Part 3. Theory for Studies with Two or More Treatments

3.1. Theory for the Complete Capture History Protocol

As noted in the Reader’s Guide (Chapter 1.1), most of Part 3 is intended for persons
interested in the theory underlying the methods presented in this monograph. However, biolo-
gists cannot safely bypass Chapter 3.10.

3.1.1. Probability Distribution for One Data Set

The starting point for the theory for the complete capture history protocol is the proba-
bility distribution for a single data set. That distribution has been considered in the literature
(for example, Brownie and Robson 1983; Pollock et al. 1985). Consequently, we do not give
the derivations here.

We drop the index for group v in presenting results for a single data set. The complete
data are represented as the known releases by subcohorts (subcohorts being determined here
by capture histories) and the subsequent recaptures:

Rp,i=1.,k-1,
and

m,-,;,,j=i+1,...,k.

Capture history # depends on time of release and ranges over h = 1, ..., H;. The exact set of
capture histories being indexed is not relevant to expressing the general theory.

Given Ry, the recaptures m;; 1 p, ..., M have a multinomial distribution. By assump-
tion, these distributions are independent over subcohorts withirl: i and over cohortsk i=1,..,

k - 1. Let the various cell probabilities be m;5. Also,let Ay = 3, mpandry = Y, my, as
J=t+1 I=t+l

before. Thus,

174
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Then symbolically,

Pr{Data} = ’ﬁ [ﬁ Pr{m;s 1 ps s Mg IRih}] ’

t=1 |h=1
where

Pr{mi;i1n ** Mas | R}

(1- D)™™

R ) misn
- [mi,i+1,h milnhRih'rih] [.H (men)™

J=t+1

One could consider models wherein the capture probabilities 7,4, are dependent on cap-
ture history; we do not do so here. Given yj = Mz, then the totals my; = my; (and r;) are a
sufficient statistic (minimal sufficient if no particular structure is assumed for the 7). Thus, it
is clear that, given R;, the m,;-are multinomial. For convenience, we refer to the my; as the
cohort recapture data (abbreviated here as cohorts), and write

k-1 ‘
II Pr{m;.1, ..., my | R;} = Pr{cohorts | releases }

t=1

x

H J=t+1

1 _ ‘ A
= ] [Miier R'm,kR, -ri] [ IT (”ia')"kj] (1'/\‘)&-% y =1 .,k-1.

We now can partition the full probability model:

Pr{Data} = Pr{subcohorts|cohorts} Pr{cohorts |releases}.

The conditional distribution of the subcohorts (i.c., all the subcohort data mgy), given the
cohorts, is a series of independent hypergeometric distributions:
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Pr{subcohorts|cohorts}

k-
=TI Pr{miipip **° Man, B = 1,0, Hy | Mgy -- - ma}

o)

I Mot [mi,i+1,h "t Magh, Rip -1y
i=1 Rg
Mg " Mg Ri-1;

We then partition Pr{cohorts|releases} further. Given the classical Jolly-Seber model,
which we assume, survival and capture probabilities depend only on the survival interval and
recapture occasion, respectively. Hence,

$iDis1 > j=i+1
T TV (Hii1) ** B2 4520 pis §>i+1

The MSS may be taken as ry, ..., 7x1, M2, ..., Mi.1. Its probability distribution is representable
as 2 - 3 conditionally independent binomial distributions:

U I R; ~ bin (R"Al), i
m; | T; ~bin(Ty,r), i

]

1, . k-1
2, k-1,

For completeness, we reiterate the definitions below:
Ta=r1;
Ti+1 = Ti'mi tri=z+tr, i = 19"'>k;

A= ¢i(pi+1 + qs'+1’\¢'+1)’ i=1.,k-1;
A =0;
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The conditional distribution of the cohort data given the MSS has been considered by
various authors. The earliest derivation appears to be that of Robson and Youngs (unpub-
lished report, 1971). Symbolically we want

Pr{cohorts|releases} = Pr{cohorts| MSS} Pr{MSS |releases}.

Some additional notation is needed. Let m®; be the column sum of the my; for? = 1, ..., i:
meg=my;+mo+ - +my,
defined fori = 1, ..,j - 1, and j = 2, ..., k (however, only the cases of i = j -2 andj - 1 are

needed). We note that z; =mC .y +.tm®y, Ty =m+..+mc, and
m€ii = my,y. Now

z r
k2 (M o0 M) [Miger © 0" Mg

Pr{cohorts | MSS } = [

=2 T;'+1
c
Mmipn 0 My

For completeness, the explicit expression for Pr{MSS |releases} is

Pr{MSS |releases } = ﬁ [I:’] )" (- ,\'.)R""] ’ﬁ [rz;'] )™ (1 -ri)n'"l{:l ]
i=1 " £=2 '

Thus, we have presented here a partition, for one data set, of Pr{Data}:

Pr{Da\ta'} =Pr{MSS|releases} Pr{cohorts| MSS} Pr{subcohorts|cohorts}
= (component 1) X (component 2) x (component 3).

Only component 1 depends on the survival and capture probabilities and is used in deriving the
MLEs. Components 2 and 3 are used for goodness of fit tests.

Derivations are easier if one simplifies the notation by defining

T
A,=E,t =1,. ,k-l,
m;
Bi=—i=2.,k-1,
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A, =1, and B, = 1, and adopting the convention that ¢, means (#api)- The MLEs of Ay,
s Apy and 7o, ..., Ty are the above A; and B;, respectively. The solutions for ¢; and p; are
facilitated by writing

Ai = §Pis1 + GirrAinr)
Bi1 = Pis1/@is1 + GisrAis1) s
hence, 4; = @ P;,1/B; .1, and solving for

ﬁ' _ Bi+1
t+l Biyi + (1-Biy1)/Aisr’

Thus,

&,‘ = A,'(B;.'_l + (1 -B.'+1)/A,'+1) N i = 1, vony k-1.

The main advantage of these representations of ¢; and p; are that the 4; and B; are all
mutually independent and have known distributions, thereby making it relatively easy to derive
variances and covariances of the MLEs. For example, if the delta method is used,

. o )* Al-4) 3 )* Biss(1-Bis)
var(l) = [?974“] R [3Bi+1] T

N 8 )° Aii(1-Aip)
8As’+1 Rt'+1 )

More detailed consideration of variances and covariances is deferred to Sections 3.1.2 and
3.1.3.

3.1.2. Theory under the Sequence of Models

We outline here the probability theory and inference methods under the sequence of
models Hy, Hig, ..., Hpq,4 for the complete capture history protocol. We begin with com-
ponent 1 of the probability distribution Pr{MSS |releases}; and re-introduce the group indexv.



3.1. THEORY FOR THE COMPLETE CAPTURE HISTORY PROTOCOL 179

Under the most general hypothesis Hy_ 4, of all parameters differing by treatment, the
MSS is

MSS = {MSS,, v = 1,.., '}
or

{rul’ ooy Ty k-1s My2y ooy My gy, V = 1’ =3 V} .

The basic estimable parameters are @y1, ..., fuk-2 (Pok-1Pok)> Po2s s Poi1> V = 1, .., V. Each
MSS, is independently and binomially (bin) distributed as in the previous section:

1., k-1,
2 k-1.

T ~ bin (va"Avl'), i
i

My ~ bin (Ty,7y),

At the other extreme we have H: all parameters are the same over treatments. There-
fore all A; = and r,; =7;. Thus, the MSS under H,, is simply the sums r;,i = 1, ...,k - 1 and
my, i = 2, ..., k- 1, with probability distribution

Iy ~ bin (R.i’ )1)7

k-1,

i=1.
mg ~ bin (T_,', 1','), i 2, ey k-1.

The theory under Section 3.1.1 applies to obtaining MLEs of the now common parameters.
We can next derive a test of Hy versus the alternative H, of Hj.; 4, all parameters may

differ by treatments. Let MSS z, and MSS g, be the relevant minimal sufficient statistics
under null and alternative hypotheses. We want

PrHO{MSSHA}
Pry,{MSSgy, | MSSg,} = ———=

PIHO{MSS Ho}

This distribution is a product of 2k - 3 hypergeometric distributions. For ease of reference to
the sequence of hypotheses, we write this distribution in the following order:
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\ 4 . \ 74

1 (7] [, ) || I

B E
ry mg r;

Let the terms (distributions) here be labeled 1.R1, 1.72, 1.R2, ..., 1.7, 1R, (2 - 3 of these
distributions). These terms produce the corresponding components of TEST 1. In this order-
ing, terms are aligned with the sequence of alternative hypotheses (models)

3.1

Hyy  (LR1)
Hyp (172
Hy,  (1R2)

Hiyp  (LTK-1)
Heiy (LREK-1).

Consideration of the MSS under intermediate hypotheses remains. Although the “book-
keeping” of this process can be confusing, the concept of what occurs is straightforward. The
parameters have a natural ordering in time or space. The corresponding sequence of
hypotheses produces a series of nested models -allowing closed-form tests and estimators.
(This sequence of nested models is not unique; this matter is discussed below.) For a given
hypothesis such as Hay, all lower-order parameters are allowed to be different over v: ¢y1, P2,
and ¢,,. All higher-order parametets are the same over v: p s, ¢3, ., Pi-1, (Px-1Px), Which
translates into

’\01’ Ty2s ’\v2
being different by treatment group but
7.3y A.S’ voey Th-1s A.k-l

being the same over v. The above results allow an easy determination of the relevant MSS
under Hg:

Twi ~ bi.ll (R“', A“), i= 1, 2,

my2 ~ bin (Tv2’ 1'02) ’ and
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ri ~bin(Ry, Ag), i

Il
Niad
x

'
S

m; ~ bin (Tj, 1'.,'), i = 3, sey k-1.

The minimal sufficient statistics, point estimators, and variances and covariances are
casily given if one adopts a few conventions. Specifically, let the treatment group index v
range over the set {1, ..., v, “.” } where v = “.” denotes pooling over all groups. Thus, in the
above expression the MSS is representable as

Tuls Ty2 7.3y ooy Tk-1
My2, M3y 00 Mgy

forv=1,.,Vorjustry,i=1.,k-landmy,i=2 .,k-1withv =.fori =3, .. k-1
The complete specification of all MSSs, point estimators, and variances and covariances is
given in Section 3.1.3.

The probability distribution represented by formula (3.1) is unique; however, the associ-
ation (interpretation) of intermediate models (between H, and Hy, 4) with terms of this dis-
tribution is not unique. A variety of nested models can be created that all give rise to the same
sequence of MSSs, and thus to formula (3.1). The biology must dictate the sequence of
models one considers. Moreover, there are models (and sequences) that do not produce an
MSS of closed form that corresponds to that of any MSS in the sequence Hy, H 16y o Hi1,40
In those cases, closed-form results do not exist. Alternative sequences that will lead to
closed-form results include H4, Hay, Hag, ...y Hi1,4 (i.€., ignore the intermediate cases in Hj,)
or Ho, Hap, Hsp, ..., Hy.1p. In the case of v > 2, there are subcases within each H;; or H;,.
Only the extremes have been formulated here: either all groups or no groups were pooled at a
given stage. For example, under H,,4 with general V, the parameters of interest are ¢y, ¢y, ...y
¢v1. The extremes are ¢,; = ¢, all v or all 4,; are different. However, closed-form results (as
for estimators and tests) also exist under any simple subsetting hypothesis such as
b1 = bn =31 = a1, b = " =1 = 1 and ¢,; #¢,1. We do not consider such an
alternative nor do we consider expanded sequences of nested models in this general discussion
of theory.

We now bricefly consider the methodology for obtaining estimators and variances and
covariances. Under any of these hypotheses (i.e., models), the following statement is true. If
we let / = the number of estimable parameters, the MSS has / components representable in
the form

Vi ~ bin [Yn 5!(_0_)]9 i = 1,..,1.

Ally; are mutually independent. The parameters of natural interest are f = (6y, ..., 6;) and the
81, ..., & are a one to one transformation of 4, ..., 4. The MLE:s of the §; are
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Yi .
3¢=8,‘(Q)=?:, l=1,...,l.

These / equations can be solved uniquely for the MLE 9 (see, e.g., Davidson and Solomon
1974). The resulting §; are explicit functions of the ratios a; = y;/Yy; for example,

9{ = gi(al’ ey al), i = 1, vy L

Note that E(a,) = 6;. Asymptotic theoretical variances (if the delta method or the equivalent
ML theory approach is used) are :

var(9)—2 .] 5A-8)

oa; ¥;

Covariances are

! (3g \[ 08 ) 6:(1-6)
b =% |57 — -
covll ) .1{31 [aa,] [Ba,]

Y;

In the above expressions, partial derivatives are evaluated at E(a;) = §;. It is clear that if b
and 8, have no a; terms in common, then cov(®;, 4,) = 0. In fact, in this case, §; and 8, are
independent.

In the capture models of this monograph the g; take only two forms. Thus, it is con-
venient to define the factors

G = 0; Y;

and get var(}) = 2 (Gy)?, cov(;, b,) = E (GijGng)- The results in Section 3.13 were

obtained in this manner



3.1. THEORY FOR THE COMPLETE CAPTURE HISTORY PROTOCOL 183

For the sequence of models considered here, the estimators are all of the forms

Pu = Ay [Bu,s'+1 +(1 'Bv,i+1)/Av,i+1], i=1.,k-1,
Bui = Buf[Bu + (1-Bi)/Au], i =2 k-1,
ve{l, ., V.}.

HCI'C,A“- = r,,,-/R,,,- and B,,.' = m,,,-/T,,.-, withy = . meaningA,- = .i/R.i and B_,' = m,,'/T.;.

More explicit notation is used here for the G-functions, for example

Gldu | 3s) = [%;—] —~

For the B,;, more than one representation of G is available. These G-functions (evaluated at
data values) are given in Table 3.1. To obtain Var(p,;), for example, one has

Yar(py) = [G(Aw | Pu)]’ + [GBu | Pu)]

~a2|1 1 1 .
= (b)) |—-— + — + , i=2u,k-1.
Pudu) |-t Lt

To obtain theoretical variances and covariances, one substitutes parameters for the estimators
and expected values for statistics.



184 PART 3. THEORY FOR STUDIES

Table 3.1. — Factors for generating variance and covariance formulae for the &, and py.

For ¢4 For py
Variable G(variable | 34) Variable G(variable |py)
1 PN 1 1
4 A/ -7 A =-2
vi & 7« Ra v Pud% Ry
i=1,.,k-1 i=2.,k-1
. 1 1 . a 1,1
A i, - , B i —_— —,
vi+1 «%..q 341 T Rau W Pwlw g 7

~ 1 ’ mv,l ’ .
Bv,i +1 ’&vlqv,i +1 (1 'Av,l +1) 2 ’ = 1) eooy k-1
zv,l +1 Tv,l +1

i=1,..,k-2 all other G(. | py) = 0

all other G(. | §4) = 0

The general formula for a variance or covariance of arbitrary parameters ¢; and 6, is

!
¢ov(®y, 8) = Y G(variable j | ,) G(variable j |8;).

J=1

The terms in this summation are zero except for variables in common to both parameter esti-
mators. If there are no variables in common, the covariance is zero. As an example, consider
CoV(B, Poi)- Only A,; is in common here; hence,

~ ~ A ~ 1 1
COV(&vi, Du) = &.;ipm'q.;i [": - E

(bear in mind that ¢, 5., really means ¢y k.1 Pur)-
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The final step in the process is to interpret v against the model being considered. The
next section presents all point estimators and variances and covariances under all models,
given the complete capture history protocol.

3.1.3. Parameter Estimators, Variances, and Covariances

We here succinctly present formulae for all estimable parameters and their associated
variances and covariances, under all models, for the complete capture history protocol.
Results here apply also to partial capture history protocol scheme A and (with appropriate
interpretation) to scheme B and first capture history protocol data. To achieve this generality,
we use an abbreviated notation and some conventions. The index for treatment v ranges over
the augmented set {1, .., V,.}. The case of v = “.” represents a special type of “pooling” of
statistics and parameters. The chain of models considered remains Ho, Hyg, Hap, ..., Hyq p,
and Hy 4. The most general model is Hy. 4, for which one must adopt the convention that
the estimator denoted @, 4.4 really estimates the product (¢yk.1)(Pwk). Given this convention
about Hy; 4, the key to these simplified representations is (1) separate treatment of the two
subsequences Hg, j = 1,..,k-1and Hy , j = 2, .., k - 1, and (2) implicit use of the pooling
rule to define the MSS and the parameters that vary by group v for any model in the sequence.

3.1.3.1. Pooling rule. — Under the most general model Hy; 4, the MSS may be taken as
rggivenRy ,i = 1,..,k-1and m, given Ty; = my + 244, i = 2, ..., k - 1. For all these quanti-
ties, v ranges over 1, ..., V. The MSS for any submodel involves some pooling of these statistics
over treatment classes v = 1, ..., V. We use the following notation (for any arbitrary i):

\'4

ry = Erm,
v=1
v

RI = ZRmy
v=1
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v 4
Ti=m;+z;=Y (Mu+25) =Y, Tui...
v=1

v=1

Next we define some ratios:

I .
Avt:'ki_—a i=1.,k-1,
My
= — =2,.,k-1,
B, T.’ i

with B, = 1 and A, = 1 by definition. Pooled versions of these ratios are denoted by
A; and B; and are defined as

rs m;
R; T;

A‘,'=

Similar notation regarding pooling applies to parameters, but with a different meaning:
éw and p,; denote that survival, or capture probability, differs over the treatments whereas
¢; and p; means these parameters do not differ by treatment. Thus, the notation ¢; is
equivalent to ¢; and means ¢y; = ¢ = *** = ¢py; = ¢4 Similarly, p; means p,; = p;, for all
treatmentsv = 1, ..., V.

If these conventions about the parameters are used, the models can be defined in terms
of pooling. Under H 4, the parameters are ¢yy, ..., fojs Sg+1s «+» Pkt A0A Py2y weoy Pogs Pjis1s oo

Pia. Under Hj, the parameters are ¢y, «.., $ui1s @5 - $i1 a0d Py2, vy Pojs Pjr1s s Pk1-
Note that H}, is equivalent to Hy. Table 3.2 summarizes this information about model param-

eters and gives formulae for the number of estimable parameters in each model.

Under the most general model Hy., 4, there is no pooling of parameters or of the sum-
mary statistics. Under the other extreme of Hy, all the parameters and MSS are pooled over
v. The pooling rule for the relevant statistics under the sequence of models is given in Table
33.
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Table 3.2. — Definition of the models in terms of a pooling rule for estimable parameters; also given are
formulae for the numbers of estimable parameters by model. Note that here H,, is equivalent to Ay, and
that ¢, , means, by convention, the product ($yx19w)-

Model Hy, j=1,.,k-1:

separate by treatment class number of parameters
¢'1, seey ¢vj W
P2y s Pyj V(’ = 1)
pooled by treatment class
¢j+11 ey h-l k-1 "j
P]-rl’ oy Pxt k-1 ‘,i

Total estimable parameters = V(2j-1) + 2(k-j - 1).

Model Hyy, j =1, ., k-1:

scparate by treatment class number of parameters
¢vl.v ooy ¢v,]-l V(l - 1)
Pﬂ, -"’ij V(j - 1)
pooled by treatment class
¢j) sy ¢k-1 k ‘j
Dj41y oy Pra k -j -1

Total estimable parameters = 2V(j-1) + 2(k-j)-1.




188 PART 3. THEORY FOR STUDIES

Table 3.3. - Definition of the pooling rule for statistics used in parameter estimators, variances, and
covariances under the sequence of models Hy ( = Hyy), Hygto Hyy g

Model Hy,j =1, .,k-1:
statistics separate by treatment class:
rq, Rg and hence 4y ,i =1, ..,j

my, z; and hence By , i = 2, ...,

statistics pooled over treatment classes:
r, Ryand hence A; ,i =j+1,..,k-1

my, z; and hence By , i = j+1,..,k-1

Model Hy,,j=1,..,k-1:
statistics separate by treatment class:
ry, Ry and hence 4y ,i = 1,..,j-1

my, 2; and hence By , i = 2, ...,

statistics pooled over treatment classes:
ry, Ryandhence 4; ,i =j, ., k-1

m;, z; and hence B; ,i = j+1,..,k-1

3.1.3.2. Parameter estimators and their variances. — For every model in the sequence Hy
(= Hyp) to H, 4, the parameter estimators have the same form:
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ui

Avi(Bv,i-o-l + (1 'Bv,l'+1)/Au,i+1)’ i= 1a seey k-1 ’

R By
Pu = B+ (1-By)/Ay

for v € {1, ..., ¥, .}. Under any model, the MLEs are obtained by applying the pooling rules
and conventions for that model. One would not want to compute the previous estimators by
hand. The value of this representation for the MLEs is the subsequent ease of programming
them (as into program RELEASE), and also the investigation of their theoretical properties.

Sampling variances follow:

Var() = ()’ Hi ) Ri] + (ui+1)? [ LS ]

Toi v Toi+1 Rv,:'+1

i=1.,k-1 ve{l, ., V.};

A oA (1-Ayiy1)?
+ (pv,:'+1q'1,t'+1) e ] ’

Av,i +1 Tv,i +1

+—], i=2.,k-1 ve{l,.,V,.}.

ol ",=A""2 i_i.{__l_
far(pa) = (Gudie) [,m, e

If either m,; or z,; is 0 with poor data, then p,; = 0 or 1 and Var(p,,) = 0.

3.1.3.3. Covariances under model Hz. ~ The subsequence of model Hjy is defined
forj = 1, .., k - 1. Most possible covariances are zero. The formulae for the nonzero covari-
ances are fairly simple; however, some are not defined for all values of j. Nonetheless, we give
the formulae below in only their most general terms. Their interpretation thus requires that
one use the pooling rules of Tables 3.2 and 3.3, and ignore impossible covariances; in all cases
vwe{l, .., V,.}.

~ ~ 1 1 -
COV(&,,,', &v,i+1) = '&vl'av,i+lqv,i+1 ['_' - ] , i=1.,k-2.

Tosi+l Rv,£+1

Forj = 1, ..., k - 2, the number of these covariances is Vj + k- j - 2; whenj = k - 1, the number
is V(k - 2). Next,
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2
CoV(Bess Brs) = Busbe 5 (G541)? [[ R,:ﬂ ] + [1- ;"“1 ] mM.j+1 ]’

7541 Wi+l Z.,J'+1T.,j +1

for j<k-2 and v v’ for z;,; > 0. If Zje1 = (but mj,1 > 0), clearly cov(g,;,y;) = 0.
There are V(V - 1)2 of these covariances forj = 1, .., k - 2 (forj = k - 1 we have Hy 4 and
these covariances are all zero).

The nonzero covariances between ¢ and p are:

V(i Pw) = PPl [ri - E] , i=2,.,k-1.

There are V(j - 1) + k- j - 1 covariances here, forj = 1, ..., k - 1. Finally,

eov(&ﬁ’ﬁﬂ,i-{-l) = '&mpv,l+1(qv,s+1) [[ 1 ]

rvz+1 v:+1

r .
P FPRC LS Y ] i=1..,k-2.
Rv,i+1 Zpi+1

IfZ,;,1 = 0, then CoV(3w, Puis1) =0. The number of covariances here is Vj + k -j -2 for
j=1.,k-2and V(k-2)forj=k-1

From the above expression, we find that the total number of nonzero covariances to be
computed under model Hyy is

3Vj+k-j-2)+ V'le'z , forj=1,.,k-2,

and

Wk-2), forj=k-1.

3.1.3.4. Covariances under models Hy and Hy. — Formulae for all nonzero covariances
under model H, , j = 2, ..., k - 1 follow. Also, the special case of model Hg, where no param-
eters differ by group index v, is covered by the formal model H,,, i.c., Hj, withj = 1. Interpre-
tation of these formulae requires that one use the pooling rules of Tables 3.2 and 3.3 and
ignore impossible covariances. In all examples, v,v’e{1, .., ¥, .}. There are V(j- 1)+k-j- 1
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of the covariances below:

eov(‘}w" &v,iu) = '&m‘&u,t#léu,:#l [L - 1 ] , i=1.,k-2.

Toi+l Rﬂ,i +1
Next,

~ A & 1 1
CoV(Bo i1, P 1) = (Poj18v 5100w 5) [7 "R,
J J

]' ,ally #v”

(v or v* = . does not occur here); for j = 2 to k - 1, there are V(I - 1)2 of the above covari-
ances. There are no such covariances forj = 1.

Under H; ,, there are some nonzero covariances among some p:
A~ -~ ~ — A A -~ A 1 v 1 all ra
COV(Puj, pv‘j) = (pvgpv’ququ’j) —r_ - R\’ vV £V
g X

(butnotvorv’). Forj = 2tok - 1, there are V(V - 1)2 covariances (they do not exist for j =
1).

Next, we have the covariances between ¢ and p:

CoV(Bu, Pu) = (PuiPuidw) [l - El':'] , i=2.,k-1.

T

There are V(j - 1) + k- j - 1 covariances here forj = 1, ..., k - 1. Finally,

eov(a’m"ﬁu,i+1) = -a‘l)l'p‘v,i"{-l (év,i+1)2 [[ 1 - 1 ]

Tysi+l Ru,i+1

r .
P PRCTES T ) B T I D T
Ru,:' +1 Zpi+l1

if 25,1 = 0, then Cov(@w, Puss1) = 0. Thereare V(j-1) + k-j-1 of these covariances,
j=1, k-1
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Under H,, atotal of 3k - 2 nonzero covariances can be computed. For H;, , j = 2, ..,
k - 1, the number of covariances to be computed is 3(V(j-1) + k-j-1) + V(V'-1).

3.1.4. Goodness of Fit Tests

If (as we assume) the Jolly-Seber model holds separately for each group, then Hy 4 or
some less general model will fit the data. For each group, the goodness of fit test statistic is
the sum of the TEST 2 and TEST 3 statistics. The information in the subcohorts conditional
on the cohorts is used in TEST 3 and that contained in the cohorts is used in TEST 2. The
overall goodness of fit test statistic is the sum of these statistics for all groups. Hence, it
suffices to give the theory for goodness of fit testing for just one group (no “v” index is used).

3.14.1. TEST 3. — TEST 3 is based on the probability distribution of the subcohorts
given the cohorts. From Section 3.1.1, that distribution is the product of, in general, k¥ - 1 mul-
tiple hypergeometric probability distributions:

L SRENTN

2 ] [ms',i+1,h "t Mgy Rep -1
i=1 R,
Mgy =" Mg Ri -1

In the case when no new (i.e., not previously released) fish enter the study after i = 1, then
both H; = 1 and H, = 1; hence, there are k - 3 distributions to consider. We consider only
such studies here.

In principle, for occasion i, the corresponding hypergeometric distribution corresponds
to a (k + 1-1i) x H; contingency table. For this table, one computes a chi-square test of homo-
* geneity, thereby testing Ho: myp, = 7y, j = i+1, ., k for all B = 1, .., H;, However, because
the data are usually too sparse to support use of the full chi-square, some pooling is needed to
justify the chi-square approximation. A knowledgeable user would have no difficulty in pool-
ing contingency table cells based on the marginals of the table. We built some fixed pooling
rules into RELEASE, following essentially the same logic used by Pollock et al. (1985).

The goodness of fit test component based on all subcohorts within cohort 7 is labeled
TEST 3.8i. It nominally has (H; - 1)(k - i) df. As actually computed, the first part of this test
is based on partitioning the corresponding distribution into two (multiplicative) components:
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i

h=1 Tin
o
L

which leads to TEST 3.SRi nominally as a 2 X H; contingency table; and

H o

;;1;[1 [mi,i+1,h T mild;]

i
Migey 7" M

which leads to TEST 3.Smi nominally as a (k - {) x H; contingency table. The bulk of the data
(i.e., information for testing) ends up in the first component, ie., TEST 3.SRi, which tests Ho:
An = M, B =1, ..., H;. Because most of the 7z will be small (note, however, that all Ry > 1),
pooling over capture histories may be needed. When capture probabilities are small, one 7
will dominate the others; specifically, the 7, for individuals released at time 1 and not caught
again until occasion i (i.e., h = {10 - -- 01}). If that capture history is denoted here as i, the
full distribution underlying TEST 3.SRi further partitions as

Ry | (R: - Rac Ry,
=)0 o ()

i

The first component corresponds to a 2 X 2 table representing a maximal pooling of the full
TEST 3.SRi table. Program RELEASE automatically pools down to the 2 X 2 table and com-
putes TEST 3.SRi from it for most data sets. This strategy is usually good. The user can
always obtain the full TEST 3.5i table and compute the test based on less pooling if that is
warranted.

This pooled version of TEST 3.5Ri tests

s

Hot e = %thz\,-h]/[il Ra)-

h £K
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An advantage of a 2 x 2 table is that the corresponding test can be made one-sided. One
might test against

Ha: e <L§, Randa /Lg Ra).

TEST 3.Smi, as routinely computed by program RELEASE, is also a predetermined
pooling into a 2 X 2 table of what is nominally a (k - i) x H; contingency table. The null
hypothesis underlying that full table is

Hy 2 _ 09 i 41, kforall h =1,.. H
OA.h )‘.’ 3 teey

The collapsed table from which TEST 3.Smi is usually computed by RELEASE is derived
from the hypergeometric distribution

Tiw s = liw
Miier | [T -Migaw
U
Tew

The remaining information, if any, that could bear on TEST 3.Smi is not used by RELEASE.
The actual null hypothesis tested by TEST 3.5mi is

i1k TipT, :,t+1k
Hy: —SaL /[4.2 ra
e h#h’ £h-

3.14.2. TEST 2. - There is also goodness of fit information in the cohort data given the
Jolly-Seber MSS. The corresponding residual distribution has no unique representation; a
convenient form was derived by Robson and Youngs (unpublished report, 1971); (see also
Brownie and Robson 1983). TEST 2 is based on & - 3 separate contingency tables (hence, k >
4 is required for TEST 2 to exist for release-recapture data). Each component test, TEST
2.Gi,i = 2, ..., k - 2, derives from the conditionally independent multiple hypergeometric distri-
bution indexed by i in Pr{cohorts|MSS} =
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Thus, TEST 2.Ci is computed from a 2 x (k - i) contingency table. Program RELEASE pools
as needed, according to the rule of requiring all expected cell values to exceed two. Pooling of
the m;; and m®; starts from j = k and hence proceeds backwards from the sparser data.

We use m;, where E(my |R;) = Ry 7y, j =i + 1, .., k, to denote the null hypothesis
most easily. Then, for TEST 2.Ci, the null hypothesis before any pooling is

i-1
i 2 Raftng
1] =1 . .
Hy: k" = k" 1 =i+ L., k.
> Wy Y 2 Ramyg
J=f+1 J=t+ln=1

(This null hypothesis is true under the Jolly-Seber model.)

As pointed out in Robson and Youngs (unpublished report, 1971), greater power can
sometimes be gained by partitioning each TEST 2.Ci, especially intoa2x 2 tableonj =i + 1
versus pooling overj = i + 2, ..., k. We recommend this partition of TEST 2.C. )

3.1.4.3. Comment on uniqueness. — Because TEST 2 has been in use for many years,
something is known about it. In particular, it has fair to good power against many likely alter-
natives (such as age effects or behavioral effects to capture). Less is known about the power of
TEST 3; however, it seems to be low (see Pollock et al. 1985), especially if the data are sparse.
Conceptually, the goodness of fit testing arising from the sum of the chi-square TEST 2 and
TEST 3 results is unique. However, this goodness of fit test must be computed as the sum of
many components. These components constitute a partition of the overall goodness of fit test.
There is no unique way to do this partitioning. There are even alternatives to the major split
that we have called TEST 2 and TEST 3 (see, for example, Pollock et al. 1985). In principle, if
one knows of a specific alternative hypothesis to Jolly-Seber, a partition of the full goodness of
fit test can be found to split out an optimal subcomponent test against that alternative. The
situation is analogous to 1 df contrasts in analysis of variance.

3.1.4.4. Comment on optimality. — The tests we present here have some desirable
properties. This is true of all of TESTs 1, 2, and 3 despite the lack of uniqueness in their parti-
tioned computational form. These tests are “similar tests” (see Lehmann 1959). This
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statistical property is highly desirable; here it just means these tests have the intended o-levels
(given the assumptions) regardless of the true unknown parameters. Thus, in testing, for
example, )y = Xy = (which TEST 1.R1 does), the significance level of the test is not
dependent on the unknown value of ); or on any other unknown parameters if the null
hypothesis is true. All these tests also have maximum power. The optimality properties of
these tests, under the theoretical models used here, assures us that no better tests can be
found.

3.1.5. Tests Between Models (TEST 1)

The test between Hy: no treatment effects (i.e., model Hy) and Hy: model Hy 4 is
based on the probability distribution of the MSS under H, given the MSS under H, when H
is true. That distribution, given in Section 3.1.2, can be written as the product of 2k - 3 hyper-
geometric distributions:

r
v=1 vl

Thus, TEST 1 is conveniently computed as the sum of 2k - 3 independent chi-squares, each
from a 2 X V contingency table. This representation of TEST 1 is valid without putting any
interpretation on each test component. With data from an experiment where the treatment is
applied at time 1, the sequence of models we gave in Table 2.2 is reasonable to consider. Each
component of TEST 1 then has a clear interpretation in this sequence of models (see Table
2.3). Note, however, that when different alternatives intermediate between models H, and
Hy.14 are considered, these individual test components may have no interpretive value.
- Rather, one must then go to numerical methods for model fitting and testing (by way of likeli-
hood ratio tests).

TEST 1.Ri,i = 1, ..., k - 1 is associated with the distribution

ey

4

The null hypothesis tested is that model H;, holds (interpret Hy, as simply model Hy) versus
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the alternative that model H;y is true. Expressed in terms of parameters, the actual test is of
Hodg=Xv=1.,V.

With specific null and alternative hypotheses such as these, it is possible that neither
hypothesis is true. What happens then is not predictable; it can easily happen that H is not
rejected, not because the null model holds, but rather because the alternative model is not
appreciably better than the null model.

TEST 1.Ti,i = 2, ..., k - 1is associated with the distribution

v=1
T;
m;

The null hypothesis tested is that model H;; 4 holds versus the alternative that model Hy, is
true. Expressed in terms of parameters we actually test

HoI Tk =T,V = 1, ooy V.

The powers of these tests can be found, given that one knows the R,; or the T,; and the
hypothesized parameters A, and 7,;. In practice, the Ry, for i > 1, and T,; are not known
before a study. (Chapter 3.6 defines a way to handle this situation.) To compute asymptotic
power, one first needs the noncentrality parameter, and then either a table of the noncentral
chi-square distribution (see Owen 1962) or a way to compute that distribution (PC-SAS and
SAS version 5 have the noncentral chi-square distribution as a built-in function; SAS programs
are produced by SAS, Incorporated, Cary, North Carolina). For example, the noncentrality
parameter for TEST 1.Ri (summations onn are overn = 1, ..., V) is

CRaidi) )

2
[R.i] Ryidi - Ry R,
Z R Rm) CR-2d)

The point here is that the power of these tests can be studied analytically; Monte Carlo
methods are not required to get information on power, especially at a level of resolution useful
for study design (e.g., it suffices to know if power will be large, such as >0.9, versus small, such
as <0.5). For study design in fisheries-turbine experiments, the first test that should be exam-
ined is TEST 1.R1. Computing the power of that test under model H,4 will give useful
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guidance on sample size (similar to results obtained by looking at se(§) under model Hy4). In
the case of only a treatment and control group, any of these tests can be used as one-sided
tests, and, correspondingly, one-sided powers can be computed.

3.2, Modifications for Other Protocols

3.2.1. Scheme A, Partial Capture Histories

Essentially no modifications are needed to apply all the theory from the complete cap-
ture history protocol to scheme A. Scheme A entails initial batch marks. Upon recapture
after first release, a second distinguishing mark is applied which is unique to capture site or
time. Thus, the second recaptures (i.e., recaptures after second release) can be distinguished
and removed from the study. Under scheme A, most potential capture histories do not exist.
However, there are releases R; at every site, i = 1, ..., k - 1. Also, for every R;, there are recap-
tures, my;, at allj = i + 1, ..., k. Thus, m-array data exist that are identical in structure to the
m-arrays under the complete capture history protocol. The first two cohorts are, in fact, iden-
tical to the data under complete capture histories. The recapture counts for cohorts 3, ...,k - 1
are slightly smaller than under the complete capture history protocol because releases at occa-
sions i = 3, ..., k all have a single capture history, for example:

Occasion i h
3 {101}
4 {1001}
5 {10001}

Consequently, all releases R; at occasion i are from recaptures my; of fish initially released at
occasion 1.

Under the Jolly-Seber assumptions of occasion-specific parameters (@y, ..., $k-1, P25 -
Dr), all the theory for TESTS 1 and 2 applies unchanged. All models in the sequence Hy, Hyg4,
ws H1 4 can be used. Estimation formulae are unchanged. The only modification is that
TEST 3 cannot be computed (if new animals were being introduced into the study at each
release occasion as per Jolly-Seber capture-recapture, then TEST 3 could be computed).

3.2.2. Scheme B, Partial Capture Histories

Only cohorts 1 and 2 exist under scheme B; however, recaptures exist for all occasions i
= 2, ..., k. Thus, the m-array is simply
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{1} R, M2, 113, w0y Mg

{11} - Rz Moz, vy Mog

TEST 3 cannot be computed under scheme B. TEST 2 reduces to the single component
TEST 2.C2. A modified form of TEST 1 can be computed.

There are k estimable parameters, including ¢, and p,, whereas ¢y, ..., ¢x.1, P3, ..., Dk are
not separately estimable. It is convenient to take the estimable parameters as ¢y, pa2, Az, 73, ...,
7r.1. These are equivalent to Ay, A, 72, 73, ..., Tk, Which is in contrast to the complete capture
history or scheme A protocol where one can also estimate X, ..., \py fromz; /R;, i =3, ...,
k-1. AnMSS is

ry | Ry ~ bin(Ry, Xy)
ra | Rz ~ bin(Rg, X3)
mz I T2 ~ bin(Tz, T2)

m; I T, ~ bill(T,, 1','), i= 3, ...,k-l.

The first three components are exactly what one gets by pooling all recaptures, within each
cohort, for occasionsj = 3, ..., k. Thus, if one takes the data as

Ry my 1z,
R, ro

and sets k = 3, all the theory for the complete capture history with ¥ = 3 applies. This col-
lapsed representation of the data allows one to get point estimates, variances, tests, etc. on
é1, D2, and ¢ops = Jg. (It is not necessary to do this collapsing; it is done here only for its
heuristic value in understanding the theory.)

With multiple data sets, one can use models Hy, Hy4, and Hj,. The more general
models are not useful because the corresponding ¢; and p; are not estimable. If model Hy, is
the true case, the ratio S, = ¢2/de2 = A2/As2 is estimable. However, a complete series of
tests does not exist to support strongly the choice of Hog.

All of the TEST 1.R3, ..., L.Rk - 1 components drop out of TEST 1. The remaining com-
ponents are computed exactly as under the complete capture history protocol. The statistics
ms, .., Mgy and T, ..., Ty, have exactly the same meaning here as under the complete cap-
ture history protocol. The exact null hypothesis for TEST 1 components is
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TEST Hy

1.R1 A',l = A]_, V= 1, sery Vv
1R2 Ag=lgv=1.,V
177 Tm'=T;,V=1,...,I/,i=3,...,k-1

This hypothesis is the same as for these test components under complete capture histories.
The problems that arise here are a result of the absence of the components for TEST 1.Ri, i
= 3, .., k - 1. Thus, under scheme B, certain deviations from the null hypothesis of TEST 1
cannot be detected. This inability to detect some deviations from the null hypothesis relates to
the nonidentifiability of parameters. In principle, one could construct some sets of these
parameters (for one or more groups, v), which do not fit Jolly-Seber or which have treatment
effects beyond model Hy,; yet one cannot detect these cases by testing.

If one views these components of TEST 1 as corresponding to a nested sequence of
models, then the alternative to TEST 1.73 is 1.T°4, not 1.R.3 as under complete capture his-
tories. For 1.74 the alternative is 1.7°5 and so forth. Hence, one cannot distinguish models
H;, from Hyy. For example, if TEST 1.73 rejected model Hg, and all of TESTS 1.74 to
1.Tk - 1 did not reject (and goodness of fit was acceptable), one still would not know if the
“correct” model was Hsy or Hy, (the matter is then, of course, somewhat academic, as one
cannot estimate ¢,3).

3.2.3. First Capture Histories

The MSS for a single data set is

ry | Ry ~ bin (Ry, Ay)

ijTj~bin(7},r_,-),j =2,...,k-1.

The above MSS is a subset of the MSS under scheme B, which is itself a subset of the MSS
under complete capture histories. The meanings of the m; and T; are the same; their exact
definitions change as compared with complete capture history: m; = my;,j = 2, .., k- 1 and
T;=mq; + +-- + my. There is insufficient information to unravel any separate ¢ or p
parameters (none of them are estimable). Under Hyg, S = (¢1/¢c1) = (her/Ac1) is estimable.
The variance of S is the same under model H,y for first capture histories as under any of
scheme A, B, or complete capture history protocols when H 4 is true.

No components of TESTs 2 or 3 can be computed. For TEST 1, components 1.R1 and
1.Ti,i = 2, .., k - 1 exist. TEST 1.R1 tests the null hypothesis that A,; = ) forallv = 1,.., V.
TEST 1.71 tests the null hypothesis that r,; = 7; for allv = 1, ..., V. As under scheme B, these



3.2, MODIFICATIONS FOR OTHER PROTOCOLS 201

tests cannot detect certain alternatives because of the nonidentifiability of the individual
parameters. Under the first capture history protocol, one hopes that model Hyy holds, in
which case TEST 1.R1 should reject Hy and all of TESTS 1.72, ..., 1.7k - 1 should not reject.
In a general sense the sum of the test statistics for these 1.77 series is a goodness of fit test to
the overall model H,4.

The identifiability problem is eliminated when the capture probabilities are not affected
by the treatment; then py; = px =..= p,; for alli = 1, ..., k. The sequence of models under
the first (or unknown) capture hlstory protocol then smphfles to H 160 H 24y ooy H g1 4. The
parameters of model H 4, fori = 2tok - 1, are

¢v1, ey ¢m'3 V= 1’ ey I/’

¢i+1’ sesy ¢k-13

and

P25 s Pk +

Given this restrictive assumption about the capture probabilities, the sum of the chi-squares of
TEST 1.Ti through TEST 1.7k - 1 provides a test of the null hypothesis that ¢,; = ¢; forv = 1,
wVandj =i . k-1

3.24. Some Exténsions

3.2.4.1. Relationship to temporal banding studies. — The theory for the first capture his-
tory protocol can be directly applied to certain types of experiments based on banded birds. In
particular, the sequence of models described as Hyg, H 24, H 34, ..., H p.1 4 are applicable.
Brownie et al. (1985) gave extensive background on the analysis of banding data. There are
very close links and similarities between band recovery and recapture theory. Both methods
are studying survival processes. It is mainly the resampling process that differs between the
two types of studies. This difference translates into a different parameterization for expected
values of the m.;, which are either recaptures or band recoveries.

Let a banding experiment involve preseason release of treatment and control groups
(V = 2). Treatment might be forced ingestion of lead pellets (see, for example, Deuel 1985).
Then m,,; are the band recoveries in year j after banding. There are recoveries in year 1
(direct recoveries), as well as in years j = 2, ..., k. The model structure, the E (m.;)/R,;1, for
treatment and controls is
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Proportion of bands recovered in year j

Banded 1 2 3 s k
Ry fu  dufic  dudafis SRR SRR T %Y /2
R, fcl ¢c1fc2 Pe1beafes °tt b1 ¢c,k-1fck

The f,; is a recovery rate; ¢y, is survival rate from yearjtoj + 1.

Treatment might affect the direct recovery rates f,;. This can be tested with a 2 x 2
table:

my Ry -my
mgy Rcl -Mey

Then, dropping the first year (direct) recoveries, one has data analogous to recapture data
under the first capture history protocol. In particular, assuming no treatment effect on
recovery rates for j < 1 (hence, f,; = f;) and an acute effect, so ¢; and ¢, differ, but
¢ = dej = ¢; for j > 2, gives exactly the general structure of model H,4 for first capture his-
tory recapture data. In particular, we can then define the treatment effect as S = ¢y /¢ and
we have

E(my) _ § E(m.;)
Rtl Rcl ’

i=2k.

The m,; are multinomial random variables and the two released groups (cohorts) are indepen-
dent. Therefore, all the theory for the first capture history model Hyy is directly applicable.
Moreover, that theory extends to goodness of fit testing and exploring the sequence of models
Hld» H'% ey H’k-l,dr

In banding studies, long time periods are involved; recoveries accrue over years and may
be obtained from a spatially unrestricted area. In fisheries studies regarding the effect of a
turbine or bypass, the temporal component is limited, and recaptures accrue at known spatial
points. However, in both cases we are dealing with resampling cohorts of marked animals
exposed to a survival process with possibly a treatment structure imposed on the released
cohorts. A common general statistical theory underlies such release-resampling studies of sur-
vival processes.

3.2.4.2. Deeper insights. — A unified theory can be given for capture-recapture, release-
resampling, bird-banding, and some related types of studies. Such a theory is given by Burn-
ham (unpublished report, 1987); we give here a central feature of this unification (see also
Brownie et al. 1985). '
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Let R marked animals be released as a cohort, at time 1, and then resampled at or after
specific subsequent times. The resample counts are my, mg, ..., m;. We require only that the
animals survive until time j, j = 2, .., k, to be counted. Then, for some time interval at, or
after, j and before j + 1, a sampling process occurs to make counts of survivors at time j. Let
B; = the probability of surviving from time j toj + 1, given the animal is alive at time j. Let oy
= the probability of being sampled (counted) in the jth sampling interval given the animal was
alive at time j. Then the general model structure is

_ Ral, j=
E(m;) = {Rﬂ1 By, j>1°

This is also the structure of banding data (with o, = f; and g; = ¢;). Band recoveries may
occur continuously during a large part of time intervalj toj + 1.

The model structure for release-recapture with & + 1 occasions is

_ [R@w3), j=2
Elms) = {R (4142 Gr285)65aP, ] > 2°

A standardized structure occurs if we define

o = ¢J'-1pj, ] =2,.,k+1, and

ﬂj—l = ¢j—14j ’ j = 2’ ey k+1.
With this definition, we have also shifted the indexing so that now we can write

Ra1 ’ j =1
E(m,-+1) = {Rﬂl s Biaty, j =2, 0,k

Thus, with a shift of indexing, the standardized model structure is the same for banding data as
releasc-recapture data. Moreover, in either case, the cohorts are multinomial data. Conse-
quently, all underlying theory based on the standardized parameters and indexing is identical
for capture-recapture and banding data under the assumptions of time-specific parameters.
More general assumptions about parameters are possible and the equivalance of the two
processes still holds. :



204 PART 3. THEORY FOR STUDIES

For capture-recapture, f; is survival in the released cohort; ¢ represents physical sur-
vival, and ¢; represents not being captured. Once an animal is captured, it is removed from
that cohort (of its last release) at risk of capture. Conversely, ¢;1p; represents a sampling rate
conditional on being alive in the release cohort at time j - 1. Typically in capture-recapture,
the resampling occurs at the end of the period j - 1 to j, rather than spread out over the inter-
val, as in band recovery.

As far as abstract statistical theory is concerned, the only difference between capture-
recapture, as regards survival estimation, and bird-banding is the interpretation of the stand-
ardized parameter presentations:

Standardized parameter Banding Capture-recapture
cohort sampling rate o; = f; ;g = $jaP;s
cohort survival rate Bia = &5 Bi1 = $514;

j=1,""k j=2,...,k+1

(the range k is arbitrary, so shifting the indexing is trivial).

One can take capture-recapture data, as an m-array, analyze it with program ESTI-
MATE, and get Jolly-Seber MLE:s as, for example,

h=04 + P
(in Brownie et al. 1985 and ESTIMATE, the notation used is f , for &, and S 1 for Bl).

3.3. Variances and Covariances of 3‘

3.3.1. Some Variance Formulae

If a general treatment effect is defined as

$ui

3',-(v, v)y=—,i=1.,k-2,v #£v°,
i

the theoretical asymptotic variance of 3’,- is
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var§) = (S {[cv(am-)]? + (V@) -2 f'fvf"fT&")}

Of special interest to us is the case of models Hyy, Hop, and Hoy for complete capture
histories or partial capture history scheme A (the formula below can also app]y for partial cap-
ture history scheme B). For simplicity, we use ¢ and c rather than v and v* and give cv(S)
rather than var(S ). Under model H,4:

1 1 1
[cvl(S)] E(’n) Ru ¥ E(re1) -E‘

Under model Hyp:
a2 _ e - 2|1 | 1
[cv2(S)] = [evi(S)] + (P2 Pcz)v [ E(rz) ERy)
. (1-2)? [Pe2 g2 4 Pe29e2
A2 E(Ty2) E(T.2)
Under model Hoy

A2 A2 ¢ Pv24gv2 (1'&2)2
[evs($)] =[eni(S)] + ¥ m]

v=C

1
+ ,,E (q02)2 [E(rv ) E(R,,g) ]

An interesting way to use these specific results is to look at efficiency. Say, for example,
that model H,4 is true but either H,, or Hy, is considered to gain greater robustness (after all,
it is not known that H,y is true with real data). Evaluation of these coefficients of variation
when H4 is true yields [cvy (S)? as above, but for models Hj, and Hgy (cv2 and cvs, respec-
tively):
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o i
[oa@F = (e @)F + L2 P22 [ 1

1
Ao E(re1) * E(r.1) ] ’

A 9 A 2 1 1 1 1
[ = [eva®)] + @2)° [E(rgz) "E®a) | ECed) 'E(Rez)]'

From these formulae it becomes clear that the efficiency (regarding 5) when model H,, rather
than H,4 is used (if Hyg is true) is high, 80 to 90%. However, there is a large loss of efficiency
in going to model H; that efficiency, relative to model H g, is about 20 to 30%.

3.3.2. Covariances

In this section we index treatments as v, v1, v2, etc., and thus,

S,'(V, Vl) = ¢ .
v1d

Of special interest to us are covariances under model Hy4 (V' > 2) wherein

A ro1 / Ro
Si(v,vl) = ————;
1 ) T / Rory
. 1, R
§iv2, v3) = oL R
Ty31 /Rus,x

If it is assumed that all v, vl, v2, and v3 are distinct treatments, then
cov[S1(v, v1), S1(v2,v3)] = 0. The only nontrivial cases are when the two different S,
depend on only three treatment levels, i.e., v, v1, and v2. If v is made the treatment index in
common, €.g., S;(v, v1) and S;(v, v2), only two different formulae arise. In case 1, v is in
either both denominators or both numerators and the covariance is

cov[§1(v, vD), 51(v, v2)]= SaSb[E(rl 1) i Rll ] H

where S, and S, represent the two different treatment effects. In case 2, v is in the numerator .
of one S, and the denominator of the other S, and the covariance is
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cov[ﬁl(v, v1), .§'(v2, V)] =-S5 [ﬁ ) Rl1 ]

In the completely general case,

coV(Puis Pu2s) ) cOV(Pui, Boaj)
¢vi¢v21' ¢ﬂ¢'13.7

COV[.S:,-(V, V]-), §j(V2, V3)] = (Sc'SJ') [

) coV(Po1is Po2;) + V(15> Puss) ]
Poribozs Po1ibos; )

This covariance formula is needed to get variances of products. For example, one might have
the product S, as the estimate of the treatment effect, where

§1 = &tl/&cl 5 3'2 = &cz/acz-
Then

var,82) = (5157 {[cv(ﬁl)f vl +2 W}
192

This asymptotic variance formula can be extended to general products. However, such
approximate variance (and covariance) formulae, and the assumption of approximate normal-
ity, are usually poor when applied to extended products such as § =S5;,---S; =
(%1 * " #5)/(Per - - : §c5)- A superior procedure is to make inferences based on the log-
transformation, In(S). Section 3.5.1 gives general variance and covariance formulae related to
In(S).

3.4. Adjustments for Statistical Bias

Parameter estimators have some statistical bias even when the model used as a basis for
analysis is true (Gilbert 1973). The survival rate estimator ¢ is easily adjusted to be unbiased
(assuming the model is true). The estimators of p and S can also be easily modified to reduce
statistical bias.

There is an option in program RELEASE to print these bias-adjusted estimators. We
do not dwell on statistical bias or its adjustment, however, because statistical bias is a trivial
source of bias. The serious source of bias is “model” bias. By model biases, we mean biases
which occur because the incorrect model is used. Statistical biases are smaller than one stan-
dard error of the parameter estimator; however, model biases can be large and thus serious if
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the wrong model is used. Our emphasis on model selection and tests of assumptions is
designed to minimize model bias. Other significant bias sources are failures of assumptions
resulting from tag loss, errors in data recording, and errors in knowing the exact numbers of
animals released.

3.4.1. Survival Rate Estimators, ¢

In all models, ¢ is of the form
Pui =Am'[Bv,i+1 + (1 'Bv,i+1)/Au,i+1] , i=1.,k-1,
where
Ay =15 /Ry and By, = my; [Ty, andve{1,.., V,. }.

The bias-adjusted estimator of ¢,; is

Fois1 + 1
ot + @ /(2|

The large sample variance of bw: is the same as ¢y (the MLE). The expected value of 55“,,,- is
exactly (assuming the correct model)

E($:n) = Pu [1 “Qui+1 (1 - Aa,t'+1)R"“1 * 1].

Usually A,; .1 and R, are jointly large enough to ensure that the bias in B is virtually zero
(€8s M1 >0.05 and R, ;,; > 99 suffices).



3.4. ADJUSTMENTS FOR STATISTICAL BIAS

3.4.2. Capture Probability Estimators, p
The MLE of p,; is always of the form

- B;

=, i =2, .., k-1.
P B:‘"'(l'Bi)/Ai’t > K

The method that works to adjust the $,; does not work for p,5.

Consider

1 1[1 ]
=1+ —|=-1}.
Dui A; | Bi

Because A4; and B; are independent, a good bias adjustment for AL is

Pwi
Ry +1)(Tyu+1
=1+ == -1,
; g +1 my + 1

-

E[ﬁ] =1+ % [1-(1-,\“)""“] ;1—_{[1-(1-%,.)"*“]-1}.

Most situations will justify the following as a good approximation

1. 111 1
ElL|z1+L|Lal==2
['ﬁm] +’\m'[rm' ] Pui

A Taylor’s series expansion now leads to

E@) = pa [1+ (cv(pD)? ).

209
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Thus, to a first order of approximation
~o a2
E@s) =psll + (Vi) 1,
and a bias-adjusted estimator of p,; is

n
8 Py

-

3.4.3. Treatment Effect Estimators, S

The general form of 5,- is

Here, t and ¢ can be interpreted as any v, v*. One might consider using 3; /{6:,- as a bias-
adjusted estimator of S;; however, this does not work. For example, under model Hy4, the
complete capture history case, we have

§, = ry / Ry _ P _3:1
T /Ry 3y B’

hence, bias-correcting the ¢,; need have no effect on the bias of § 1
In the previous example, a bias-adjusted S L= Sis

1 /’c1+1
Ry " Ry +1°

nJ
S =

n
For estimators of S under model H,4, S above is the appropriate bias-adjusted estimator.

For a completely general adjustment, we use a Taylor’s series expansion to get the first
order approximation

covh, ) }

E@S) = Sc{l + [C"@’e.')]2 -5 bs b



3.5. TRANSFORMATIONS OF §, $,AND p 21

Consequently, a generally valid bias-adjusted estimator of S; is

Sov(ur da)

1 i 2-§i
+ [ev(a)] YR

3.5. Transformations of S, $, and p

Asymptotically, MLEs such as 3, §, and p are normally distributed. However, if the
coefficients of variation of these parameter estimators are too large, the normal approximation
is poor, especially for S and §. Hypothesis testing and confidence intervals can be improved by
using transformations that better approximate normality. Recommended transformations are
the log-transform for ¢ and S and the logistic (log-odds) transform for p. These transforma-
tions are not routinely necessary; they make little difference if the cv of the parameter estima-
tor in question is sufficiently small, say cv <0.1.

3.5.1. Log-Transform for $ and S
The MLEs of ¢ and § invariably have variance formulae expressible as
var(®) = @ V@),
or
var(§) = () =)',
where the corresponding coefficients of variation are relatively stable as ¢ or S varies. In con-

trast, there is a high correlation between ¢ and var(¢). The natural log-transformation greatly
reduces this correlation. Asymptotically,

far[ln@)] = [v@)]’ ;

far[In($)] = [vS)] -

Experience based in part on simulation results has shown that the distributions of In(3)
and In(S) are more nearly normal, especially when the cv of $ or S is large. As a useful rule of
thumb, we suggest that cv is small at <10%, moderate near 20%, and large at >40%. The nor-
mal approximation for the distributions of ¢ orS is poor when a cv of § or S is large. In fact, if
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a cv is large, the asymptotic variance formula itself is not good. However, if some random
variable x is really log-normal, the exact variance of In(x) is

var[ln()] = In(1 + [ev(x)]?) -

Consequently, if the cv of some survival or treatment effect parameter estimator is not small,
we recommend computing tests and confidence intervals based on the log-transform with

far[ln(@)] = In(1 + [ov@)]) , and
far[In($)] = In(1 + [vS)I).-

Manly (1984) gave a confidence interval procedure for ¢ that is specific to the Jolly-Seber
model. The above method based on In($) is much simpler than Manly’s method, yet performs
almost as well (unpublished investigations of the authors).

Hypothesis tests of the type Ho: ¢y1 = .1 based on ¢, - ¢ are less sensitive to the need
for a transform. However, if one wants to test the equivalent hypothesis Hy: S = 1 based on S,
we recommend the log-transformation unless the cv(S) is small. The corresponding log-based
confidence intervals are also recommended. For example, for an approximate (1 - )100% CI,
one computes lower and upper bounds, Sy, and Sy, as

S, =8/C

and

where

C= exp[z,,/g\/ In(1 + [cv(.g‘)] )] .

This approach still does not solve the problem of 3’,, being possibly greater than one, but that
problem cannot be solved until one constrains S <1. Moreover, in many experiments there
will be no logical reason to constrain S either <1 or >1; thus, we have not pursued such a con-
straint here.
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Asymptotic covariances are also simple for log-transformed ¢ and S:

cov(d, 3)

cov{in(3,), In(2,)] = vy

For inference purposes, we are assuming that ¢, and ¢, have a bivariate log-normal distribu-
tion. Then the exact relationship between these two covariances is
cov(dy,
cov[in(¢;), In(3.)] = 111[1 + %]

(This result is from Johnson and Kotz 1972:20.)

When one uses the log-transform, any S estimator of treatment effect becomes a linear
function of $-estimators. It is then easy to write the variance of In(S) and the covariance
between In(S,) and In(S,) for any pair of estimators S, and S,. For example, if

Se = &.;1,-'/ &uz,i and S, = ‘}03,,1'/ ‘}ui,jy then

var[in(S,)] = In(1 + [ev(@1,)F) + In(1 + [v(Boa )P

. 2]]][1 + COV((}“‘,-, &vz,i) ] )

Po1,s Pozi
Also,

corln(S,), n(Sy)] = nf1 + @i dad) )\ f M]
Po1,i Po3j Po1i Poas

-ln[l + M&'L‘g’_"%zl] N ln[l , SV@oziboss) |

Po2idua 5 Pu2,iPoa;
A case that might arise is S = (Bo1de2)/ ($:18:2); using the above results and standard linear
statistical theory it is easy to write var[In(S)].

In general, we recommend the variance and covariance formulae based on treating the ¢
as log-normal random variables. When coefficients of variation are small, the confidence
intervals based on a log-transformation are almost identical to the asymptotic results. How-
ever, as coefficients of variation increase, the log-normal distribution for ¢ provided a better
approximation than the assumption of a normal distribution.
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352, Log-Oﬂds Transform for p

The desirability of a transform on p is most noticeable when one computes a confidence
interval py, to py and finds p;, < 0 or py > 1. Because p will always be in [0,1], we want a
transformation that maps [0,1] to (<o, +00). Two commonly used transformations in this case
are arcsinV p and In[p/(1-p)], of which we recommend the latter (log-odds or logistic
transform). The corresponding variance formula is

vas[inlp /1 - 1] = Hf%

Treating the transformed variable as normally distributed leads to an approximate (1 - o)
100% Cl, as

A

h = —LP
p+(@-p)C

and

A ____L_
Pbv = N ’
p+@-p)/C

where

C= exp[-z-':—/g?fp—) .
p(1-p)

3.6. Computing Theoretical Biases, Standard Errors, and Test Powers

There is a “quick and easy” numerical way to get a good idea of the bias of any estima-
tor when the data do not fit the model. Assume that you postulate the parameters under
model H, and want to know the biases that would occur in ¢y; and ¢,; (for example) if model
H,, was used to analyze data arising from this specific case of model H3,. Using the postu-
lated values of ¢,y and pyo, v = 1, ..., V and @y, ..., $x.1, P3, - Pk fOr given k, and with specified
R,1,v = 1, .., V, generate the expected values of m,; and Ry, ..., Ryga, vV = 1, ..., V. Next,
analyze these expected data under H 4 as if they were actual data (e.g., using an option called
EXPECT in PROC SIMULATE of program RELEASE). The computed values of the ¢, p,
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and § estimators are good approximations to the expected values of the same estimators when
the given model Hy, holds but H4 is used for the analysis.

In the procedure presented above, expected or known losses on capture could be
allowed. Another refinement is to specify the releases Ry, i = 1, .., k- 1,v = 1, .., V at each
release site, not just the first, and then generate E (m,; | Ry;) rather than E (my; | R,1).

The general procedure is strictly numerical but is “analytic,” not Monte Carlo. One just
completely specifies any given model and protocol and then generates expected data under
that model and protocol. The model used to generate the expected data is the true model.
The expected data are then analyzed, as if they were real data, under any alternative model for
the same protocol. This analysis produces approximate expected values of the ML estimators
under the analysis model used, given the true model used to generate the (expected) data.
This procedure is suitable for determining if the bias associated with using the alternative
model, rather than the true model, is small, medium, or large (e.g., <2.5%, about 10%, or
>20%).

Further information accrues from this numerical procedure. The standard errors (or
variances) produced are the theoretical standard errors. One could use them to compute a
standardized bias:

_ bias(®)
se(d)

(for any parameter §). If § is assumed to be normally distributed, Cochran (1963:14) showed
the effect of A on confidence interval coverage. Basically, if A <0.5, the effect is negligible (see
Chapter 5.2). Of particular interest would be to analyze the expected data under the true
model generating those “data,” as this produces theoretical standard errors under the assumed
model.

Information on the power of individual tests can also be extracted. When an analysis
(model) is applied to expected values, E (m; | Ry1), any chi-square test statistic produced is
really the noncentrality parameter of the corresponding noncentral chi-square power curve of
that test. Table 3.4 gives some power values versus the noncentrality parameter for several
degrees of freedom. (With current software like SAS, it is easy to compute any noncentral
chi-square distribution.) For example, we could specify an instance of model H,g4, in terms of
releases Ry; and R,;, k = 6, and parameters ¢, de1, P2, o P15 P2 - Pk One could then
produce E (my;|R;;) and E (m;|R,1),i = 1, .., k- 1,j = i + 1, .., k and analyze these as real
data. TEST 1 (model H, versus H ) has 9 df; TEST 1.R1 (model H, versus H,g4) has 1 df. If
the computed values of TEST 1 and its component 1.R1 are 15.0 (theoretically the noncentral-
ity parameters of TESTs 1.72 through 1.R5 are zero when model Hy, is true), then, from
Table 3.4, the power of TEST 1 is about 0.75 while the power of TEST 1.R1 is about 0.97.

If rounding (to integers) is done before “data” analysis, the biases, standard errors, and
noncentrality parameters will be affected slightly. However, results will still be useful for judg-
ing when model bias is a problem. Similarly, one will be able to tell if power is poor, medium,
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or good. Attainment of the same level of precision regarding this information by Monte Carlo
methods would probably require at least 1,000 replications of simulated data.

The validity of this theoretical evaluation of model bias, precision, and power depends
on sample size being large. This procedure can give poor results if the R,; are small. Monte
Carlo methods are necessary to investigate small-sample properties of statistical procedures.
Also, this numerical procedure does not aid in determining the properties of complex pro-
cedures such as model selection, which involves a sequence of steps. Finally, one cannot learn
anything about the sampling distribution of estimators or statistics from this analytical pro-
cedure. Hence, there is still a need for Monte Carlo procedures (e.g., see Buckland 1984);
however, simulation is not needed to determine asymptotic model bias, precision, or power.

Table 34. - Some powers for an & = 0.05-level chi-square test (i.e., under the null hypothesis that the
test statistic has a central chi-square distribution) for selected df and a range of noncentrality parameter

values.
daf daf
Noncentrality Noncentrality
parameter 1 2 5 parameter 10 20 30 40
0 0.05 0.05 0.05 0 0.05 0.05 0.05 0.05
1 0.17 0.13 0.10 2 0.12 0.10 0.09 0.08
2 0.29 0.23 0.16 4 0.21 0.16 0.13 0.12
3 041 0.32 0.22 6 0.32 0.23 0.19 0.17
4 0.52 042 0.29 8 0.43 0.31 0.26 0.22
5 0.61 0.50 0.36 10 0.54 0.40 0.33 0.28
6 0.69 0.58 043 12 0.64 0.49 040 0.35
7 0.75 0.66 0.50 14 0.72 0.57 048 041
8 0.81 0.72 0.56 16 0.79 0.65 0.55 048
9 0.85 0.77 0.62 18 0.85 0.72 0.62 0.55
10 0.89 0.82 0.68 20 0.89 0.78 0.68 0.61
11 091 0.85 0.73 22 0.92 0.82 0.74 0.67
12 0.93 0.88 0.77 24 0.95 0.87 0.79 0.72
13 0.95 091 0.81 26 0.96 0.90 0.83 0.77
14 0.96 0.93 0.84 28 0.98 0.92 0.87 0.81
15 0.97 0.94 0.87 30 0.98 0.94 0.90 0.84
16 0.98 0.96 0.89 32 0.99 0.96 0.92 0.88
17 0.98 0.97 091 34 0.99 0.97 0.94 0.90
18 0.99 0.97 0.93 36 1.00 0.98 0.95 0.92
19 0.99 0.98 0.94 38 1.00 0.99 0.97 0.94
20 0.99 0.99 0.95 40 1.00 0.99 0.97 0.95
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The justification for this analytical methodology comes from large-sample and maximum
likelihood theory as regards bias and standard error evaluation. This method of test power
evaluation is justified by more recent work, for example, Moore (1984). This theory provides
further ways to achieve computing efficiency. Asymptotic model bias is independent of the
numbers of fish released, R,; (note that this theory also applies to Jolly-Seber models with
releases at each occasion i = 1, .., k - 1). Thus, with model bias (if releases are not few), one
only needs to do the computations for one set of release numbers.

Let the parameter 6 represent ¢ or p. The variance of § is proportional to the reciprocal
of the release numbers, R,;. Let the theoretical standard errors be evaluated numerically (as
above) based on releases Ry, v = 1, ..., V. In this situation, one can denote the standard error
of  as se(® | Ry1). Then, if all releases are multipled to be a constant, C, (e.g., C = 0.1 or 100),
the standard error under these alternate releases, all else being the same, is

Se(a | Rul)

Therefore, one could set all R,; = 100,000, compute analytical results, and determine standard
errors if releases were, for example, 1,000 by using the above relationship with C = 0.01 =
1,000/100,000. (The advantage of using R,; = 100,000 is the minimization of rounding error
when expected captures are rounded to integers.) Once se(®) is known for any releases R,y, it
is essentially known for all releases.

se(® | CR,y) =

Similar computing economics occur for evaluating test power. Let 6 represent the non-
centrality parameter of any test. The value of § depends on the releases and other factors (i.c.,
the true model, the value of k, the ¢,, and the p,;). Denote the dependence of § on release
numbers by 6(R,;). Then if the release numbers are CR,;, everything else being the same,
one has

6(CR01) = &(va) .

For example, doubling the number of released fish doubles the noncentrality parameter. As a
consequence of these analytical properties of se(? | R,1) and 8(R,y), it is easy to evaluate the
effect of simply altering the numbers of releases with regards to standard errors and test
power.

3.7. Testing Losses on Capture for a Treatment Effect

For each recapture datum ., there corresponds d,; losses on capture. For example,
one might have m,;3 = 500, dyyz = 17 and my3 = 561, dgy3 = 21; then, a 2 x 2 contingency
table is used to test whether the loss rate is the same for treatments as for controls. In gen-
eral, a V' x 2 contingency table is used for this testing for eachi = 1, .., k-1,j =i + 1, .., k.
Losses on capture often are few or nil; such testing is then not needed.
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Under our multinomial modeling approach, we obtain the conditional distributions
duij | Mg ~ Din(Mois; Yoss)

independently for v = 1, ..., V and all j, j. Under the hypothesis Ho: 7; = ¥, one has the dis-
tribution

Pr{dyj, .., duj | Ho} =

If data are not too sparse, one can use the V' x 2 contingency table chi-square test of homo-
geneity. For sparse data, a useful ad hoc procedure is to pool some of the tables, say, over j.
Computing and examining the ratios dy;;/m; could also be useful.

In the case of V' = 2, one can conveniently examine the one-sided alternative H,: a

higher (or lower) loss on capture rate for treatment fish. An example is the use of the test
statistic

k-1 &k

5 3 [{awims) - (da/me)]

f=1 j=1+1

Tkl okt 1 [ dwj dui; i
P =

=1 j=i+l v=c Mvis | Moy Myis

where z is approximately a standard normal variable under the null hypothesis. The point here
is that one can test for a treatment effect of losses on capture. This testing reduces to a stan-
dard statistical problem of examining proportions; numerous statistical methods are available
for this situation (see Fleiss 1981).

3.8. Handling Effects

One reason we use the Jolly-Seber model as the starting point for developing a general
theory for each group is the nonidentifiability problems that arise with other more general
models. The first generalization of the Jolly-Seber model that arises is to allow for a “release”
or handling effect for fish recaptured then rereleased at dams 2, ..., k - 1. In particular, sur-
vival, ¢,;, after capture, handling, and release at dam j is likely to be affected. Such a handling
effect is well known in the literature (see, for example, Manly 1971a; Brownic and Robson
1983; Arnason and Mills 1986). In general, just the capturing and handling may affect
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subsequent survival after release. In addition, there may be a capture and release effect in
stud-ies at hydroelectric dams. If the fish are released below the dam (or even above the
dam), they will probably experience different mortality stresses at that dam compared to fish
passing the dam but not caught there. (This problem has implications for system-wide stu-
dies.)

We can generalize the Jolly-Seber model by allowing such released fish at dam j to have
survival rate ¢°; between dams j and j+1; after that, their survival rate is the same as that of
other fish in the study (a one-period effect). It suffices to deal only with one treatment group
here so we drop the subscript v. Now the parameters of the model are ¢y, ..., ¢ k1, ¢2, - bra
and p, ..., px. Note that we use ¢°; here, not ¢,, for consistency of notation; we cannot define
a handling effect at first release. When ¢”; #45, j = 2, ..., k - 1, none of these parameters are
identifiable. Moreover, none of our tests of hypotheses can detect such a handling effect.
Thus, there is no point in considering such a model, even though it may be real. Considering
more general models may be equally pointless unless either they entail getting additional infor-
mation or parameters are identifiable. We here give the mathematical basis supporting this
lack of identifiability.

Given the R;, the m;; 1, ..., Mg, R; - 1; are independent multinomials. The model is then
(essentially) the structure we put on

E (my; | R;) _
R;

Ty«

For Jolly-Seber, a standardized representation is

o, j=i+1l
M T\ Biaaya, i1

fori=1.,k-1,j=i+1,..,kwith o; = §p;,1 and B; = ¢g;,1. All that matters is the
structure of these =y, i.e., for Jolly-Seber, they are time-specific only.

Under the one-period capture-handling and release-effects model superimposed on
Jolly-Seber, we have the model structure as, for example, whenk = 5

i k=2 3 4 5

1 (¢'1p2) (192)aps)  ($7192)($2qs)($Pa)  ($7192)($293)(¢394)($4P5)
2 (¢"2p3) (¢7293)(4aP4) (¢°293)(¢3q4)($aps)
3 (¢°3ps) (#"394)($aP5)
4 (¢°4ps)
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The structure of these m;; can be rearranged to arrive at the following standardized representa-
tion:

i k=2 3 4 5

1 a’y Bia’s  P1faa’s B 18728 3’y
2 a’y B2a’s BB s’y
3 a’s B’y
4 (s ’4

Here,
@’ =¢"Piy1, P=1.,k-1;

Bi= (¢':'qi+1¢i+1 /¢’i+1)’ i=1.,k-2.

This form is the same as Jolly-Seber. It therefore has the same MSS and cannot be dis-
tinguished from Jolly-Seber; i.e., we cannot test Hy: ¢ = ¢°; . Individual parameters are not
estimable under this model (i.e., the ¢°;, ¢, p;). Intrinsically estimable are the a”; and 8°;
(2k - 3 parameters).

Only straightforward algebra is needed to derive these results. For example,

T3 = ¢ 19263
. $
=¢ 1‘12¢,2¢ D3

= p"a’s.

If one considers the large-sample expected values of the usual Jolly-Seber estimators of ¢ and
D, one realizes that further algebraic manipulation is possible. We end up with the represen-
tation

Qs = P, =Lkl

ﬂ’i = ¢*iq*i+l ’ i= 1: ey k '2;
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where
) $it1 .
¢% = ilpin * G|, i=1.,k-1;
¢ i+1
p*'.=—£i———, i =2,-u,k-
pi t+ g Z

This shows that if we generalize the Jolly-Seber model to allow a first-period effect on
survival rate after release on occasion j, then the model structure of the applicable #;; is identi-
cal to

(@), jmitl
e {(¢*iq*i+1) cor (PM2g%ia) @Nap™), J> i+ 10

with ¢* and p*; as given above. This structure is exactly time-specific, and thus is a Jolly-
Seber model. We will not be able to detect a release and handling effect by any tests applied
to the usual release-recapture data. However, the Jolly-Seber estimators are badly affected;
their expected values are the above ¢*; and p*;.

We note that, under H,4, the estimator of S = ¢; /4., is unaffected by this problem
(¢e1 - #1 is affected). However, under Hy,, S is affected; the expected value of S is then

[Ptz + fhz%]
y .
[Pcz + q°2¢'2 ]

When the capture probabilities are small, the bias in S is small. Under model H 4, however, a
handling effect such as the one considered here can seriously bias even S. Further work on
this problem, such as its affect on N in the Jolly-Seber model, was given by Arnason and Mills
(1986). ’

ES)=S

3.9. Bias Reduction by Peeling for First Capture History
and Unknown Capture History Protocols

In Chapters 2.2 and 2.3, we mentioned that, if model Hy4 does not fit the data, then 3‘,
computed as if H,, were true, will be biased. Under these protocols, no separate ¢ or p
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parameters are estimable for H,4 (or for any more general models). For the other proto-
cols, the strategy to reduce model bias is to seek a more general model by using some specific
tests. A version of that strategy is applicable for these two protocols; however, it is less
rigorous and less satisfactory. In the case of the first capture history protocol in particular,
bias is not eliminated, it is only reduced. We next give equations for approximate bias evalua-
tion relative to this peeling strategy.

Two concepts of bias must be distinguished: (1) statistical bias and (2) model bias. If §
is some estimator and the assumptions (i.c., model) underlying 8 are true, we may still have
E (9) #6; thus, 8 is statistically biased. For example, even under Hyg,

3, _ /Ry
rcl/Rcl

suffers some statistical bias (see Section 3.4.3). Much more severe bias is likely to occur if
one’s model is wrong. We take model bias to mean the value of E (9) - 6 when the assumptions
(ie., models) are wrong. One can often adjust for statistical bias. We will consider model bias
of various statistically bias-adjusted estimators under first capture history and unknown cap-
ture history protocols in Sections 3.9.1 and 3.9.2.

3.9.1. Model Bias and Peeling for the First Capture History Protocol

Under H,4, we have

L£3 / Ry

S =St G D /Rt D

as virtually unbiased. (Note: We will use a subscript on S in this section to denote degree of
peeling.) As discussed in Section 2.2.8., one may do some tests and conclude that model H,4
does not fit; thus, S suffers model bias. If Hyy is not rejected, one recourse in reducing this
model bias is to use

("u 'mm)/Rn
(rex-mez + 1) [ (Re2 + 1)

In general, we could consider using

S2=

E
[ Y mtln]/Rtl

n=5+1

SJ' =
[ 2’3 Mgy, + 1]/(Rc1 + 1)

n=j+1
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The nearly exact expected value of S; is

k
[ 23 “En]/lgl

n=35+1

E@S) = :
[ 2: “dn]/Rcl

n=j+1

The expected value is irrespective of the true model assumptions about the ¢,; and p,;. For
example,

X1 $e1(Pe2 + Geake2)

EG) =EG) = Xt; ) be1Pez + Go2)e2)

and

E(Ss) = $r1dizkz [ $r1dh2 ] [q_tz_] [Pts + Geshes ] .

$eideohz | Serbez || ez | Pes + esdes
In general, if model H;4 holds,

7+1
E(S,) = an"], j=2 k-1,

=2 Yei

Note that under model H j, S; is (essentially) unbiased because H ', assumes that py = pe
foralli =2, .., k.

Undcr model H, S is unbiased. However, under any higher model, particularly F,,, or
even Hyy, § suffers model bias. TEST 1.T2 tests 7s2 = oz (Tui = Pui/(Pui + Gurw))- Because
the null hypothesis is false if either p;z #pea Of dia # @e2, at best the alternative hypothesis is
model Hyy (not Hy,). However, we can evaluate theoretically E(S,) and E(S2) under model
H 2 p:

E(Sy) = S[Ptz + Giodo ] .

De2 + Qi2)2

E@Sy) =S ;"2

c2
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If the capture probabilities are small, then approximately E (S;) = S(psz /pe2) while
E(S;) =S. More precise results can be obtained by computing numerical examples. For
example, if Hy, held with p;; = 0.03, p.2 = 0.05, and A; = 0.12, then E (§,) = 5(0.893), an
11% relative bias, whereas E (S2) = S(1.021), a 2% relative bias.

The simplest and perhaps most important alternative case is that H,, might be true, not
H 4. One tests for this case (with first capture history data) by evaluating TEST 1.72 and the
sum of TESTS 1.73 to 1.7k - 1. If TEST 1.72 rejects and the remaining tests do not, it is
highly likely that S, will have substantial bias relative to its standard error. If the capture pro-
babilities are known to be small, then we recommend peeling (discarding) m,;2 because S»
will be substantially less biased than S,. (Note that matters are different with moderate or
large capture probabilities; then, peeling with the above formulae could actually make bias
worse.)

The following equation may provide an improved peeled estimator.

[ Zk: mtln] / [Rtl - EJ: mtlu]

=7+1 n=2

o
8= —— - , j=2 k-1,
[[ 2 mcln] + 1] / [Rcl+1' E mcln]
n=j+1 n=2
/]
The almost exact expectation of S; is
k J
2 Tin / 1- 2 Tt1n
% n=j+1 n=2 .
E(S) = ] j=2.,k-1.

/ [1 - 213 Wcln]

n=2

k
[ E Teln

n=3+1

In particular, under Hy,

_ 1-pes 1-pe2 ||
E6a) = S[1'¢clpt2 ] / [1‘¢c1Pc2 ] ’

here S = ¢y1ds2/(de16c2) but this is the relevant treatment effect parameter. (If Hy, is true
rather than Hoy, then ¢2 = ¢.2.) For small capture probabilities, the above formula for E(S ;)
is well approximated by
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E(?’z) - S[ 1-pez + $uapPe2 ]

1 =Pe2 + ¢c1pc2

~n
which is closer to S than is E (S2).

3.9.2. Model Bias and Peeling for the Unknown Capture History Protocol

We draw on notation and theory presented in Chapter 2.3 in 'general and Section 2.3.5 in
particular to obtain results. Under H 4 the appropriate estimator of S (adjusted for statistical
bias) is

me /Ryy

S =S o A D/Ra T D)

Peeled estimators are

(5 m

=5+1

N .
5 sy J=2,uk-1

[( zk) Mme,) + 1] /(Ra +1)

n=g+1

Here, m,,; is the number of fish captured at dam j and mn,, = myp + -+ - + My

By drawing on results presented in Section 2.3.5, one can develop a formula for £ (S ;) in
the general case of losses on capture. We present results here only for the case of no losses on
capture; then

E(mvg‘) = Ry1#v1 *** Pvj1Dvs > j=2.,k.

We define f,;=¢y1 * * * $vj1Pujp j = 2, ..., k and thus write the approximate expectations of the
' as

E fin
n=5+1

E() =" j=tuk-1.
Y fo

n=j5+1
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Under model Hj for this protocol,

Vo by
AL - R
E(SJ) ¢c1 e '¢cj

Heuristically, it is as if dam j + 1 were actually the second dam and H,4 was true.

nJ
One can evaluate the (approximate) bias to be expected in S, if, for example, H,, is the
true model:

n Pz + QO
ES) =S| 72—
(Sl) S[PcZ + Q]

Q =¢ws +dapaPs + 0 t o Gl

For example, if p;; = 003, p.o = 005 Q = 0.124 (whi'ch would arise from k = 6,
$p=da=¢y=¢s = 09, and ps =py=ps=ps = 004), and Hy, is true, then
E(S)) = 5(0.885).

Clearly, this approach can be used to assess model bias under any scenario one can
specify; thus, it evaluates the effect of peeling on bias.

3.10. Synthetic Example of Multiple Treatments

We present here a simulated example of data having three treatment levels and a con-
trol; thus, there are V' = 4 groups. The partial capture history scheme B protocol is used.
Table 3.5 shows the values of the parameters used in generating the sample data. At release
point (time) 1, three treatment groups and a control are released (R, = 1,000 each group).
These releases are followed by five recapture occasions. We envision batch marks being used,
- as per scheme B. These marks would distinguish fish by lot and treatment. At recapture time
2, another mark is applied to all recaptures and those fish are released. At times 3, 4, 5, and 6,
all captured fish are removed. The full simulated example comprises 10 lots of the four
groups. Here we present some key results for lot 1; in Part 4 we use results from all 10 lots to
illustrate empirical replication in a complex design.

Model Ho, is the true underlying model; thus, the four ¢,; and the four p,, differ by
treatment. No other parameters depend on treatment, however. Of particular interest are the
treatment effects. With v = 4, there are six possible combinations of S,y = ¢y1/¢y1. We
simplify matters by saying that the only meaningful effects evolve from comparisons of each
treatment separately with the single control. Thus, treatment effects are S;, So, and S3
defined by @yy /¢e1, v = 1, 2, 3, with notationv = 1for¢,,v = 2fort,, v = 3forts, andv = 4
for c.
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Table 3.5. — Parameter values used in the simulation example of three treatment levels and a single con-
trol (four groups), partial capture history scheme B data with & = 6 release-recapture sites. This is model
Hy,. Ten lots were generated. Releases atsite 1are Ry, = 1,000 for each group and lot.

Survival parameters, treatment effects Capture parameters
¢y = 081, §; =090 Puz =01
day = 0675, §3 =0.75 Praa = 0.1
dsy = 063, S5 =070 _ Praa =01
¢, =090 Dea =02
Common to all groups Common to all groups
¢ =085 ps=02
¢ = 0.80 Pe=02
¢ = 0.70 ps =02
¢ =085 pe =02

Table 3.6 shows what the input data look like in capture history matrix form. Note that,
for most capture histories, the counts are shown as negative. For example, for 2 = {100010},
X = 38, Xo = -31, Xa, = -29, and Xy, = -43. At capture site 5, none of these fish were
returned to the study. Fish were released only at sites 1 and 2. For example, the 10 fish for
X, b = {110100} were released at site 1, recaptured and released at site 2, and recaptured at
site 4 but not rereleased.

The reduced m-array representation of the data is constructed by RELEASE and is also
shown in Table 3.6. Under partial capture history scheme B, there are no multiple subcohorts.
Consequently, no components of TEST 3 exist.

TEST 2.C2 exists for each group. For example, for treatment group v = 1, TEST 2.C2 is
computed from the 2 x 4 table

123 76 38 23
11 10 2 5

The results of this goodness of fit testing are given in Table 3.7. TEST 2.C2 for group 1 pro-
duces the chi-square value of 3.83 (3 df) and observed significance level P = 0.280. Summed
over all four groups, we have the TEST 2 chi-square result of 1236 (11 df), P = 0.730.
Clearly, there is no reason to reject the basic Jolly-Seber model here (i.e., within each separate
group, parameters are time-specific only).
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Table 3.6. — The input capture history matrix, as printed by RELEASE, and the reduced m-array sum-
maries of the data, by treatment group, for lot 1.

INPUT --- PROC CHMATRIX OCCASIONS=6 GROUPS=4 LOTS=10 ;

INPUT --- GLABEL(1)=Treatment Group 1;

INPUT --- GLABEL(2)=Treatment Group 2;

INPUT --- GLABEL(3)=Treatment Group 3;

INPUT --- GLABEL(4)=Control Group;

INPUT --- LoT=1;

INPUT --- 100000 656 685 719 549;
INPUT --- 100010 -38 -31 -29 -43;
INPUT --- 101000 -123 -108 -100 -115;
INPUT --- 100100 -76 -8 -68 -78;
INPUT --- 110000 56 43 47 128;
INPUT --- 100001 -23 -27 -18 -25;
INPUT --- 110100 -10 -7 -3 -15;
INPUT --- 111000 =11 -10 -9 -27;
INPUT --- 110010 -2 -7 -5 -13;
INPUT --- 110001 -5 -2 -2 -7;

Number of capture histories read was 10

Observed Recaptures for Group 1
Treatment Group 1

i R m(i, j) r¢i)
j= 2 3 4 5 é

1 1000 8 123 76 38 23 344

2 84 1M1 10 2 5 28

m(j) 8 134 8 40 28
z(j) 266 154 68 28 0
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Table 3.6. — Continued.

Observed Recaptures for Group 2
Treatment Group 2

i R mCi, ) r(i)
= 2 3 4 5 6

1 1000 69 108 80 31 27 315

2 69 10 7 7 2 26
m(j) 69 118 87 38 29
z(j) 246 154 67 29 0

Observed Recaptures for Group 3
Treatment Group 3

i R m(i, ) r¢i)
j= 2 3 4 5 6

1 1000 66 100 68 29 18 281

2 66 9 3 5 2 19
m(j) 66 109 71 34 20
z(j) 215 125 54 20 0

Observed Recaptures for Group 4
Control Group

2

m(j)
z(j)

R.
r.

1000

i R(i)

j= 2
190
190

190
261

Sums for

0 409
0 982
4000 . 409
1391 135

m(i,j)
3 4 5 é
115 78 43 25

27 15 13 7

142 93 56 32
181 88 32 0

the above Groups

503 337 168 109
614 277 109

0 0 0

0 0 0

r(i)

451
62
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Table 3.7. — Results of TEST 2, goodness of fit, for the simulated model H,,, scheme B data for lot 1.
Only TEST 2.C2 exists under scheme B.

Treatment Group 1
TEST 2.C2: Test of row 1 vs. row 2
- Fe-m-e- Fommoe- Feceons +
oj123 | 76 | 38 | 23 | 260
E} 121.0] 77.6] 36.1] 25.3]
¢f 0.0] 0.0] o0©.1] 0.2]
Fmme——— fmmmma- $enm-m-- $omm--- +
o, 11 | 10} 2] 5 | 28
E|] 13.0] 8.4] 3.9 2.7|
c] 0.3] 0.3] o0.9] 1.9]
$omcoe- Fem---- L $ommee- +
134 86 40 28 288
Chi-square=3.8329 (df=3) P=0.2801

Treatment Group 2
TEST 2.C2: Test of row 1 vs. row 2
$ocme- Fommmue Freccos R +
o] 108 | 80 | 31 | 27 | 246
E| 106.7| 78.7| 34.4| 26.2|
c{ 0.0] 0.0] 0.3 0.0]
$emcen- $oommne $eenenn $omeaaa +
of 10 | 7 | 7 | 2| 26
E] 11.3] 8.3] 3.6] 2.8)
c| 0.1] 0.2] 3.1] 0.2]
dommman 4ecmnn edomeaan 4oceonn +
118 87 38 29 272
Chi-square=4.0808 (df=3) P=0.2529
Treatment Group 3
TEST 2.C2: Test of row 1 vs. row 2
$ommae- $omema- #ommm-- +
o] 100 | 68 | 47 | 215
E| 100.1] 65.2] 49.6}
c| o0.0f 0.1] 0.1]

of 91 3| 71 19
E| 8.9] 5.8 4.4
c| ©.0] 1.3] 1.6]
L Frmmne- +

109 7 54 234

Chi-square=3.1440 (df=2) P=0.2076
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Table 3.7. — Continued.

231

Control Group

TEST 2.C2: Test of row 1 vs. row 2

+---me- R R $ommne- +

oj 115 | 78 | 43 | 25 | 261

E| 114.7| 75.1| 45.3] 25.9]

c| 0.0] 0.1 0.1 0.0
e ke R T 4-cmaa- +

o] 27 | 15 | 13 | 7 | 6

E| 27.3] 17.9] 10.7] 6.1]

¢l ©0.0f 0.5] 0.5 0.1]
$o-mne- 4oc-ce- e +--enn- +
42 93 56 32 323

Chi-square=1.2981 (df=3) P=0.7296

Summary of TEST 2 (Goodness of fit) Results

Group Component Chi-square df
1 2.C2 3.8329 3
2 2.c2 4.0808 3
3 2.c2 3.1440 2
4 2.Cc2 1.2981 3
- TEST 2 12.3558 1

P-level

Sufficient Data

Next we look at the results of TEST 1, summarized in Table 3.8. Not all possible com-
ponents of TEST 1 can be computed for scheme B data; only 1.R1, 1.R2, 1.72, 1.T3, 1.74, and
1.T5 components exist. Each component is (here) based on a 2 x 4 table of summary statistics.
The full contingency table for TEST 1.72 is given in Table 3.8. The rows of that contingency
table are m,g, 2,2 (Which sum to 7,3) for v = 1, 2, 3, 4. The summary statistics 7,4 and z,, are
given in Table 3.6. For example, m,, = 84, z,5 = 260. The body of the contingency table for

TEST 1.72 is thus easily found to be

Y
1
2
3
4

(control)

m z
84 260
69 246
66 215

190 261
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Table 3.8. — Some results of TEST 1, model selection, for the simulated model H,,, scheme B data for lot
1. Only TESTs 1.R1, 1.R2, 1.7T2, 1.73, 1.T4, and 1.TS exist here.

TEST 1.T2: Test of p(2) equal across groups,
assuming higher order parameters are equal across groups.
Fommm- R +
o] 8 | 260 | 344
E| 101.1} 242.9|
c] 2.9} 1.2]
$omomnn Froeann +
o] 69 | 246 | 315
E| 92.6] 222.4]
c| 6.0] 2.5]
Fommana $ommmee +
o] 66 | 215 | 281
E| 82.6] 198.4|
c] 3.3] 1.4]
LIEEEEES R +
0] 190 | 261 | 451
E| 132.6: 318.4|
c| 24.8] 10.3]
Foommmn $emecen +
409 982 1391
Chi-square=52.5708 (df=3) P=0.0000

TEST 1.R1: Test of Phi(1) equal across groups,
assuming higher order parameters are equal across groups.
\ e $ommme- +
0| 344 | 656 |1000
E| 347.7] 652.2|
c| 0.0] 0.0|
$ocmmme- $omnenn +
0| 315 | 685 |1000
E| 347.7| 652.2|
c| 3.1 1.6]
donomen $oceen- +
o| 281 | 719 {1000
E| 347.7| 652.2]
c|] 30.7| 16.3]
Fommmne L +
1391 - 2609 4000
Chi-square=71.4344 (df=3) P=0.0000
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Table 3.8. — Continued.

Summary of TEST 1 (Between Groups Test) Results
Component Chi-square df P-level Sufficient Data

1.75 0.9793 3 0.8063 Yes
1.74 1.3006 3 0.7290 Yes
1.173 0.9354 3 0.8169 Yes
1.R2 1.2292 3 0.7460 Yes
1.12 52.5708 3 0.0000 Yes
1.R1 71.4344 3 0.0000 Yes

TEST 1 128.4498 18 0.0000

The chi-square test statistic for TEST 1.72 is 52.5708 (3 df); we reject the null hypothesis that
model Hy, fits these data. The result for TEST 1.R1 reinforces this conclusion. Further
examination of the summary results in Table 3.8 show that TEST 1 components 1.R2 and 1.72
through 1.75 do not reject. The sum of the corresponding chi-squares is 4.4445 (12 df), which
also supports the conclusion that model H;,, provides an appropriate model for these data.

Table 3.9 shows for lot 1 the parameter estimates under model H,,. Under model H, ),
scheme B, the only estimable parameters of interest are ¢,; and p,o, v = 1, ..., V. For treat-
ment group 1, from Table 3.9, we have

$u = 0.872, Se(By) = 0.069;

1312 = 0.096, 36(1312) = 0.013.

Also printed out are the asymptotic 95% confidence limits on the true parameter. For exam-
ple, for ¢y, those limits are 0.872 + 1.96 (0.069), or 0.736 to 1.007. The true value of ¢y; is
0.81 and p;2 = 0.1. For the control group (v = 4 here), we have

$u = 098, Se(g) = 0.069.
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Table 3.9. - Output from program RELEASE for model H,,, for the simulated data: scheme B,k = 6,4

groups, lot 1.
femmmececcvemeecmecesewsmmmemesmesssseececcccGessssssssscccesese-ecsses-o--- +
| Maximum Likelihood Estimates under Model H2p |
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
| -mememmes mmmmmmssmessss mmmmssecsomoos coeeesoocooooo coomnsssssoses I
| Estimates for Group 1 |
| Treatment Group |
| Phi(D 0.871704 0.069207 0.736057 1.007350 |
| p2 0.096363 0.012532 0.071800 0.120926 |
| Estimates for Group 2 |
| Control Group |
| Phi(1) 0.814289 0.066485 0.683978 0.944600 |
| pC2) 0.084737 0.011894 0.061424 0.108049 |
| Estimates for Group 3 |
| Phi(1) 0.717370 0.060252 0.599277 0.835464 |
| p(2) 0.092003 0.013146 0.066236 0.117770 |
| Estimates for Group 4 |
| Phi(h 0.980733 0.068750 0.845983 1.115484 |
| p(2) 0.193733 0.018519 0.157434 0.230031 |
[ |
| Ratio of Survivals between Groups |
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
| eeoeeeees | -reresssseess eemeseereres esesessessses sessasiseoeoes l
| s¢1,2,Phi(1)) 1.070509 0.073867 0.925730 1.215288 |
| Corr(1,2,PhiC1)) 0.633146 |
| s¢1,3,Phi(1)) 1.215138 0.087744 1.043159 1.387117 |
| Corr(1,3,Phi(1)) 0.610609 I
| s¢1,4,Phi(1)) 0.888828 0.056119 0.778835 0.998822 |
| Corr(1,4,Phi(1)) 0.649622 |
| s¢2,3,Phi(1)) 1.135102 0.083971 0.970519 1.299686 |
| corr(2,3,PhiC1)) 0.601384 |
| s¢2,4,Phi(1)) 0.830286 0.054170 0.724113 0.936458 |
| Corr(2,4,Phi(1)) 0.639807 |
| $¢3,4,Phi(1)) 0.731463 0.050160 0.633150 0.829777 |
| corr(3,4,Phi(1)) 0.617033 |
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It is worth noting the formula and computation of these @,; and p,3:

Ty1 | My2 Zy2R 2
P = + ;

Ry | T2 Tyora

My2

~
Pv2 = .
Zy2R 2

m2+
Y ra

From Table 3.6, one finds the sums 7, = 135 and R 5 = 409, and the control group,

ry =451;
Ry =1,000;
my = 190;
Z4p = 261;

(hence Ty, = 451). Thus, for example,

190
+ 261 x 409
135

Pa=
190

= 0.194.

Finally, we get to the estimates of treatment effect on survival (also shown in Table 3.9).
RELEASE automatically computes all such possible treatment effects, i.e.,
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For example, S(1, 4, Phi(1)) denotes S 14 = $11,1/c1. One should examine only the effects
that are meaningful. In this example,

S, = 0.889 (se = 0.056) ;

f/h
||

U:>
|

-§ = 0.830 (se = 0.054) ;

A A

534 = Ss = 0.731 (SC = 0.050) B

Note the true values are S; = 0.90, S; = 0.75, and S3 = 0.70. The approximate 95% ClIs are
also shown in Table 3.9 for each estimate of S;. For example, for S, that interval is 0.724 to
0.936, which includes the true value even though S 2 = 0.830.

Along with the ratios of ¢,, RELEASE shows the estimated sampling correlations
between the ¢,; and @y-; used in S, v = @wi/dys. These sampling correlations are labeled

Corr(v, v°, Phi(i))

to denote they are for treatments v and v for the survival rates between sites i and i + 1. For
example, for S, corr($y,1, §s1) = 0.6496. In Table 3.9, this correlation is denoted Corr(l, 4,
Phi(1)).

Throughout this monograph we emphasize the importance of using the correct model.
From the summary results of TEST 1 in Table 3.8, it is clear one should select model Hp;
TEST 1.72 rejects model Hyy as inadequate whereas the sum of TEST 1 components 1.R2,
1.73, 1.T4, and 1.75 do not reject, thereby corroborating model Hy, as a suitable choice.
Tables 3.10 and 3.11 show the results under models Hyg and Hyy, both of which are inap-
propriate here (keep in mind that, with real data, one does not know what the true model is).
The estimators of S1, S3, and S3 will be biased under model H4 because this model assumes
no treatment effect on the capture probabilities p,,. From Tables 3.9 and 3.10 we extract the
- following results regarding S.

True model Hy4 model Ho,
Parameter  value S . 3e(S) S se(S)
S 090 0763 0.0426 0.889 0.0561
S2 075 0.698 0.0407 0.830 0.0542
S3 070 0623 0.0383 0731 0.0502

The estimators under the two models differ substantially. Also, under model H,4, the 95% CIs
for §; and S5 do not cover the true values. Note, also, that the estimated standard errors of
the estimates are larger under model Ho,,.
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groups, lot 1.

A b R iDL R L L T L Ry e PP Sy S S +
| Maximum Likelihood Estimates under Model H1Phi |
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper

| mmmememmm mmmmemes emmmmeeeees e e I
| Estimates for Group 1 |
| Treatment Group 1 |
| Phi¢1) 0.836901 0.063990 0.711480 0.962321 |
| Estimates for Group 2 ]
| Treatment Group 2 |
| Phi¢D 0.766348 0.059922 0.648902 0.883795 |
| Estimates for Group 3 |
| Treatment Group 3 |
| Phic¢1) 0.683631 0.055108 0.575620 0.791642 |
| Estimates for Group 4 |
| Control Group |
| Phi(th) 1.097216 0.078790 0.942787 1.251645 |
| i Estimates for Pooled Groups |
| P2 0.120859 0.009753 0.101743 0.139976 |
I I
I Ratio of Survivals between Groups |
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
| oo s memrerslememecsesen e el !
| $€1,2,Phi(1)) 1.092063 0.069769 0.955316 1.228811 |
| Corr(1,2,Phi(1)) 0.658898 |
| s€1,3,Phi(1)) 1.224199 0.081808 1.063855 1.384543 |
| corr¢1,3,Phi(1)) 0.639127

| s€1,4,Phi(1)) 0.762749 0.042634 0.679187 0.846312 |
| Corr(1,4,Phi(1)) 0.717458 I
| $€2,3,Phi(1)) 1.120996 0.077124 0.969834 1.272159 |
| corr(2,3,Phi(1)) 0.624982 |
| $€2,4,Phi(1)) 0.698448 0.040678 0.618720 0.778176 |
| Corr(2,4,Phi(1)) 0.701579 I
| $(3,4,Phi(1)) 0.623060 0.038287 0.548018 0.698102 |
[ corr¢3,4,Phi(1)) 0.680527 |
o memmeececeeedeeeeecceccccccceeccecesssececcecesccccccmmeancemeema—————- +
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Table 3.11. - Output from program RELEASE for model H,, for the simulated data: scheme B,k =6,

4 groups, lot 1.
feceemmsecesmmsesemememeses-s-emseeesesemeses--c-sSessmssees-e---e-cccc--escsce- +
| Maximum Likelihood Estimates under Model H2Phi |
| 95% Confidence Intervals |
| Parameter Estimate Standard Error Lower Upper |
| remeeresmeemeessememesessenemeneineoes oeseoeo |
| Estimates for Group 1 |
] Treatment Group 1 |
] Phi(1) 0.864000 0.127135 0.614816 1.113184 |
| P2 0.097222 0.017457 0.063006 0.131439 |
| Estimates for Group 2 |
| Treatment Group 2 |
| Phi¢) 0.721846 0.107220 0.511694 0.931998
| p€2) 0.095588 0.017828 0.060645 0.130531 |
| Estimates for Group 3 |
| Treatment Group 3 |
| Phi(1) 0.812842 0.151344 0.516208 1.109476 |
| P2 0.081197 0.017856 0.046200 0.116193 |
| Estimates for Group 4 |
| Control Group |
| Phi(D 0.989839 0.092805 0.807942 1.171736
| p€2) 0.191950 0.021914 0.149000 0.234901 |
| Ratio of Survivals between Groups |
] 95% Confidence Intervals ]
| Parameter = Estimate Standard Error Lower Upper |
| remeersseeeseessemeseseeensoineeneoes oesseoos |
[ s¢1,2,Phi(1)) 1.196931 0.250256 0.706429 1.687433 |
| corr(1,2,Phi(1)) 0.000000 |
| s¢1,3,Phi(1)) 1.062937 0.252253 0.568522 1.557352 |
| corr¢1,3,Phi(1)) 0.000000 |
| s¢1,4,Phi¢1) 0.872869 0.152296 0.574368 1.171371 |
| corr¢1,4,Phi(1)) 0.000000 |
| s¢2,3,Phi¢1)) 0.888052 0.211517 0.473479 1.302625 |
| corr(2,3,Phi{1)) 0.000000 |
| s(2,4,Phi(1)) 0.729256 0.128095 0.478190 0.980322 |
| Corr(2,4,Phi(1)) 0.000000 |
| S¢3,4,Phi(1)) 0.821186 0.171188 0.485657 1.156715 |
| Corr(3,4,Phi(1)) 0.000000
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Model Hy, allows unbiased estimation of S, S;, and S3. However, because model Hy
is more general than is needed here, the Sy, S5, and S5 under that model have larger sampling
variances than they have under model H,,. If this loss in efficiency were slight, the best strat-
egy under scheme B would be to use model Hyy. However, from Tables 3.9 and 3.11, we

extract the following results regarding S:

True model H. 2 model Ho,
Parameter value S se(S) S se(S)
S 0.90 0889 0.0561 0873 0.1523
Sa 0.75 0.830 0.0542 0.729 0.1281
S3 0.70 0.731 00502 0.821 0.1712

The main poini of the above is that the standard errors of the S are approximately tripled
under model H,y as compared to the results under H,. This loss of efficiency is dramatic;
one does not want to select model H 4 under scheme B unless absolutely necessary.



