985 is
expressed as

_ B2
1+ exp (-fo - f145) ’
where f, is the intercept of the curve, §; is the slope and 4, is the asymptote (<1). The value

145 is the mean carapace length of group 6 tortoises captured in 1984. For group 5, the sur-
vival rate for 1984-1985 is

$1

_ B2
1+ exp (Bo-AlTD)

é1

because the mean carapace length of group 5 tortoises captured in 1984 was 171 mm. The
parameters fo, By, and B, are the same as for group 6 and all other groups from 1984 to 1985.
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That is, these three parameters are common to all 11 groups because only the mean carapace
length for each group is assumed to affect survival. Thus, the estimates of o, f,, and g reflect
the environmental conditions of the 1984-85 interval, particularly rainfall. A different set of
estimates for f,, f1, and B, could have been obtained for 1985-1986, and likewise for 1986-
1987, had data been collected for all of these periods.

Some tortoises grew 50 mm over a 3-year period. Thus, a mechanism is required in the
analysis that allows for the increase in size of tortoises through time - in effect, to allow tor-
toises to change their group membership. To provide the best estimate of the size of tortoises
in 1985 that were in group v in 1984, the mean size of the recaptures in 1985 is calculated, and
these values are used in the logistic functions. Further, size in 1985 is used in the logistic func-
tion for capture probability in 1985. Thus, for group 5 animals, the probability of recapture in
1985 is

- T2
1+ exp (- -71184)

D2

where the mean carapace length of the tortoises classified as group 5 in 1984 is now 184 mm in
1985. Typically, animals in groups 3-11 increased in size over an interval, while the mature
adults (groups 1-2) did not.

As with the models described earlier in this monograph, the final pair of parameters ¢,
and p3 are not individually estimable, but the product of the pair can be estimated. Again, this
product is treated as a logistic function with three parameters across all 11 groups.

To summarize, the basic model for group v consists of three parameters: ¢;, p», and the
product ¢;ps. Each of these three parameters is modeled as a three-parameter logistic func-
tion of size. Thus, a total of nine parameters (rather than 33) is estimated from the data, i.e.,
three logistic functions times three parameters per function.

The basic data for this model are given in Table 7.18. The recaptures are presented as
an m;; matrix because this input (Table 7.19) is needed by program SURVIV (White 1983).
The second line in each entry is the mean carapace length for tortoises in the cohort. This
mean is estimated from all tortoises starting the cohort, even though some of them may be
represented in a new cohort because of a previous capture.

Two “tricks” are used to analyze the data with program SURVIV. First, the coding for
a logistic function is complex. Rather than code each logistic function separately, a function
call, RL, with three arguments is used: the index of the starting parameter for the triplet form-
ing the logistic function, the index of the parameter specifying a correction for adult females
(discussed later), and the carapace length used for calculating probability. Instead of separat-
ing these values with commas, percent signs (%) are used because SURVIV does not recog-
nize % as a separator. After the compile run of SURVIV is completed, the EST.FOR file
SURVIV generates is edited; the percent signs are converted to commas, and the code for the
RL function is added. EST.FOR then is compiled and linked into SURVIV to complete the
estimation process.
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Table 7.18. — The m-array and mean carapace lengths (in parentheses) for desert tortoises captured at
Goffs, California, 1984-1986. R, includes recaptures from the previous occasion.

Group R my
j=2 3
1 84 62 7
(256) (259) (261)
75 51
(256) (256)
2 67 57 4
222) 223) (223)
7 56
222) 22)
3 10 3 1
197 (198) (205)
12 4
(19) (196)
4 18 11 4
%) () (04)
18 12
(19) (19)
5 18 12 2
an) (184) (189)
13 8
(168) (168)
6 11 3 3
(145) @161) @167
12 6
(147 47
7 16 7 1
(129) (139) (153)
18 6
(127) (127)
8 19 10 1
on @  123)
27 5
(109) (109)
9 16 7 1
@) (® O
16 3

(%0 (%0
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Table 7.18. — Continued.

10 9 1 1
am @) ()

7 2
(72) (72)

11 13 2 1
@ 8 ()

10 0
52) (52)

Table 7.19. — Input to program SURVIV for desert tortoise data.

proc title Analysis of tortoise, Section 8 only, sex differences,
84-86 only;
proc model npar=12
/*rl(i, j,k) converted to
s(i+2)/(1.+exp(-s(i)-s(i+1)*dble(k)-s(j)*dble(k)) */;
cohort=84 /* Group 1 Males > 208 mm captured 1984 */;
62:r L (170%256)*r L (7%0%259) ;
7:rL(1%0%256)* (1. -rl(740%259) )*r L (4%0%261);
cohort=67 /* Group 2 Females > 208 mm captured 1984 */;
59:rL(1%10%222)*r L (7%11%223);
4:rl(1%10%222)* (1. -rL(7%11%223) Y*r 1 (4%12%223) ;
cohort=10 /* Group 3 Males 180-208 mm captured 1984 */;
3:rLC1%0%197)*r L(7%0%198) ;
TarlCI%0%197)* (1. - r L (740%198) y*r L (4%0%205) ;
cohort=18 /* Group 4 Females 180-208 mm captured 1984 */;
1M:rL1%10%195)*r L(7%11%204 ) ;
4erlC1%10%195)* (1. -rL(7T411%204) Y*r 1 (4%12%4204);
cohort=18 /* Group 5 155-179 mm captured 1984 */;
12:rL(1%0%171)*rL(7%0%184) ;
2:rL(1%0%171)* (1. - rL(7%0%184 ) Y *r 1 (4%0%189);
cohort=11 /* Group 6 140-154 mm captured 1984 */;
3:rL(1%0%145)*r L (7%0%161);
3:rL(1%0%145)* (1. -rL(T%0%161) ) *r L (4%0%167);
cohort=16 /* Group 7 120-139 mm captured 1984 */;
7:rL(120%129)*r L (7%0%139) ;
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Table 7.19. - Continued.

1:rt(1%0%129)* (1. -rL(7%0%139) )*r L (4%0%153);

cohort=19 /* Group 8 100-119 mm captured 1984 */;
10:rLCI%0%107)*r L(7X0%117);
1:r101%0%107)* (1. -rL(7%0%117))*r L(4%0%123);

cohort=16 /* Group 9 97-99 mm captured 1984 */;
7:ri(1%0%89)*r (7%0%98);
1:rL{1%0%89)Y*( 1. - rL(7%0%98) )*r L (4%0%97) ;

cohort=9 /* Group 10 60-79 mm captured 1984 */;
1:rL(1%0%71)*r L (7%0%80) ;
1:rL1%0%71)* (1. -r L(7%0%80) ) *r L (4%0%80) ;

cohort=13 /* Group 11 < 60 mm captured 1984 */;
2:r L(1%0%49)*r L (TX0%58) ;
1:rL(1%0%49)* (1. - rL(7X0%58) )*r (4%0%64);

cohort=75 /* Group 1 Males > 208 mm captured 1985 */;
51:r1(4%0%256);

cohort=71 /* Group 2 Females > 208 mm captured 1985 */;
56:r1(4%12%222);

cohort=12 /* Group 3 Males 180-208 mm captured 1985 */;
4:rl(4%0%196);

cohort=18 /* Group 4 Females 180-208 mm captured 1985 */;
12: rL(4%12%196);

cohort=13 /* Group 5 155-179 mm captured 1985 */;
8:rl(4%0%168); .

cohort=12 /* Group 6 140-154 mm captured 1985 */;
6:r1 (4%0%147); :

cohort=18 /* Group 7 120-139 mm captured 1985 */;
6:r1(4%0%127);

cohort=27 /* Group 8 100-119 mm captured 1985 */;
5:r1(4%0%109);

cohort=16 /* Group 9 97-99 mm captured 1985 */;
3:r1(4%0%90);

cohort=7 /* Group 10 60-79 mm captured 1985 */;
2:rl(4%0%72);

cohort=10 /* Group 11 < 60 mm captured 1985 */;
0:rl(4%0%52);

labels;

s(1)=Intercept for 1984 survival function;
s(2)=Slope for 1984 survival function;
s(3)=Asymptote for 1984 survival function;
s(4)=Intercept for 1986 survival and cap. prob. function;
s(5)=Slope for 1986 survival and cap. prob. function;
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Table 7.19. — Continued.
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s(6)=Asymptote for 1986 survival and cap. prob. function;
s(7)=Intercept for 1985 capture probability function;
s(8)=Slope for 1985 capture probability function;
s(9)=Asymptote for 1985 capture probability function;
s(10)=Adult female survival probability effect;
s(11)=Adult female capture probability effect;
s(12)=Adult female 1986 survival and capture probability
effect;
proc estimate novar nsig=5 name=asym_fix;
initial; s(1)=0.8; s(2)=0.002; s(4)=0.8; s(5)=0.002;
s(7)=-2.; s(8)=0.02;
constraints; s(1)>-5.; s(1)<5.; s(2)>0.; s(2)<1.; s(3)=1.0;
s€4)>-5.; s(4)<5.; s(5)>0.; s(5)<1.; s(6)=1.0;
s(7)>-5.; s(7)<5.; s(8)>0.; s(8)<1.; s(9)=1.0;
s(10)=0.0; s¢11)=0.0; s(12)=0.0;
proc estimate novar nsig=5 maxfn=1200 name=phi_cons;
initial; retain=asym_fix;
constraints; s(1)>-5.; s(1)<5.; s(2)=0.; s(3)=1.0;
8(4)>-5.; s(4)<5.; s(5)>0.; s(5)<1.; s(6)=1.0;
s(7)>-5.; s(7)<5.; s(8)>0.; s(8)<1.; s(9)=1.0;
s$¢10)=0.0; s(11)=0.0; s(12)=0.0;
proc estimate novar nsig=5 maxfn=1200 name=p_cons;
initial; retain=asym fix;
constraints; s(1)>-5.; s(1)<5.; s(2)>0.; s(2)<1.; s(3)=1.0;
s(4)>-5.; s(4)<5.; s(5)>0.; s(5)<1.; s(6)=1.0;
s(7)>-5.; s(7)<5.; s(8)=0.; s(9)=1.0;
$(10)=0.0; s¢11)=0.0; s(12)=0.0;
proc estimate novar nsig=5 maxfn=1200 name=phi&p_cons;
initial; retain=asym fix;
constraints; s(1)>-5.; s(1)<5.; s(2)=0.; s(3)=1.0;
s(4)>-5.; s(4)<5.; s(5)=0.; s(6)=1.0;
s(7)>-5.; s(7)<5.; s(8)=0.; s(9)=1.0;
$(10)=0.0; s(11)=0.0; s(12)=0.0;
proc estimate novar nsig=5 maxfn=1200 name=sex_diff;
initial; retain=asym_fix;
constraints; s(1)>-5.; s(1)<5.; s(2)>0.; s(2)<1.; s(3)=1.0;
s(4)>-5.; s(4)<5.; s(5)>0.; s(5)<1.; s(6)=1.0;
S(7)>-5.; s(7)<5.; s(8)>0.; s(8)<1.; s(9)=1.0;
proc estimate novar nsig=5 maxfn=5000 name=asymptote;
initial; retain=asym_fix;
$(3)=0.95; s(6)=0.95; s(9)=0.95;
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Table 7.19. ~ Continued.

constraints;
s(1)>-5.; s(1)<5.;
s(4)>-5.; s(4)<5.;
s(7)>-5.; s(7)<5.;
$(10)=0.; s(11)=0.; s(12)=0.;
proc estimate novar nsig=5 maxfn=5000 name=s&asymptot;
initial; retain=asymptote;
constraints;
s(1)>-5.; s(1)<5.;
s(4)>-5.; s(4)<5.;
s(7)>-5.; s(7)<5.;
proc test;
proc stop;

Because of the complexity of the model developed above, a series of models is used to build up
to the most complex model. First, estimates are made with program SURVIV for the model
labeled ASYM_FIX: the model where the logistic functions for ¢;, ps, and $;p3 are individu-
ally estimated but the asymptotes of each logistic function (8, 2) are fixed at 1.0. This model
only has six parameters; thus it provides a starting point for the estimation process. To test for
the effect of growth on survival and capture probabilities, three additional models are
included. The model PHI_CONS has f; = 0 for ¢, to test if size affects survival; model
P_CONS has v, = 0 for p, to test if size affects capture probability; and PHI&P_CONS has
the slope parameter set to zero for all three logistic functions to provide an overall test of the
effects of size on survival and capture probabilities.

The final model in the sequence is labeled ASYMPTOTE: each of the three logistic
functions in the model are assumed to have different parameter values and the asymptote of
each logistic function is estimated rather than fixed at 1.0 (but constrained to <1). Goodness
of fit results for this sequence of five models are

Model Log-likelihood  df P
ASYM_FIX -70.086 27 0.009
PHI_CONS -70.478 28 0.020
P_CONS - -75.667 28 <0.001
PHI&P_CONS -121.125 30 <0.001
ASYMPTOTE -67.371 24 0.014
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None of the five models provided an adequate fit to the observed data as determined by the 2
goodness of fit test from program SURVIV. Although size was significantly related to capture
probability (P <0.001, likelihood ratio test of P_CONS versus ASYM FIX), it was not
significantly related to survival (P = 0.376, likelihood ratio test of PHI_CONS versus
ASYM FIX). Further, the likelihood ratio test of the general model ASYMPTOTE versus
the simpler model ASYM_FIX was not significant (P = 0.143), suggestmg that allowing the
asymptote values of each of the logistic functions to deviate from 1 did not improve the fit of
the model to the observed data. This result is consistent with the poor fit of the ASYMP-
TOTE model as shown above.

Examination of the partitioned goodness of fit test in the output from program SURVIV
showed a pattern in the lack of fit. group 2 (females >208 mm) generally contributed large
. chi-square values, usually with the observed captures exceeding the expected number of cap-
tures. This pattern also was visible for group 4 (females 180-208 mm). Further, males in
groups 1 and 3 tended to show the opposite pattern — observed captures were generally less
than the expected value, although the chi-square contribution from these groups was generally
not significant.

These results suggested additional model building to account for sex of the mature tor-
toises (groups 1-4). Even though males and females might be the same size, behavioral
differences might modify their capture and survival probabilities so that size alone would not
explain the observed data. Thus, the logistic functions for groups 2 and 4 (females) were
modified to include a fourth parameter for survival:

B2
‘1 + exp [-Bo - Bilength - fzmax (0, length - 180)]

¢ =

The additional parameter s allowed for differential behavior of mature females compared to
other groups. Thus, f; is zero unless the cohort is in group 2 or 4. This modification added
three parameters to the general model described previously because a parameter is needed for
each of the three logistic functions.

The three additional parameters caused us to add two additional models to the sequence
described above. SEX_DIFF allows for differences in sex, but continues to fix the asymptote
value to 1.0 so that the effect of the three additional parameters can be tested against the
ASYM _FIX model. The most general model, S&ASYMPTOT has 12 parameters, four for
each of the three logistic functions. The goodness of fit results are now much improved:

Model Log-likelihood  df P

SEX DIFF -58.936 24 0224
S&ASYMPTOT -58.219 21  0.201
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A summary of the pertinent likelihood ratio tests between models is:

We conclude that model SEX_DIFF is the most parsimonious model that fits the observed
data. The addition of asymptotes different from unity to the three logistic functions does not
improve the fit of the model. The reduced model ASYM_FIX fits the data significantly more
poorly than SEX DIFF, demonstrating that the sex-specific parameters contribute
significantly to the fit of the model. leew15e, a test of P_CONS versus ASYM_FIX demon-
strates that p is significantly related to the size of the individual. Estimates of the parameters
for the SEX_DIFF model are presented in Table 7.20, and plots of the ¢ and p functions are

Hy Hy X
PHI_CONS ASYM _FIX 0.78
P_CONS ASYM_FIX 11.16
PHI&P CONS ASYM FIX 102.08
ASYMFIX  SEX DIFF 2230
ASYM_FIX ASYMPTOTE 543
ASYM FIX S&ASYMPTOT 23.73
SEX DIFF S&ASYMPTOT 1.44
ASYMPTOTE S&ASYMPTOT 18.30

shown in Figure 7.1.

df P

0.376
<0.001
<0.001
<0.001

0.143
<0.001

0.697
<0.001

W W AW WW

Table 7.20. - Estimates of model parameters for the program SURVIV model SEX DIFF.

Parameter Estimate SE 95% Cl
¢ Intercept 0.476 1.081 -1.643 to 2.595
&, Slope 0.00490 0.00487 -0.00465 to 0.0145
& Asymptote 1.0
3 Intercept -1.405 0.668 -2.714 to 0.0965
p3 Slope 0.0121 0.00241 0.00739 to 0.0169
Pa Asymptote 1.0
@05 Intercept -2.539 0.250 -3.029 to -2.049
¢ Slope 0.0131 0.00117 0.0108 to 0.0154
s Asymptote 1.0
Adult Females
¢, Effect 0.0381 0.0200 -0.00102 to 0.0773
D3 Effect 0.0207 0.0125 -0.00373 to 0.0452
éups Effect 0.0238 0.00842 0.00733 to 0.0403
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Figure 7.1. - Plots of ¢y, pa, and ¢pp, as a function of carapace length.

Caution must be taken regarding the procedures used in the preceding analysis. The
estimates of size for tortoises that were never recaptured may be biased because the probabil-
ity of capture is related to size. Hence, the tortoises recaptured at a later occasion were prob-
ably larger, leading to size-biased sampling. However, because of the large number of groups
used in the analysis, the effect of this size-biased effect is minimized. The smaller the size
interval used to form a group, the smaller the effect of the size bias. However, adequate sam-
ple sizes must be maintained within each group to allow estimation of the group size, and to
allow adequate sample sizes for program SURVIV to estimate the multinomial cells.



