
Program PRESENCE ver 12.17
Synopsis

This software was developed to enable estimation of the Proportion of Area Occupied (PAO), or similarly the
probability that a site is occupied, by a species of interest according to the model presented by MacKenzie et al.
(2002) 1.

Typically, species are not guaranteed to be detected even when present at a site, hence the naïve
estimate of PAO given by:

                # sites where species detected 
         PAO = -------------------------------- 
                    total # sites surveyed 

will underestimate the true PAO. MacKenzie et al. (2002) propose that by repeated surveying of
the sites, the probability of detecting the species can by estimated which then enables unbiased
estimation of PAO. This model has been extended by MacKenzie et al. (2003)2 that also enables
estimation of colonization and local extinction probabilities. These models are briefly discussed
here.
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The Basic Sampling Scheme

N sites are surveyed over time where the intent is to establish the presence or absence of a
species. The sites may constitute a naturally occurring sampling unit such as a discrete pond or
patch of vegetation; a monitoring station; or a quadrat chosen from a predefined area of interest.
The occupancy state of sites may change over time, however during the study there are periods
when it is reasonable to assume that, for all sites, no changes are occurring, (e.g, within a single
breeding season for migratory birds). The study therefore comprises of K primary sampling
periods (seasons), between which changes in the occupancy state of sites may occur. Within each
season, investigators use an appropriate technique to detect the species at kj surveys of each site.

The species may or may not be detected during a survey and is not falsely detected when absent
(except false-positive model). The resulting detection history for each site may be expressed as T
vectors of 1's and 0's, indicating detection and nondetection of the species respectively. We
denote the detection history for site i at primary sampling period j as Xi,j, and the complete
detection history for site i, over all primary periods, as Xi. The single season model results when
K=1, and the multiple season model for K>1.

Single Season Model

MacKenzie et al. (2002)1 present a model for estimating the site occupancy probability (or PAO)
for a target species, in situations where the species is not guaranteed to be detected even when
present at a site. Let ψ be the probability a site is occupied and p[j] be the probability of detecting
the species in the jth survey, given it is present at the site. They use a probabilistic argument to
describe the observed detection history for a site over a series of surveys. For example the
probability of observing the history 1001 (denoting the species was detected in the first and fourth
surveys of the site) is:

ψ x p[1](1-p[2])(1-p[3])p[4].

The probability of never detecting the species at a site (0000) would therefore be,

ψ x (1-p[1])(1-p[2])(1-p[3])(1-p[4]) + (1-ψ),

which represents the fact that either the species was there, but was never detected, or the species
was genuinely absent from the site (1-ψ). By combining these probabilistic statements for all N
sites, maximum likelihood estimates of the model parameters can be obtained.



The model framework of MacKenzie et al. (2002) is flexible enough to allow for missing
observations: occasions when sites were not surveyed. Missing observations may result by design
(it is not logistically possible to always sample all sites), or by accident (a technicians vehicle may
breakdown enroute). In effect, a missing observation supplies no information about the detection
or nondetection of the species, which is exactly how the model treats such values.

The model also enables parameters to be function of covariates. For example, occupancy
probability may be a function of habitat, while detection probability is a function of environmental
conditions such as air temperature. The model therefore allows relationships between occupancy
state and site characteristics to be investigated. Covariates are entered into the model by way of
the logistic model (or logit link).

A key assumption of the single season model is that all parameters are constant across sites.
Failure of this creates heterogeneity. Unmodeled heterogeneity in detection probabilities will cause
occupancy to be underestimated. If there is unmodelled heterogeneity in occupancy probabilities,
then it is believed that the estimates will represent an average level of occupancy, provided
detection probabilities are not directly related to the probability of occupancy.

Another major assumption of the MacKenzie et al. (2002) model (Single-season) is that the
occupancy state of the sites does not change for the duration of the surveying. Situations where
this may be violated, for instance, would be for species with large home ranges, where the species
may temporarily be absent from the site during the surveying. If this process of temporary
absence from the site may be viewed as a random process, (e.g., the species tosses a coin to
decide whether it will be present at the site today), then this assumption may be relaxed.
However, this will alter the interpretation of the model parameters ("occupancy" should be
interpreted as "use" and "detection" as "in the site and detected"). More systematic mechanisms
for temporary absences may be more problematic and create unknown biases. Although, users are
reminded that the model assumes closure of the sites at the species level, not at the individual
level, so there may be some movement of individuals to/from sites without overly affecting the
model.

Model Overview
Currently, there are many types of models can be fit to detection/nondetection data within
Program PRESENCE.

Single-season models (assume sites are closed to changes in the state of occupancy for the
duration of sampling)

Simple single-season model - detailed by MacKenzie et al. (2002)1, estimates probability
of occupancy (ψ) and probability of detection (p)
Spatial-dependence model - Described by Hines et al (2010) 11 which accounts for
spatial correlation when surveys are chosen non-randomly.
Multi-method model - estimates global (ψ) and local (θ) occupancy from repeated
samples of multiple methods of detection.
False-positive detection model - described by Miller et al. (2011) 12 which relaxes
assumption that no detections occur when the species is absent and estimates the
probability of a false detection.
Multi-state model - uses additional codes in the detection history data to denote the
state of the species in a particular site/survey (0=not detected, 1=detected in state 1,
2=detected in state 2) and estimates the probability of sites being in each state.
Two-species model - computes occupancy and detection probabilities with interactions
when there are two species present.
Heterogeneity(Royle/Nichols) model - described by Royle and Nichols (2003), estimates
occupancy and abundance from count data, assuming detection depends on species
abundance. 15.



Staggered-entry model - relaxes closure assumption such that a site may -locally
colonize and go locally extinct once during the survey period (ie., delayed arrival and/or
early departure).
Royle-point-count model - described by J.A. Royle et al. (2004) 10 which uses species
counts instead of presence/absence for single-season data.

Multi-Season or Dynamic models:
Standard multi-season model - multiple season extension detailed by MacKenzie et al.,
allows estimates of local colonization and extinction of sites between seasons. (2003)2

False-positive detection model - described by Miller et al. (2013) 17 which relaxes
assumption that no detections occur when the species is absent and estimates the
probability of a false detection.
Staggered-entry model - relaxes closure assumption such that a site may -locally
colonize and go locally extinct once during the surveys (ie., delayed arrival and/or early
departure).
Heterogeneous-detections model - multiple season 'mixture' model, which assumes sites
belong to one of two unidentifiable groups (with different detection probabilities).
Multi-state models - extends the multi-season model to allow for multiple occupancy
states (eg., 0=not occupied, 1=occupied, 2=occupied with breeders) and estimates
probabilities of being in each state as well as probabilities of transitioning between
states.
Integrated-habitat-occupancy models - models changes in occupancy state in relation to
changes in habitat state.
Two-species model - computes occupancy, colonization, extinction and detection
probabilities with interactions when there two species present.

In all models, estimated parameters (ψ, p, γ, ε, ...) may be modelled as functions of site-specific,
or site-survey-specific covariates.

Downloading Program PRESENCE
Program PRESENCE is available at: https://www.mbr-
pwrc.usgs.gov/software/presence.shtml#download.
Although PRESENCE is a Windows©-based program, it has been sucessfully run on Linux and
Mac computers (using Wine or Parallels).
(Click here to go to download PRESENCE page)

Installing Program PRESENCE
Here is the procedure to install on a Windows© system:

Download and run the installation program (setup_presence.exe).
Suggestion: If you are unable to install the program due to access restrictions, install
PRESENCE in a different folder (not "C:\Program Files"). You can create a folder named
"C:\Pgms" to hold the program which will not be write-protected (like C:\Program Files). If
you are unable to run the setup program due to lack of administrative rights, download the
PRESENCE zipfile (PRESENCE (no install/setup program)) from the website and unzip the
contents to a folder that you have write-access to.
Note: From time to time, it's a good idea to check to make sure you have the latest version
of PRESENCE. This might prevent the case of reporting a bug which has already been fixed.

Running the program

https://www.mbr-pwrc.usgs.gov/software/presence.shtml#download


Once installed, click the PRESENCE icon on the desktop and the following screen appears: 
 

There are several "tutorials" in the Help menu, showing step-by-step instructions on running
some of the models with sample data.
Input data and model output files are stored in a "project folder". To start an analysis, go to
the "File" menu and select "New Project".
There are a couple of options for inputting data to the program:

Use copy/paste functions to copy data from your spreadsheet program into PRESENCE.
This is the most common option.
Create a "comma-separated-value" (csv) files with detection and covariate data.

The 1st option above is the recommended choice since most spreadsheet programs will
automatically backup the data as it is entered. In case the power fails, you might be able to
retrieve previously entered data.

Once the data are entered into the program, it must be saved (use menu option File/Save) in
order to build and run models. The saved file will have an extension (last 4 characters of
filename) of ".pao". This file will contain both presence/absence data and site and sample
covariate data.

To build and run models, a 'project-folder' is created by the program. This file will contain the
results of each model in separate files, as well as the input (pao) file and summary results
(pa3) file.

To start a new analysis, Select 'File/New project' from the menus. A form will appear which
will hold the information about the analysis, including title, filenames, data-type, and
numbers of sites/occasions/covariates. At this point, you may use a previously-created input
file (something.pao) by clicking the 'select file' button, or go to the input screen by clicking
the 'Input form' button. Clicking the 'select file' button allows you to navigate to the folder
containing the input file and select the file. Clicking the 'Input Form' button displays a new
form with a tabbed spreadsheet-like interface.

Input Form



To enter data into this form, click on the first element (site 1, sample #1), and enter '1'
(without quotes) if the species was detected at site 1, sample #1, '0' if the species was not
detected, or '-' if this site was not sampled. The 'Tab' key will move the cursor to the next
sample (or use the mouse) where you can enter the data for site 1, sample 2. Since most
users will have data prepared in some other form (eg., spreadsheet or database), this entry
method would (should) never be used as it introduces another source of error in the data.

If your data is already entered in a spreadsheet program, you can open that program, select
all the site/sample data (no headers or other fields), and click 'Edit/Copy' from the menus.
Then, go back to PRESENCE, and click the 'Edit/Paste values' from the menu. If your
spreadsheet contains sitenames in the first column, you can include these in the selection-
edit-copy, then select 'Edit/Paste w/sitenames' in the PRESENCE menu.

If you have covariate data. (e.g., weather or effort data), you can enter these by changing
the number of covariates in the appropriate box at the top of the form, then clicking the
appropriate tab and entering data as was done with the presence/absence data.

Once the data are entered (or simulated), click 'File/Save' from the menu, then click
'File/Close'. This is an important step, as PRESENCE will not be able to use data in the form
unless it has been saved.

Next, click the 'select file' button on the 'enter specifications' form, and use the Windows file
selector to navigate to the folder where the saved file resides and select the file. If you've
used the input data form and saved the file from the file menu, the input filename and results
filename will already be entered for you.

Once you've entered the input (pao) and results (pa3) filenames, click the 'OK' button to
create the PRESENCE project folder. This will close the specification window and open a
'Results summary' window. You are now ready to compute estimates under pre-defined
models, or build your own 'Custom' model.

Simple single-season model

Program PRESENCE allows you to build models where the model parameters ( occupancy,
detection, colonization, extinction,...) depend on various covariate information collected in
conjunction with the detection data. To allow flexibility, models are defined by using a
'design-matrix'. Although the mention of "design-matrices" may cause anxiety in non-
statistician biologists, they can be thought of as a list of simple mathematical equations



relating quantities to estimate (beta parameters) to real parameters of interest (real
parameters, ψ, p, γ, ε).

In the design-matrix, the beta-parameters are represented by the columns, and the real
parameters are represented by the rows. As an example, let's look at building a simple
single-season model where occupancy is constant across all sites and detection is constant
across all sites and surveys. When you click 'Run/Analysis-single-season/simple-single-
season', a design-matrix form appears. This form contains a tab for the occupancy model
parameter, ψ (psi), and a tab for the detection model survey-specific parameters
(p1,p2,p3,p4). If you click the 'occupancy' tab, there will be a spreadsheet with 1 row (psi)
and 1 column (a1). The estimated ("beta") parameter is 'a1' and the real model parameter is
psi, which is computed as psi = 1 * a1. If you click the "Detection" tab, a spreadsheet will
appear which contains 4 rows and 1 column. By default, the "real" model parameter p1, will
be computed as: p1 = 1 * b1. The real model parameters p2, p3, and p4 will also be
computed as: p2 = 1 * b1, p3 = 1 * b1, and p4 = 1 * b1. So, the program will estimate 1
parameter, a1, which will yield a value for psi, and another parameter, b1, which will yield
the same value for p1, p2, p3, and p4. Here is the design matrix for detection with constant
detection (p1=p2=p3=p4):

Another simple single-season model

To build a model where detection probability is survey-specific (different for each survey), we
need different beta parameters for each detection probability, p1, p2, p3, and p4 (ie.,

p1 = 1 * b1
 p2 = 1 * b2
 p3 = 1 * b3
 p4 = 1 * b4

). We can write those 4 equations for p1-p4 such that they include b1-b4 as:

p1 = 1 * b1 + 0 * b2 + 0 * b3 + 0 * b4
 p2 = 0 * b1 + 1 * b2 + 0 * b3 + 0 * b4
 p3 = 0 * b1 + 0 * b2 + 1 * b3 + 0 * b4
 p4 = 0 * b1 + 0 * b2 + 0 * b3 + 1 * b4
 

This coefficients of the beta parameters (b1-b4) yields the detection design matrix:



This design-matrix (zeros, with 1's on diagonal) is a special matrix called the "identity" design
matrix. It gives a one-to-one correspondence between the estimated "beta" parameters (b1-
b4) and the real parameters (p1-p4). In program PRESENCE, this can be achieved by the
menus, "Init/Full Identity".

We now have 5 estimated "beta" parameters (a1,b1,b2,b3,b4), which will be used to
compute 5 model "real" parameters (psi,p1,p2,p3,p4). .

A 3rd simple single-season model

Suppose there was something different about the first two surveys from the second two
surveys (eg, sunny for surveys 1-2, rainy for days 3-4). In this case, detection probabilities,
p(i), are not constant as in the first model, and not different each sample, as in the second
model. Here, we would like to build a model where the first two detection probabilities are the
same, but different from the last two detection probabilities. In this case, we would need to
estimate 1 parameter for the first two p's, and another parameter for the second two p's (and
a third parameter for psi). Here is how we would want the p's computed:

p1 = 1 * b1 + 0 * b2
 p2 = 1 * b1 + 0 * b2
 p3 = 0 * b1 + 1 * b2
 p4 = 0 * b1 + 1 * b2
 

So, the detection spreadsheet would contain 4 rows (p1-p4), and 2 columns (b1,b2) and
would look like this:

To modify the design matrix in PRESENCE to look like this, right-click on a cell in the design
matrix, then select "add cols" or "del cols" to get the desired number of columns, then click in



each cell to change it's value to 0 or 1 to match the one above.

A 4th Model

In this example, suppose detection probabilities, p(i), are hypothesized to be increasing by a
constant amount over the surveys. So, the second detection probability would be equal to the
first detection probability plus a constant (X), and the third would be equal to the first + 2*X,
and the last detection probability would be equal to the first + 3*X. We would need to
estimate two quantities: detection in survey 1 (p1), and the rate of increase/decrease in
detection from one survey to the next. We can use b1 for detection in survey 1 (p1=b1), and
b2 for the rate of change (X) in detection. Here is how to write the formulae for the p's:

p1 = 1 * b1 + 0 * b2
 p2 = 1 * b1 + 1 * b2
 p3 = 1 * b1 + 2 * b2
 p4 = 1 * b1 + 3 * b2
 

So, the detection spreadsheet would contain 4 rows, and 2 columns (b1,b2) and would look
like this:

A 5th Model (with covariates)

In the previous examples, detection probabilities were assumed to be the same for each site.
By using covariates, we can compute a different detection probability for each site (or
possibly each site/sample combination). Without covariates, this assumption would cause us
to estimate a large number of parameters (20 for the first pre-defined model, and 80 for the
second). By using covariates, we can compute p as:

p(site i, survey j) = 1*b1 + X(i,j)*b2

where X(i,j) is the value of the sample-covariate at site i, sample j. Here, p(i,j) is equal to a
base detection probability, (intercept), (1*b1) plus an effect (b2) of the covariate, X(i,j). If
b2=0 then there is no effect of the covariate (p=constant). If b2>0 then there is a positive
effect of the covariate (higher covariates yield higher p's), and if b2<0 then there is a
negative effect of the covariate (higher covariates yield lower p's).

If you had two covariates for each site/sample, you could compute p as:

p(site i, survey j) = 1*b1 + X(i,j)*b2 + Y(i,j)*b3

where Y(i,j) is the value of the 2nd covariate at site i, sample j. The detection design matrix
for the case with 2 covariates would look like this:



To modify the design matrix in PRESENCE to look like this, right-click on a cell in the design
matrix, then select "add cols" or "del cols" to get the desired number of columns, then click in
the first cell under b1 and select "Init/Constant" from the menus. Then, instead of entering
"X" and "Y" in the other cells, use the menus "Init/Individ.Covariates/*X" after clicking on the
1st cell under "b2" and the menus "Init/Individ.Covariates/*Y" after clicking in the 1st cell
under b3. You could manually type "X" and "Y" in the appropriate cells, but PRESENCE will
not forgive you if you make a mistake in typing the covariate name (including using the
wrong case).

This method can be applied to any of the parameters (ψ, p, γ, ε, θ,...) in the models. Also,
the saying, "There is more than one way to skin a cat." applies (disclaimer: no cats were
harmed in the creation of this document.), meaning the following design matrix will yield the
same log-likelihood, AIC value, and real parameter estimates as the 2nd model described
above:

This design matrix might look more familiar to the more statistically inclined and can be
interpreted as follows:

b1 = intercept term, or detection probability in survey 1,
b2 = effect of survey 2, or difference in detection probability in survey 2 versus survey
1,
b3 = effect of survey 3, or difference in detection probability in survey 3 versus survey
1,
b4 = effect of survey 4, or difference in detection probability in survey 4 versus survey
1,

A First Example



Now seems like a good time to run through an example. Start program PRESENCE and select
'File/New Project' from the menus. When the 'Enter Specifications' form appears, click the
'Input Data Form' button.

The input data form will contain only 1 tab, for the presence/absence data. We're going to
simulate some data in this form. Let's assume we're dealing with a species which has an
occupancy rate (ψ) of 0.60 (60% of areas contain at least 1 individual of the species). Also,
assume/pretend detection probability is lousy in the beginning, p(1)=0.2, and gets better on
each successive sample, p(2)=.4, p(3)=.6, p(4)=.8. This is enough information to generate
data for the single-season data-type. To generate presence/absence data, select 'Generate
data' from the 'Simulate' menu and enter ψ (0.6) when prompted. Next, enter
'0.2,0.4,0.6,0.8' when prompted for the detection probabilities (p) and the table will clear and
be filled with randomly generated presence/absence data with those parameters. Click
'File/Save as' and save the file with the name, 'simdata1.pao'. When asked about using the
last column for the frequency, click 'No', and enter something for a title. Then, click
'File/Close'.

Next, click the 'Click to select file' button and select the simulated data file we just created
(simdata1.pao). The program will fill in the boxes for the filename and results filename. Enter
'simulated data w/ psi=.6, p=.2,.4,.6,.8' in the title box, and click the 'OK' button.

You should see an empty results browser at this point. To run the first pre-defined model,
click 'Run/Analysis:single season' from the menus. For the pre-defined models, the program
automatically fills in the model name. This name can be anything, but it's best to make it
something easily recognized. (I'll describe a common convention for naming later.) In the
'Model' box, you'll see that 'pre-defined' is already selected, and 6 pre-defined models are
listed (with the first one selected). Let's start with this model, but first check the 'list data'
option. Click 'list-data', then click the 'OK to run' button.

Once you click the 'OK to run' button, you might see another window flash by (perhaps not if
you have a fast computer), then a dialog box appears with a short summary of the results of
that model. Click 'Yes' to include the output of that model in the results browser. (You might
click 'No' in the case where you accidentally run a model which was previously run.) After
clicking 'Yes', the summary information from that model is displayed in the results browser.

To view the estimates of psi, and p from this model, use the mouse to position the cursor
over the name of the model, '1 group, Constant P', then click with the right mouse button. A
pop-up menu will appear. Position the mouse over 'View model output' and click with the left
mouse button. This will cause a Notepad window to appear with the results. Look at the
output and note the estimates of ψ(Psi), and p. (I got .7267, and .4300, but yours will be
different.)

Next, let's run another pre-defined model - one with survey-specific p's. Close the notepad
window with the results, then click 'Run/Analysis:single season' from the menus. Click '1
group, survey-specific p' in the 'Model' box (note model name changed for you), then click
'OK to run'. Click 'Yes' to include the results of this model in the results browser, then
position the mouse over the model name, right-click, then left-click 'view model output'. In
the notepad window, note ψ (Psi), and p(1),p(1),p(3) and p(4). With such a small number of
sites and surveys, estimates may be very different from the true values (ψ=.6 ,
p=.2,.4,.6,.8).

Spatial Dependence in Single-season Model

Replication of surveys may be temporal or spatial in nature. That is, the same sites can be
sampled at different points in time, or a site may be broken into multiple locations and
sampled once. A common example of spatial replication is transect sampling, where



observers walk along a trail and attempt to detect sign of the species (eg., bird singing,
mammal scat, visual spotting) at specific points along the transect. A common problem with
spatial replication is that an individual of a wide-ranging species (eg., tigers) may roam
among several spatial replicate stops. So, if one point along a transect has an individual
nearby, detection probability will be higher than points which are not near an individual. This
leads to a form of detection heterogeneity where there is autocorrelation in sample detection
probabilities. The same sort of autocorrelation can occur in aural surveys where a 10-minute
detection survey is broken into intervals of 3,3 and 4 minute detection intervals. The "Single-
season correlated detections" model addresses this problem. Surveys are conducted along
trails such that when a species is found at one sample, nearby samples have a much higher
(or lower) probability of the species being present than those farther away. This can be
accounted for by adding two new parameters, θ, θ'. θ is the probability that the species is
present locally, given the species was not present in the previous sample, but globally
present at some point along the transect. θ' is the probability that a species is present locally,
given it was locally present at the previous sample and globally present along the transect.

An example detection history might be:

01011

Here, the species was detected at the 2nd, 4th and last samples (segments of transect line),
but not detected at the 1st and 3rd samples. The probability of this history would be
represented by:

ψ{(1-π) [(1-θ1)θ2+θ1(1-p1)θ'2] +π [(1-θ'1)θ2+θ'1(1-p1)θ'2] } p2[(1-θ'3)θ4+ θ'3(1-p3)θ'4]
p4θ'5p5

In this model, we've added a new parameter, π, which is the proportion of sites which are
locally occupied before the first survey. If all transects begin at a boundary, such that it is
impossible for the species to be locally present before the first survey (eg., start at a lake, or
road), then this parameter may be fixed to zero. Another option for the π parameter is to
assume that it is equal to some sort of average of θ and θ'. This can be achieved in
PRESENCE by fixing π to "EQ", which is an abbreviation for "equalibrium", meaning the value
of local occupancy obtained if a random survey is chosen from all surveys.

When this model is chosen, the θ parameters will appear in the design matrix window in the
same tab as the occupancy (ψ) parameter. This model is described in Hines (2010)11

Note: this model allows the theta's to be segment-specific. This may be possible if the
detection parameters (p) are constant among segments (or a function of a survey-specific
covariate). This model isn't identifiable (no single solution for parameters) if both θ's and
detection probabilities are allowed to be segment-specific.

This model is a special case of new multi-season Spatial Dependence model where there is
only 1 season. So, if you have single-season data (number of surveys per season = total
number of surveys), just run the multi-season correlated detections model.

Single-season False-positive detection model

The False-positive detection model (Miller et. al. (2011). 12 ) extends the single season model
by relaxing the assumption that detections do not occur when the species is not present. This
type of model might be used when one suspects that it is likely that detections are not being
recorded perfectly. For example, a detection for species A might actually be a similar species,
but recorded for species A. A common example of the need for this model is the case where
some observers are 'untrained' or 'inexperienced' and others are "experts". A requirement for
this model is that some observations must "known", so the probability of a false detection



can be estimates. For example, in aural surveys, where some detections are based on
auditory information (where there is a possibility of mistaking the call of another species for
the target species) and some detections are based on visual information (where the observer
is sure the species is present). Both types of data are required in order to obtain estimates
for this model.

Parameters:

ψ - probability that the area is occupied by the species,
p11i - probability that the species is detected, given the site is occupied.
p10i - probability that the species is detected, given the site is unoccupied.
bi - probability of an 'assured' detection, given the site is occupied and a detection
occured.

An 'assured' detection is one where there is no doubt about whether the species is present.

Data input for this model is as follows:

site1  h1 h2 h3... 
site2  h1 h2 h3... 
site3  h1 h2 h3... 
: 
: 

where 
 hj = 2 if detection at site for survey j, and detection is certain;

 hj = 1 if detection at site for survey j, but detection is uncertain;
 hj = 0 if no detection

In the sample input below, there are 8 sites and 4 surveys. 
 

In this example, some detections were uncertain (auditory detection of species) and some
detections were certain (eg., visual or both auditory and visual detection of species). Site 1
contains an uncertain detection in survey 3, and site 2 contains an uncertain detecion in
surveys 1 and 3, and a certain detection in survey 2.

Alternative False-positive sampling scheme



Instead of having surveys with combined uncertain and certain detections, the sampling
scheme may involve two methods of detection, where one method yields certain detections
(eg., DNA sample, visual detection), and one method yields uncertain detections (eg.,
auditory detection). The False-positive model can still be used for these data. The input data
would have to be entered such that each survey would occupy two columns in the input file:
one column for the uncertain detections and another for the certain detections. Uncertain
detections are coded as '1' and certain detections are coded as '2' (as above). The 'trick'
needed to make this model work is to fix all of the 'b' parameters (since the probability of a
detection being 'certain' is known for all detections). For the columns which correspond to
uncertain surveys, the 'b' parameter should be fixed to 0, and the 'b' parameter for columns
which correspond to certain detections should be fixed to 1. The probability of false
detections, 'p10', should be fixed to 0 for columns which correspond to 'certain' detection
surveys.

For example, if there are 3 surveys with 'certain' and 'uncertain' detections in each survey,
the input detection-history data would contain 6 columns. Columns 1,3,5 would contain
uncertain detections in each of the 3 surveys (0=not detected, 1=detected). Columns 2,4,6
would contain certain detections (0=not detected, 2=detected). As far as PRESENCE is
concerned, there are 6 surveys, but you will know that there are really only 3 surveys, with
two methods per survey.

In the sample below, there are 10 sites and 6 surveys, with the implication that surveys 1,3,5
are uncertain detections and surveys 2,4,6 are certain detections. 

 

 Notice that columns 1,3,5 only contain 0's and 1's, and columns 2,4,6 only contain 0's and
2's.

When building the model, the detection design matrix will now contain 6 detection
probabilities (p11), 6 false-positive probabilites (p10), and 6 'certainty probabilities' (b).
Since there cannot be any false-positive detections in surveys 2,4,6, those p10's need to be
fixed to zero (p10(2)=0, p10(4)=0, p10(6)=0). Also, since there are no certain detections in
surveys 1,3,5, those b's need to be fixed to 0 (b(1)=0, b(3)=0, b(5)=0).

The design matrix and fixed-parameters windows would look like this:



 

Notice that any parameter which is fixed (right window) contains all zeros for that row in the
design matrix window (left window). This example design matrix shows a model where
detection probabilities are the same for both methods (p(odd)=p(even)), which is probably
not very realistic. If the methods are drastically different, one would expect the detection
probabilites to be different and model the p's differently.

Staggered-entry model

This model relaxes closure assumption such that a site may locally colonize and go locally
extinct once during the surveys (ie., delayed arrival and/or early departure). It is descirbed
by Kendall et. al 2013.13. Input data is of the same format as the single-season model.

Parameters:

ψ - probability that the area is occupied by the species,
bi - probability of species entering between surveys i and i+1, given not entered yet,
di - probability of species departing between surveys i and i+1, given presence,
pi - probability of detecting species in survey i, given presence.

Royle/Nichols Occupancy Model for Abundance-induced Heterogeneity

The Royle/Nichols heterogeneity model (Royle and Nichols, 2003) 7 estimates population size
from temporally replicated presence/absence data (from point-counts or other types of



surveys) at a number of sample sites. This model assumes that heterogeneity in detection
probability among sites is due to heterogeneity in abundance (more individuals lead to higher
probability of detecting the species at the site). Input data for this model are the
presence/absence (1/0) of the species at each survey at each sample site.

Parameters estimated under the assumption of a Poisson distribution:

λ - population density (per site),
r - probability of detection (per individual of the species)

The species-level probability of detection can be computed using r and λ as:

pi,j = 1 - (1-ri,j)λi

Two-Species Model

The two-species model (MacKenzie et al., 2004) 16 extends the single season model in
another way by allowing the computation of occupancy parameters of two species along with
conditional probabilities of occupancy when the other species is present or detected.

Parameters:

ψA - probability that the area is occupied by species A,
ψB - probability that the area is occupied by species B,
φ - species co-occurance (ψAB/(ψA*ψB)),   {ψAB=probability that area is occupied by
both species},
pA - probability of detecting species A, given species B is not present,
pB - probability of detecting species B, given species A is not present,
rA - probability of detecting species A, given both are present,
rB - probability of detecting species B, given both are present,
λ - species co-detection (rAB/(rA*rB)),   {rAB=probability of detecting both species, given
both are present},

Input data for this model is in the same form as the single-species, single-season model
except that the first half of the detection history records are assumed to be species A, and
the second half of the records are assumed to be species B. So, if there are 60 sites, the
input would consist of 120 detection history records. Records 1-60 would be the site-
detection history records for sites 1-60, species A, and records 61-120 would be the site-
detection history records for sites 1-60, species B.

Alternatively, data could be coded without doubling the number of sites. In this case,
detections would consist of the following codes:

0 = no detection of either species
1 = detection of species A only
2 = detection of species B only
3 = detection of both species

Alternate parameterization

Since two of the parameters in the default parameterization are not probabilities bounded by
the interval (0 - 1), numerical problems can arise. (eg., if ψA is zero, φ would be undefined.)

An alternate parameterization was developed, using conditional probabilities as parameters,
which is more numerically stable. The parameters are:



ψA - probability that the site is occupied by species A,
ψBA - probability that the site is occupied by species B, given species A is present
ψBa - probability that the site is occupied by species B, given species A is not present
pA - probability of detecting species A, given only species A is present,
pB - probability of detecting species B, given only species B is present,
rA - probability of detecting species A, given both are present,
rBA - probability of detecting species B, given both are present, and species A was
detected
rBa - probability of detecting species B, given both are present, and species A was not
detected

Using this parameterization, quantities from the other parametrization can be computed.
(eg.,

ψB = ψA*ψBA+(1-ψA)*ψBa 
 φ = ψA*ψBA/(ψA*ψB)

Two-Species Model with False-positive detections

The Single-season,two-species model (MacKenzie et al., 2004) is extended to allow mis-
identification of the species (see Chambert et. al. 201818).

Additional parameters:

ωA - ((oA) in PRESENCE) probability of erroneously detecting species B at a site where
only species A is present and species A has also been correctly detected at that site-
occasion).
ωa - ((oa) in PRESENCE) probability of erroneously detecting species B at a site where
only species A is present and species A has not been correctly detected at that site-
occasion).
ωB - ((oB) in PRESENCE) probability of erroneously detecting species A at a site where
only species B is present and species B has also been correctly detected at that site-
occasion).
ωb - ((ob) in PRESENCE) probability of erroneously detecting species A at a site where
only species B is present and species B has not been correctly detected at that site-
occasion).
ηA - ((cA) in PRESENCE) probability that only species A is confirmed at a site that was
actually occupied by both species (e.g., only specimens of species A were collected and
sent for genetic analyses).
ηB - ((cB) in PRESENCE) probability that only species B is confirmed at a site that was
actually occupied by both species.

Additional data: In order to obtain estimates for this model, additional data are required, in
addition to the standard two-species detection data. This additional data consists of a code
for each site and survey, indicating which species were confirmed at the site-survey. So,
these data should be in the same format as the detection data. For example:

Detection data:                             Confirmation data: 
survey  1    2    3    4    5    6          1    2    3    4    5    6 
 
[1,]    2    2    0    2    0    2          0    2    0    2    0    2 
[2,]    0    0    0    3    0    2          0    0    0    0    0    0 
[3,]    2    0    0    2    0    0          1    0    0    0    0    0 
[4,]    3    2    2    2    0    2          3    0    2    0    0    0 



Explanation:
At site, [1,], only species 2 was detected in surveys 1,2,4 and 6. Species 2 was
confirmed in surveys 2,4 and 6.
At site, [2,], both species were detected in survey 4, only species 2 was detected in
survey 6. No species were confirmed at any survey.
At site, [3,], only species 2 was detected in surveys 1 and 4. Species 1 was confirmed in
survey 1.
At site, [4,], both species were detected in survey 1, only species 2 was detected in
surveys 2,3,4 and 6. Both species 1 were confirmed in survey 1, only species 2 was
confirmed in survey 3.

Input to PRESENCE: The additional confirmation data is entered into PRESENCE as the first
"survey covariate", and should be named, "conf".

Single-season-Multi-method Model

The multi-method model (Nichols et al. (2008). 9 ) extends the single season model by
allowing detection probabilities to be different for different methods of observation. This
allows the computation of an additional parameter, θ which is the probability that individuals
are available for detection at the site, given that they are present.

Parameters:

ψ - probability that the area is occupied by the species,
θx - probability that individuals are available for detection using method x, given
presence,
px

i - probability of detecting species using method x in survey i,

Data input for this model is as follows:

site1  h1,1 h1,2 h1,3... h2,1 h2,2 h2,3... 
site2  h1,1 h1,2 h1,3... h2,1 h2,2 h2,3... 
site3  h1,1 h1,2 h1,3... h2,1 h2,2 h2,3... 
: 
: 

where hi,j = 1 if detection at site for survey i, method j; hi,j = 0 if no detection

Additionally, the number of methods per survey is specified in the '#meth/srvy' input box,
when entering data.

In the sample input below, there are 10 sites, 2 surveys and 2 methods per survey.



Notice that the column labels (1-1,1-2,2-1,2-2) indicate survey number and method number.

Single-season-Multi-state Model

In the multi-state model (MacKenzie et al., 2009) 5, two kinds of detections are recorded.
Detections where only adults observed are recorded as '1' in the data, and detections of
known breeding adults (adults seen with young) are recorded as '2' in the data. This allows
the computation of an additional parameter, R which is the probability that adults breed,
given that they are present.

Parameters:

ψ - probability that the area is occupied by the species,
R - probability that breeders are present, given the area is occupied by the species,
p1

i - probability of detecting adult non-breeders in survey i,
p2

i - probability of detecting adult breeders in survey i,
δi - probability of correctly identifying breeders (seeing young with adults) in survey i,
given presence,

Input data for this model is in the same form as the single-species, single-season model
except that breeding status ('1'=adults only, or '2'=adults and young) is recorded instead of
presence ('1').

A more general multi-state model allows for more than just two occupied states. In this case,
input consists of:

0 = no detection
1 = detection of species in state 1 (eg., occupied but no breeding detected)
2 = detection of species in state 2 (eg., occupied and breeding detected)
3 = detection of species in state 3
: :

Parameters under this parameterization:



ψ1 - probability that the area is occupied by the species in state 1,
ψ2 - probability that the area is occupied by the species in state 2,
ψ3 - probability that the area is occupied by the species in state 3,
: - :,
p11

i - probability of observing species in state 1, given it's true state is 1 in survey i,
p12

i - probability of ovserving species in state 1, given it's true state is 2 in survey i,
p13

i - probability of ovserving species in state 1, given it's true state is 3 in survey i,
: - :
p21

i - probability of observing species in state 2, given it's true state is 1 in survey i,
p22

i - probability of ovserving species in state 2, given it's true state is 2 in survey i,
p23

i - probability of ovserving species in state 2, given it's true state is 3 in survey i,
: - :
p31

i - probability of observing species in state 3, given it's true state is 1 in survey i,
p32

i - probability of ovserving species in state 3, given it's true state is 2 in survey i,
p33

i - probability of ovserving species in state 3, given it's true state is 3 in survey i,
: - :

In order for the multi-state model to be identifiable, constraints must be made on the
parameters.

1. higher-order states must imply presence at lower-order states (eg., breeding implies
occupancy, but not vice-versa)

2. Due to the 1st constraint, many detection probabilities need to be fixed to zero (eg.,
p21=0 -> cannot detect breeding if true state = no breeding (1)).

This model is a special case of the multi-season-multi-state model and can be run in PRESENCE as
a multi-season-multi-state model with only one season.

Royle N-Mixture Model

The Royle N-Mixture model (Royle, 2004) 10 estimates population size from temporally replicated
point-count data at a number of sample sites. The variation in these point-counts provides
information about the distribution of site-specific population size (N). Input data for this model are
the counts of the number of individuals observed at each survey (instead of the usual '1' or '0') at
each sample site.

Parameters estimated under the assumption of a Poisson distribution:

λ - population density (per site),
r - probability of detection (per individual of the species) per survey

Multiple Season Model or Dynamic Occupancy model

The multiple season model (MacKenzie et al., 2003) 2 extends the single season model by
introducing two additional parameters, ε[t] and γ[t]. These parameters are, respectively, the
probability a species becomes locally extinct or colonizes a site between seasons t and t+1.

Parameters:

ψ - probability that the area is occupied by the species,
pi - probability of detecting species in survey i, given presence.



γi - probability of unoccupied site being colonized between seasons i and i+1.
εi - probability of occupied site going extinct between seasons i and i+1.

For example, if the detection history 101 000 was observed at a site (denoting the species was
detected in the first and third survey of the site in the first season; not detected otherwise), the
probability of this occurring could be expressed as;

ψ x p1,1(1-p1,2)p1,3 x {(1-ε1) (1-p2,1) (1-p2,2) (1-p2,3) + ε1}.

This represents the fact that after the first season, the species may have not gone locally extinct
(1-ε1), but was undetected in the 3 surveys in season 2 ((1-p2,1)(1-p2,2)(1-p2,3)) or the species
did go locally extinct (ε1) between the first and second seasons.

The model may also be reparameterized in terms of ψt and εt; or ψt and γt, as in some situations
this may be a more meaningful parameterization (in terms of overall occupancy) than in terms of
the underlying processes. As in the single season model, parameters may be functions of
covariates using the logit link.

Note this model does not allow for a so-called "rescue effect", where the local extinction of a
colony is "rescued" by the re-colonization of the site before the unoccupied site can be observed
(i.e., the site becomes unoccupied then re-occupied all between a single season). Such an effect is
sometimes included in metapopulation models, however while a rescue effect is biologically
plausible, it can not be estimated (without some potentially unrealistic strict assumptions) from
the type of data we are considering here, nor from the type of data often collected in
metapopulation studies. The main argument for not including a rescue effect is: why should the
rescue of the colony be limited to an arbitrary single event, when possibly there may be a number
of opportunities between two seasons for the rescue to occur? To reduce the possibility of having
unobserved changes in the occupancy state of sites, the sampling scheme should be designed to
reflect the appropriate time scale of the system under study.

Alternate Parameterizations

The initial parameterizaton uses a single initial occupancy paramter, k-1 extinction parameters
(assuming k seasons), k-1 colonization parameters, and T detection parameters (assuming T
surveys). Once these parameters are estimated, other quantities of interest can be computed.
Occupancy in other seasons can be computed as:

ψ2 = ψinitial*(1-ε1) + (1-ψinitial)*γ1 
ψ3 = ψ2*(1-ε2) + (1-ψ2)*γ2 
ψ4 = ψ3*(1-ε3) + (1-ψ3)*γ3 
 :         :        :            :        : 
 

Sometimes, it is desirable to model seasonal occupancy as a function of some covariates. Since
seasonal occupancy is computed from εi and γi, this cannot be done with these parameters.

An alternate parameterization in PRESENCE uses k occupancy parameters, k-1 extinction
parameters, and T detection parameters. The k-1 colonization parameters are then computed
from the seasonal ψ's and ε's by solving the above equations for γi.

           ψ2 - ψinitial*(1-ε1) 
 γ1 = --------------------------------- 
                 (1-ψinitial) 
 

By selecting this parameterization, it's now possible to build a model where seasonal occupancy
(ψi) is a function of a seasonal covariate.



Similarly, we could have estimated the colonization parameters and computed the extinction
parameters. This parameterization is sometimes useful if the above parameterization fails to
converge on reasonable estimates.

Finally, PRESENCE can model extinction and colonization in such a way that the proportion that go
locally extinct is the same as the proportion that don't colonize (ε=1-γ).

Multi-season-staggered-entry model

This model relaxes closure assumption such that a site may locally colonize and go locally extinct
once during the surveys (ie., delayed arrival and/or early departure). It is descirbed by Kendall et.
al 2013.17 and is a simple extension of the single-season-staggered-entry model. Input data is of
the same format as the multi-season model.

Parameters:

ψA - probability that the area is occupied by the species,
bi - probability of species entering between surveys i and i+1, given not entered yet,
di - probability of species departing between surveys i and i+1, given presence,
pi - probability of detecting species in survey i, given presence.
γi - probability of unoccupied site being colonized between seasons i and i+1.
εi - probability of occupied site going extinct between seasons i and i+1.

Multi-season False-positive detection model

The False-positive detection model (Miller et. al. (2013). 17 ) extends the single season-false-
positive model to allow change in occupancy between seasons. Input format is similar to the
single-season-false-positive model.

Parameters:

ψ - probability that the area is occupied by the species,
p11i - probability that the species is detected, given the site is occupied.
p10i - probability that the species is detected, given the site is unoccupied.
bi - probability of an 'assured' detection, given the site is occupied and a detection occured.
γi - probability of unoccupied site being colonized between seasons i and i+1.
εi - probability of occupied site going extinct between seasons i and i+1.

Multi-season Spatial Dependence Model

This model is an extension of the Single-season Spatial Dependence model. The parameters for
the single-season Spatial Dependence model are replicated for each season, with additional
parameters for colonization (γ) and extinction (ε) for each interval between seasons.

Auto-logistic models

With the multi-season model, it may be of interest to model extinction or colonization between
seasons t-1 and t as a function of site occupancy for neighboring sites in season t-1.

If you're willing to assume that all sites are 'neighbors' of each other (i.e., if the individual
organisms can move anywhere within the study area), then this model can be run by simply using



psi1 as a covariate name in the design matrix. When PRESENCE goes to compute colonization or
extinction, it will compute the average "conditional" occupancy of neighboring sites in season t-1
and use that value as a covariate in computing colonization/extinction in season t. By specifying
"upsi" instead of "psi1", PRESENCE will compute average "unconditional" occupancy of neighboring
sites instead of "conditional" occupancy.

Note: "Conditional occupancy" in this case, means conditional on the detection history for the
season, not on the entire detection history.

In the case where it is desired to define neighbors specifically for each site, PRESENCE can read a
file which defines the neighbors of each site. This file should be a text file containing 1's and 0's
where 1 denotes that site s is a neighbor of site r. The format of the file is rows of contigous 1's
and 0's, one row for each focal site. Each row should contain a string of k characters (where k =
number of sites in the study area). For example if there were 10 sites, the neighbor file might look
like this:

 0100000000 
 1000000000 
 0001100000 
 0010100000 
 0011000000 
 0000001111 
 0000010111 
 0000011011 
 0000011101 
 0000011110 
 

In this example, sites 1 and 2 are neighbors of each other, sites 3,4,5 are neighbors, and sites 6-
10 are neighbors. So, if colonization between seasons t-1 and t is modeled as a function of
average neighborhood occupancy at time t-1, colonization for site 2 in season t will be a function
of the average occupancy for sites 1 and 2 in season t-1.

In some cases, sites may not all be of the same size or habitat quality. In these cases, it would be
preferable to weight the average occupancy of neighboring sites by a value indicating the
size/quality of each neighboring site. For example, if all sites except site 5 are nearly the same
size, but site 5 is twice as large as the other sites, we would want the occupancy for site 5 to have
more influence on colonization/extinction of other sites than the occupancy of other sites. So, the
neighbor file would be:

 0100000000 1.0 
 1000000000 1.0 
 0001100000 1.0 
 0010100000 1.0 
 0011000000 2.0 
 0000001111 1.0 
 0000010111 1.0 
 0000011011 1.0 
 0000011101 1.0 
 0000011110 1.0 
 

In this example, sites 3,4,5 are neighbors, but the average occupancy used in the computation of
colonization for those sites will be computed as:

logit(γsite4,t) = β0 + β1*Xsite4,t-1+...

where X is the auto-logistic covariate and is computed as:

Xsite4,t-1 = (Wsite3 * ψsite3,t-1 + Wsite5 * ψsite5,t-1) / (Wsite3 + Wsite5 )

Using the weights in the example: 



Xsite4,t-1 = (1.0 * ψsite3,t-1 + 2.0 * ψsite5,t-1) / (1.0 + 2.0)

(note: X = auto-logistic covariate and W = weight.)

If PRESENCE finds this auto-logistic covariate name, 'psi1', in the design matrix, it will ask for a
neighbor text file. If you don't specifiy a file, PRESENCE will assume all sites are neighbors of each
other and all have equal weight (as described initially). If a file is specified, the filename will be
saved in the results file (*.pa3), and will be used in all future auto-logistic models. If the file is
specified and does not contain a column of weights, all sites will be assumed to have equal weight.

Multi-season-Multi-state Model

This is an extension of the Single-season multi-state model. After the first season, occupancy
status can change between each season.

Parameters:

ψ - probability that the site is occupied initially by the species,
R - probability that breeders are present initially, given the site is occupied by the species,
Cψ0

i - probability that the site is occupied in season i, conditional that the site was
unoccupied (state 0) in season i-1,
Cψ1

i - probability that the site is occupied in season i, conditional that the site was occupied
with no breeding (state 1) in season i-1,
Cψ2

i - probability that the site is occupied in season i, conditional that the site was occupied
with breeding (state 2) in season i-1,
CR0

i - probability that breeders are present in season i, conditional that the site was
unoccupied (state 0) in season i-1,
CR1

i - probability that breeders are present in season i, conditional that the site was occupied
with no breeding (state 1) in season i-1,
CR2

i - probability that breeders are present in season i, conditional that the site was occupied
with breeders (state 2) in season i-1,
p1

i - probability of detecting adult non-breeders in survey i,
p2

i - probability of detecting adult breeders in survey i,
δi - probability of correctly identifying breeders (seeing young with adults) in survey i, given
presence,

A more general way of parameterizing this model is as follows:

ψrs
i - probability that the area is in state s in survey i+1, given it was in state r in survey i.

(unoccupied=state 0)
pxy

i - probability of observing species in state x, given it's true state is y in survey i,

Like the single-season-multi-state model, the parameter p21
i would be zero since it would be

impossible to observe breeding (state 2) if the species is in state 1 (non-breeding).

So, the first parameterization assumes that there are only 3 occupancy states:
 

0 = unoccupied
1 = occupied with no breeding
2 = occupied with breeding

The other parameterization can also be used and the relationship between the parameters is:



p10
i = 0 (impossible to detect species (state 1) if the species is not present (state 0).

p20
i = 0 (impossible to observe breeding (state 2) if the species is not present (state 0).

p11
i = p1

i (prob of detecting non-breeders, given only non-breeders present).
p21

i = 0 (impossible to observe breeding (state 2) if the species is not breeding at site (state
1).
p12

i = p1
i * (1-δi) (prob of detecting only non-breeders when breeding is taking place)

p22
i = p1

i * δi (prob of observing breeding when breeding is taking place)
ψ01

1 = ψ * (1-R) (initially occupied without breeding)
ψ02

1 = ψ * R (initially occupied with breeding)
ψ01

2 = Cψ0
2 * (1-CR0

2) (transition from unoccupied to occupied without breeding from
occasion 1 to 2)
ψ02

2 = Cψ0
2 * CR0

2 (transition from unoccupied to occupied with breeding from occasion 1
to 2)
ψ10

2 = 1-Cψ1
2 (transition from occupied to unoccupied from occasion 1 to 2)

ψ20
2 = 1-Cψ2

2 (transition from breeding to unoccupied from occasion 1 to 2)
ψ21

2 = Cψ2
2 * (1-CR2

2) (transition from breeding to non-breeding from occasion 1 to 2)
ψ22

2 = Cψ2
2 * CR2

2 (transition from breeding to breeding from occasion 1 to 2)

This parameterization is more general than the first parameterization, but needs constraints like
the ones mentioned above in order to be identifiable. The advantage of this parameterization is
that it is possible to have more than 3 occupancy states.

Integrated-habitat-occupancy models

This model generates estimates of changes in occupancy state in relation to changes in habitat
state.

Input data consists of the following codes:

0=species not detected at site, habitat state=A,
 1=species detected at site, habitat state=A,

 2=species not detected at site, habitat state=B,
 3=species detected at site, habitat state=B.

Parameters:

πX - probability that habitat is initally in state X,
ψX - probability that the site is occupied and habitat is in state X,
ε[X,Y] - probability that the site goes locally extinct, given habitat transitions from state X to
Y,
γ[X,Y] - probability that the site locally colonizes, given habitat transitions from state X to Y,
η[0,X,Y] - probability that the habitat transitions from X to Y, given site not occupied in
previous survey,
η[1,X,Y] - probability that the habitat transitions from X to Y, given occupancy,
pX - probability of detecting species, given habitat is in state X.

Note: X = habitat state can be A or B. All parameters except π and ψ can be indexed by survey
(subscript i,j in multi-season model framework).

Multi-season Two-Species Model



This is an extension of the two-species model (MacKenzie et al., 2004) 16allowing the computation
of occupancy, colonization, extinction and detection parameters of two species along with
conditional probabilities when the other species is present or detected.

Parameters:

ψA - probability that the area is initially occupied by species A
ψBA - probability that the area is initially occupied by species B, given that species A is also
present
ψBa - probability that the area is initially occupied by species B, given that species A is not
present
γt

AB - probability that the area is colonized by species A in the interval, t,t+1, given species B
is present in survey t
γt

Ab - probability that the area is colonized by species A in the interval, t,t+1, given species B
is not present in survey t
γt

BAA - probability that the area is colonized by species B in the interval, t,t+1, given species
A is present in survey t and persists in the interval, t,t+1
γt

BAa - probability that the area is colonized by species B in the interval, t,t+1, given species
A is present in survey t and species A goes extinct in the interval, t,t+1
γt

BaA - probability that the area is colonized by species B in the interval, t,t+1, given species
A is not present in survey t and species A colonizes in the interval, t,t+1
γt

Baa - probability that the area is colonized by species B in the interval, t,t+1, given species
A is not present in survey t and species A does not colonize in the interval, t,t+1
εt

AB - probability that the area goes extinct by species A in the interval, t,t+1, given species
B is present in survey t
εt

Ab - probability that the area goes extinct by species A in the interval, t,t+1, given species
B is not present in survey t
εt

BAA - probability that the area goes extinct by species B in the interval, t,t+1, given species
A is present in survey t and species A persists in the interval, t,t+1
εt

BAa - probability that the area goes extinct by species B in the interval, t,t+1, given species
A is present in survey t and species A goes extinct in the interval, t,t+1
εt

Baa - probability that the area goes extinct by species B in the interval, t,t+1, given species
A is not present in survey t and species A does not colonize in the interval, t,t+1
pA - probability of detecting species A, given species B is not present
pB - probability of detecting species B, given species A is not present
rA - probability of detecting species A, given both are present
rBA - probability of detecting species B, given both are present and species A detected
rBa - probability of detecting species B, given both are present and species A not detected

Input data for this model is in the same form as the single-species, single-season model except
that the first half of the detection history records are assumed to be species A, and the second
half of the records are assumed to be species B. So, if there are 60 sites, the input would consist
of 120 detection history records. Records 1-60 would be the site-detection history records for sites
1-60, species A, and records 61-120 would be the site-detection history records for sites 1-60,
species B.

Alternate Input for 2-species model-
 Instead of repeating each site for each species, the following codes can be used for this model:

0 - neither species detected
1 - only species A detected
2 - only species B detected



3 - both species detected

If there are any 2's or 3's in the data, PRESENCE will assume this form of input.

WinBugs Analysis

A rudimentry capability has been programmed into PRESENCE to do an analysis for select models
using the Baysian statistical package, WinBugs. For certain model types, a button will appear on
the 'Run model' dialog window with the caption 'Run WinBugs'. When this button is clicked,
PRESENCE will generate the model code and data files needed by WinBugs to analyze the data.
PRESENCE will then call WinBugs to do the analysis, then display a Notepad window with the
results. Eventually, PRESENCE will be able to do more models, but at the moment, only the single-
season model is available. Note: WinBugs must be installed for this feature to work.

Model Run Options

List Input Data - Prints input data in output file
Supply initial values - Displays a window where initial values of beta parameters can be input
Set digits in estimates - Prompts for number of digits past the decimal point that the
likelihood value doesn't change in the optimization routine before optimization stops
Set function evaluations - Prompts for the maximum number of function calls before aborting
optimization
Print V-C matrix - Prints the variance-covariance matrix of real parameters in the output file
Don't compute V-C matrix - Speeds up run-time by not computing the variance-covariance
matrix of beta parameters
Bootstrap V-C matrix - Prompts for whether the variance-covariance matrix should be
computed via bootstrap (and asks for the number of bootstrap samples) instead of using the
Hessian
Assess Model Fit - Prompts whether a goodness-of-fit (gof) test should be performed

Note: gof test cannot be performed on all models
Note: data cannot be summarized for gof test

Use simplex algorithm for starting values - Prompts for whether to use simplex algorithm to
get better starting values
Set max estimates to print - Prompts for the maximum number of individual site/survey
estimates of real parameters to print in the output file
Use Complimentry log-log link for Psi - Compute real estimate of occupancy using log-log
link, instead of logistic link

Single Season Output

The results for fitting the single season model to the data are stored in the results database. To
view the output of a specific model, position the cursor over the desired model name, click with
the right mouse button, then select 'view output' with the left mouse button. If the 'list data'
option had been selected, the input data will appear at the beginning of the output. Next, the
number of sites, sampling occasions and missing observations in the dataset; followed by the
number of parameters in the model, twice the negative log-likelihood and Akaike's Information
Criterion (AIC), (e.g., For simple single-season models, after the model AIC has been output,
the estimated coefficients for the logistic model and their variance-covariance matrix are printed.
These are the 'beta' or untransformed estimates which can be used to compute the 'real'
parameters (psi,p) in the model.

Untransformed Estimates of coefficients for covariates (Beta's) 
============================================================================== 
                                            estimate   std.error 
A1     : psi                                1.098612 (0.248070) 
B1     : p1                                -0.000000 (0.112774) 



 
Variance-Covariance Matrix of Untransformed estimates (Beta's): 
              A1         B1   
     A1    0.061539  -0.004103 
     B1   -0.004103   0.012718 
------------------------------ 
 
============================================================ 
 
   Individual Site estimates of <Psi> 
        Site         Survey         Psi     Std.err     95% conf. interval 
1             0         survey_1:  0.7500   0.0465     0.6485 - 0.8299  
 
============================================================ 
 
   Individual Site estimates of <p> 
        Site         Survey           p     Std.err     95% conf. interval 
1             0         survey_1:  0.5000   0.0282     0.4450 - 0.5550  
1             0         survey_2:  0.5000   0.0282     0.4450 - 0.5550  
1             0         survey_3:  0.5000   0.0282     0.4450 - 0.5550  
1             0         survey_4:  0.5000   0.0282     0.4450 - 0.5550  
1             0         survey_5:  0.5000   0.0282     0.4450 - 0.5550  
 
============================================================ 
 DERIVED parameter - Psi-conditional : [Pr(occ | detection history)] 
 
        Site                     psi-cond  Std.err     95% conf. interval 
     1        0                    0.0857  0.0315     0.0240 - 0.1474  
     2   site_2                    1.0000  0.0000     1.0000 - 1.0000  
     3   site_3                    1.0000  0.0000     1.0000 - 1.0000  
     4   site_4                    1.0000  0.0000     1.0000 - 1.0000  

Note that if no covariates are used in the estimation of a real parameter, all sites will have the
same value for that parameter and PRESENCE will only print the estimate for the 1st site.

After printing the 'real' parameters, a 'derived' parameter (psi-conditional) is printed. This
parameter is the probability that a site is occupied, given it's particular detection history. So, all
sites where a detection occured, will have a value of 1.0 for this parameter. Sites with no
detections will have a value of less than or equal the unconditional occupancy estimate (psi).
"Conditional occupancy" can be computed as:

        ψ Π(1-pj) 

ψc =  ----------------   if no detections, = 1 if at least 1 detection 
      ψ Π(1-pj) + 1-ψ 

This parameter is useful for generating maps of species occurence.

Multiple Season Output

The results for fitting the multiple season model to the data will appear in a Notepad window. As
for single season models, the output begins with a listing of the input data (if desired), followed by
the number of sites, sampling occasions and missing observations in the dataset. The design
matrices are printed followed by the number of parameters in the model, twice the negative log-
likelihood and Akaike's Information Criterion (AIC). The untransformed parameter estimates and
their associated variance-covariance matrix are printed, followed by the 'real' parameter
estimates.

Untransformed Estimates of coefficients for covariates (Beta's) 
============================================================================== 
                                            estimate   std.error 
A1     : psi                                1.098612 (0.411930) 
B1     : gam1                              -2.197225 (2.394989) 
C1     : eps1                              -1.386294 (0.468723) 
D1     : p1                                -0.000000 (0.159541) 
 
Variance-Covariance Matrix of Untransformed estimates (Beta's): 



              A1         B1         C1         D1   
     A1    0.169686  -0.670645  -0.036365  -0.033936 
     B1   -0.670645   5.735971   0.459619   0.191898 
     C1   -0.036365   0.459619   0.219701   0.027272 
     D1   -0.033936   0.191898   0.027272   0.025453 
------------------------------ 
Model has been fit using the logistic link. 
 
   Individual Site estimates of Psi: 
        Site         Survey         Psi     Std.err     95% conf. interval 
1             0         survey_1:  0.7500   0.0772     0.5723 - 0.8706  
 
   Individual Site estimates of Gamma: 
        Site         Survey       Gamma     Std.err     95% conf. interval 
1             0         survey_1:  0.1000   0.2155     0.0010 - 0.9239  
 
   Individual Site estimates of Eps: 
        Site         Survey         Eps     Std.err     95% conf. interval 
1             0         survey_1:  0.2000   0.0750     0.0907 - 0.3852  
 
   Individual Site estimates of p: 
        Site         Survey           p     Std.err     95% conf. interval 
1             0         survey_1:  0.5000   0.0399     0.4225 - 0.5775  
1             0         survey_2:  0.5000   0.0399     0.4225 - 0.5775  
1             0         survey_3:  0.5000   0.0399     0.4225 - 0.5775  
1             0         survey_4:  0.5000   0.0399     0.4225 - 0.5775  
1             0         survey_5:  0.5000   0.0399     0.4225 - 0.5775 

Tools and Settings

Simulation tool - Instructional tool to give users a general feel for how the model of
MacKenzie et al. (2002)1 performs under a specific set of circumstances and sampling
designs.
Check website for new version - Launches a browser window with the PRESENCE home page
so you can check if your version is up-to=date.
Plot psi vs covariates - Generates a graph of psi estimates on the y-axis versus covariates on
the x-axis for a user-specified logit equation.
Change web-browser - Allows PRESENCE to use a different web-browser for display of help
items and web-pages. When dialog box appears, locate alternate browser (eg., "c:\Program
Files\Mozilla Firefox\firefox.exe").
Change text-editor - Allows PRESENCE to use a different text-editor for display of model
output. When dialog box appears, locate alternate editor (eg., "c:\Program Files
(x86)\Notepad++\notepad++.exe").
Specify location of OpenBugs - Allows PRESENCE to find OpenBugs.exe for running simple
Baysian models. When dialog box appears, locate the OpenBugs.exe file (eg., "c:\Program
Files (x86)\OpenBugs\OpenBugs.exe").
Change c-hat - Once Goodness-of-fit is assessed, enter the computed c-hat value to modify
results table to use QAIC instead of AIC.
Change effective sample size - When a value is entered for effective sample size (ESS),
results table will display AICc instead of AIC (or QAICc instead of QAIC).
Add 1 to #parms when c-hat>1 - increments parameter count in each model to account for
model uncertainty.
Model averaging - computes model-averaged estimates of site-specific occupancy or
detection.
Set #estimates to print by default - By default, only 200 site estimates are printed in the
output file (to save paper). To see all estimates, enter a larger number here.
Rebuild project from output files - Scans files in current folder for PRESENCE model output
files and creates the model summary table.

Single Season Simulation



This simple simulation routine is included so that users may get a general feel for how the model
of MacKenzie et al. (2002)1 performs under a specific set of circumstances and sampling designs.
Scenarios may either be entered from a tab-delimited ASCII text file (see below for details), or by
entering the scenario directly.

Where the previously described simulation procedure is intended as a basic learning tool, this
procedure is designed to address a specific question.

There are two general sampling designs that can be investigated; sampling only a subset of sites
more intensively to estimate detection probabilities; or halting the repeated sampling of sites after
the species is first detected. Both designs are compatible with the MacKenzie et al. (2002)1 model.
A single-group model with constant p is fit to the simulated data. Results are written to a file
named 'presence.out' and loaded into the Notepad editor when completed.

This simulation file should be set up as follows (see SimExample.txt).

The first line should consist of 4 integer values;

the total number of sites(N)
the number of sites to be sampled more intensively (NI)
the number of surveys conducted at the subset of sites (T)
the number of surveys conducted at the other sites (T0)

The next N lines of the file hold the true occupancy and detection probabilities for each site. The
first column in each line is the occupancy probability, and the following T columns contain the
probability of detecting the species (given presence) during each survey.

The first NI of these lines represent the sites that will be sampled more intensively. For the
remaining sites, if T0 < T then PRESENCE is still expecting to read in T detection probabilities,
however these will not be used.

The final line of the file consists of 3 integer values;

the number of unknown groups (see single season analysis)
whether surveying will halt after first detection (0=no, 1=yes)
the number of simulations

SimExample.txt - sample simulation input file

20 10 5 3   
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
0.8 0.2 0.4 0.3 0.2 0.6 
1 0 500    



Model averaging

Just as there is uncertainty in model parameters, there is also uncertainty in model selection.
There may be several models with (relatively) equal support, according to AIC values. In this case,
parameters may be averaged among all models, such that models with greater support have more
weight in the computed average than models with little support.

Model averaged parameters may be computed in PRESENCE by selecting the "Model averaging"
menu from the "Tools" menu. PRESENCE will obtain estimates for each parameter for each site
(and survey if applicable) along with the weight of each model and compute a weighted average
estimate. The two options for output are:

print only model averaged estimate and standard error for each site/survey
print all estimates in each model used in the computation of the model-averaged estimate

Help menu

Online book - Opens web-browser and loads Donovan and Hines online spreadsheet book
Single-season Tutorial1 - Opens web-browser and loads step-by-step instructions for
analyzing a sample data file with single-season models.
Single-season Tutorial2 - Opens web-browser and loads step-by-step instructions for
analyzing a sample data file with single-season models.
Multi-season Tutorial1 - Opens web-browser and loads step-by-step instructions for analyzing
a sample data file with multi-season models.
Multi-season Tutorial2 - Opens web-browser and loads step-by-step instructions for analyzing
a sample data file with multi-season models.
Check web for upcoming workshops - Opens web-browser and loads a web-page with a list of
upcoming occupancy modeling workshops.
Occupancy Users forum (Phidot.org) - Opens web-browser and loads PHIDOT.ORG user-
group forum.
Attitude adjustment - Displays a graphic intended to relax users who have run one too-many
models :-)

Problems/Questions

The most frequent question/problem that occurs is about a message in the output warning that
the optimization routine has possibly not reached the maximum likelihood value. The program
then prints the number of significant digits achived when the optimization stopped. This situation
occurs when the optimization routine is attempting to find the maximum of a function, when the
function is relatively 'flat' (thinking in two-dimensions). If you look at the logit transformation
described in this help file, you'll see that this can occur if a parameter is near zero or one. When a
parameter is near zero, the 'untransformed' or 'beta' parameter associated with it is a large
negative number. To get the 'real' parameter, the untransformed parameter is plugged into the
logit equation (exp(x)/(1+exp(x))). So, plugging in -30 for x in this equation gives almost the
same value as -40. This causes the optimization routine to think the function is 'flat' and gives the
warning message.

Examining many simulated and real datasets, we have found that this message can be safely
ignored if the number of significant digits is 3 or larger. The number of significant digits it reports
is not the number of digits you can trust in the parmeter estimates. We have found that even
when it reports 2 significant digits, the esitmates are accurate to 4 or more decimal places.

When the message occurs with the number of significant digits less than two, it usually indicates
insufficient data for the desired model, or model overparameterization. This is sometimes

http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm
https://www.mbr-pwrc.usgs.gov/software/doc/presence/presence_tutorial1.htm
https://www.mbr-pwrc.usgs.gov/software/doc/presence/presence_tutorial2.htm
https://www.mbr-pwrc.usgs.gov/software/doc/presence/presence_tutorial3.htm
https://www.mbr-pwrc.usgs.gov/software/doc/presence/presence_tutorial4.htm
http://www.proteus.co.nz/courses/
http://www.phidot.org/forum


accompanied by a warning about the variance-covariance matrix. If this happens, the model may
need to be simplified.

In some cases, poor starting values for the parameters can cause the problems noted above. This
can be solved by giving better initial values to the program when running the model. For example,
if detection probabilities are very small, and the default starting values of 0.5 are far away from
the final expected parmaeter values, the optimization routine may fail. The solution would be to
input small initial values (on the logit scale) for the model so the optimization routine does not
have to search very far. Since simpler models converge more readily than complex ones, it is
usually best to start with simple models, so you have starting values for complex ones if needed.

Another indication of a problem with convergence is strange standard error values. PRESENCE
may or may not print the error message described above, but the model may still be over-
parameterized. It is very important to check estimates and standard errors for all models to make
sure they are reasonable. Note that large standard errors of the 'real' parameters
(psi,p,eps,gam,...) indicate problems, but large standard errors for the untransformed (beta)
parameters are not necessarily a problem. Particularly, when a beta value is large (>10 or <-10),
the standard error is usually large also.

Resources

A book8 discussing the latest methods in analyzing presence/absence data surveys has been
written and is available at: Elsevier.com

MacKenzie, D.I., J.D. Nichols, J.A. Royle, K.H. Pollock, L.L. Bailey, and J.E. Hines, 2017. 
 Occupancy Estimation and Modeling: Inferring Patterns and dynamics of Species Occurance,

2nd Edition, Elsevier Publishing, Inc.

Workshops are conducted several times per year which teach the basic principals of
Occupancy Modeling. A list of upcoming workshops is available at Proteus.com

Another resource for self-help in Occupancy modeling is an on-line publication which explains
how occupancy models work via spreadsheets:

Donovan, T. M. and J. Hines. 2007. Exercises in occupancy modeling and estimation.
 

An online forum dedicated to occupancy-related questions has been set up. The general
intent is to create a forum where people can exchange ideas and pose questions about
species occurrence. Posts about both how to do the modeling in PRESENCE(or other software)
and study design issues will be accepted. However,it is expected that before posting a
question you will have checked help files, articles etc. for an answer; else risk a public
flogging;-)

To join phidot, go to PHIDOT.ORG and select 'regsiter' near the top of the screen. Once
joined, you can set individual preferences, etc.

A comprehensive introductory on-line manual for program MARK has been written which
gives many details of capture-recapture, occupancy modeling and other types of analysis.
Methods for analyzing data in PRESENCE are very similar to methods in MARK. In fact, MARK
will do many of the same models as PRESENCE. The on-line manual can be found at:
http://www.phidot.org/software/mark/docs/book/

Program GENPRES can be used to simulate (or generate expected value) data under most
PRESENCE models. It can be used in the design stage of an occupancy experiment to get an
idea of how small/large the variances of estimates might be, given a set of parameters. It is
also useful for sensitivity analysis or as an educational tool for learning about the models.

https://www.elsevier.com/books/occupancy-estimation-and-modeling/mackenzie/978-0-12-407197-1
http://www.proteus.co.nz/courses/
http://www.uvm.edu/rsenr/vtcfwru/spreadsheets/?Page=occupancy/occupancy.htm
http://www.phidot.org/forum
http://www.phidot.org/software/mark/docs/book/
https://www.mbr-pwrc.usgs.gov/software/genpres.html


PRESENCE can be called from the R software package ( www.r-project.org), making it
possible to write r-scripts to run models on many data-sets or run many models on one data-
set. Some R functions are included in the PRESENCE/R-tools folder to perform tasks
necessary convert data and run models. Sample code is also included.
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Appendix

Covariates

Program PRESENCE makes the distinction between two types of covariates. Site-specific covariates
are covariates that are constant for a site within a season. Examples would be habitat type, patch
size, distance to nearest patch, or generalized weather patterns such as drought or El Niño years.
Sampling-occasion covariates are covariates that may change with each survey of a site, for
example local environmental conditions such as temperature, precipitation or cloud cover; time of
day; or observer. Covariates are entered into the models using the logistic model.

Detection probabilities may be functions of either site-specific or sampling occasion covariates,
while all other parameters may be functions of site-specific covariates only.

Sampling-occasion covariates may be missing, and are assumed to correspond to a missing
detection/nondetection observation. When a covariate is being used that has missing values that
do not correspond with a missing detection/nondetection observation, the detection/nondetection
data is also treated as missing. Site-specific covariates can not have missing values, unless the
site was never surveyed during that season.

An important note about continuous covariates! Because of the way the logit-link works, if the
average value of a covariate is a long way from zero, then PRESENCE may not be able to find the
true maximum likelihood estimates of the model parameters, which will give you bogus results. An
indication that there might be a problem is that the estimates themselves look suspicious, the
variance-covariance matrix might include a huge value, and/or you get a warning about a non-
invertible variance-covariance matrix. The best approach is to transform your data onto another
scale which is still meaningful to you. You could divide the covariate values by some constant (i.e.,
rather than entering 80% humidity as 80.0, use 0.80); subtract the average of the covariates
from each observed value (i.e., X* = X - average(X's)); or some combination of the two. Such
transformations can be carried out by PRESENCE (in the edit menu) or done easily with a
spreadsheet and the modified values pasted back into the Data Window.

http://www.r-project.org/
http://www.proteus.co.nz/
http://www.usgs.gov/
http://armi.usgs.gov/
http://www.proteus.co.nz/
http://www.usgs.gov/
http://armi.usgs.gov/
https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=jhines@usgs.gov
https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=darryl@proteus.co.nz


Logistic Model or Logit Link

The logistic model can be used to investigate potential relationships between probabilities (the
response) and covariates (the explanatory variables), as it ensures response values stay between
0 and 1. The logistic model is defined as;

loge(y/(1-y)) = Xβ,

where y is the probability; X is a row vector containing the covariate values; and β is a column
vector of coefficient values that are to be estimated. An alternative definition for the model is, y =
exp(Xβ) / (1+exp(Xβ)).

Large positive values for Xβ make y tend to 1, while large negative values make y tend to 0. If Xβ
= 0, then y = 0.5.
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