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Abstract. We used a probabilistic approach to address the influence of sampling ar-
tifacts on the form of species–area relationships (SARs). We developed a model in which
the increase in observed species richness is a function of sampling effort exclusively. We
assumed that effort depends on area sampled, and we generated species–area curves under
that model. These curves can be realistic looking. We then generated SARs from avian
data, comparing SARs based on counts with those based on richness estimates. We used
an approach to estimation of species richness that accounts for species detection probability
and, hence, for variation in sampling effort. The slopes of SARs based on counts are steeper
than those of curves based on estimates of richness, indicating that the former partly reflect
failure to account for species detection probability. SARs based on estimates reflect eco-
logical processes exclusively, not sampling processes. This approach permits investigation
of ecologically relevant hypotheses. The slope of SARs is not influenced by the slope of
the relationship between habitat diversity and area. In situations in which not all of the
species are detected during sampling sessions, approaches to estimation of species richness
integrating species detection probability should be used to investigate the rate of increase
in species richness with area.

Key words: capture–recapture; habitat diversity; nested species–area relationships; sampling
artifacts; species detection probability.

INTRODUCTION

The positive relationship between the number of spe-
cies and the size of the area sampled (i.e., the Species–
Area Relationship, or SAR; Kinzig and Harte 2000) is
a fundamental pattern in ecology that has received con-
siderable attention (Gould 1979, Holt 1992, Rosen-
zweig 1995). There is an extensive literature focusing
on ecological and statistical interpretations of the var-
ious models that have been used to describe these re-
lationships (Preston 1960, 1962a, b, MacArthur and
Wilson 1967, Connor and McCoy 1979, Coleman et al.
1982, Martin 1982, McGuinness 1984, Wright 1988,
Lomolino 1989). In addition, SARs have played an
important part in conservation biology, particularly in
the SLOSS debate (i.e., a Single Large or Several Small
reserves; Gilpin and Diamond 1980, Higgs and Usher
1980), and in debate about estimation of the number
of species likely to become extinct as a result of land
use change (e.g., deforestation) of specified magnitude
(e.g., Budlansky 1994, Heywood et al. 1994, Magsalay
et al. 1995, Pimm et al. 1995, Brooks and Balmford
1996, Brooks et al. 1996).
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SARs are constructed by enumerating the species
recorded in areas of different size. When the data are
collected in smaller units of area within a larger area,
the resulting relationship is called a nested SAR. Two
classes of non-exclusive explanations have been pro-
posed for the positive relationship between species
richness and area in nested SARs (Preston 1960, Ro-
senzweig 1995, Leitner and Rosenzweig 1997). The
first kind of explanation is based on sampling artifacts:
some species are missed during sampling efforts, and
sampling progressively larger areas and devoting more
time to data collection translates into increased sam-
pling effort (Rosenzweig 1995). This leads to a more
complete list of species belonging to the community
represented in the study area. The second class of ex-
planations corresponds to ecological hypotheses, such
as the influence of habitat diversity (Preston 1960,
1962a, b, Lack 1973, Freemark and Merriam 1986,
Berg 1997).

The purpose of this paper is to present methods to
disentangle ecological and sampling explanations un-
derlying SARs. Specifically, our purpose is (1) to dem-
onstrate the potential importance of sampling artifacts
as determinants of SARs, and (2) to present methods
to estimate SARs that reflect only ecological patterns.
We have no ability to assess the relative contributions
of ecological and sampling explanations to previously
published SAR results, but we show how to resolve
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this ambiguity in future studies. We view our methods
and explanations as relevant at small and medium spa-
tial scales, but we do not consider biogeographical ex-
planations and processes of species origination in-
volved at larger scales (e.g., continents; Williams 1943,
Rosenzweig 1995).

Sampling artifacts and species detection probability

After reviewing much of the substantial literature on
SARs, we conclude that the terms ‘‘sampling’’ and
‘‘artifact’’ have been used in different ways by different
authors. For example, Connor and McCoy (1979:792–
793) state that one hypothesis underlying SARs is that
species number is controlled by passive sampling from
the species pool, larger areas receiving effectively larg-
er samples than smaller ones. Under this view, the sam-
pling hypothesis is not artifactual as it is produced by
a particular kind of ecological process. Indeed, the idea
that the species–area relationship is purely a sampling
phenomenon should be considered a null hypothesis
(Connor and McCoy 1979:793). Other authors focus
on the sampling by ecologists in the collection of spe-
cies–area data. For example, Rosenzweig (1995:192)
views as a sampling artifact the possibility that in-
creases in diversity stem from larger sample sizes. Be-
cause of these varied views, we will try to specify the
kind of sampling problem for which we propose a so-
lution in this paper.

We view the sampling of a landscape by ecologists
for the purpose of enumerating species as a probabi-
listic process. Define some large area of interest as well
as some taxonomic group for which species richness
is of interest. Assume that the ecologist goes to some
smaller area within the large area of interest and uses
some set of sampling methods designed to detect as
many species as possible within the taxonomic group
of interest. A species list is prepared of all species
detected. As a way of thinking about the sampling pro-
cess, focus on one particular species and assume that
at least one individual of this species is present in the
large area of interest. The probability of that species
appearing in the ecologist’s species list at the sample
location can be written as the product of two condi-
tional probabilities:

Pr(species detection z presence in large area)

5 Pr(species presence in sampled area z

presence in the large area)

3 Pr(species detection z presence in sampled area).

Some efforts to deal with sampling issues in SARs have
focused exclusively on the first conditional probability
(e.g., Leitner and Rosenzweig 1997). However, many
discussions of sampling and SARs fail to distinguish
between these two components, making it difficult to
fully understand the perspectives of many authors. For
example, Preston (1979) clearly recognized that not all

bird species in a sampled area are detected; he rec-
ognized the second conditional probability, and that
Pr[detection z presence in sampled area] ,1. However,
in his earlier discussions of SARs (Preston 1948, 1960,
1962a, b) in which he assumed that the overall prob-
ability of detecting a species was determined by the
number of individuals in that species, it is not clear (to
us) that this argument incorporated this idea of
Pr(detection z presence in sampled area) ,1. In this pa-
per, when we consider detection probability and its
estimation, we always include in this concept the sec-
ond conditional probability, Pr(species detection z pres-
ence in sampled area). The first conditional probability
is sometimes included as well, but its inclusion depends
entirely on the spatial sampling design of the data col-
lection program.

We believe that this second conditional probability
is very relevant to most SARs. It is seldom possible
to enumerate all of the species present in the study
area, particularly when focusing on animals (Burnham
and Overton 1979, Preston 1979, Nichols and Conroy
1996, Boulinier et al. 1998, 2001, Nichols et al. 1998a,
b, 2000, Cam et al. 2000), but this difficulty can be
encountered when studying plants as well (Connor and
Simberloff 1978, Gilbert and Lee 1980, Herwitz et al.
1996). Define N to be the true number of species ex-
posed to sampling efforts on a sample area, and S to
be the number of these species that are detected in the
sampling. S can be viewed as a random variable with
expectation given by

E(S) 5 Np

where p is the conditional detection probability, re-
flecting the probability that a member of N appears in
the count statistic, S. Detection probability is likely to
be a function of many variables including effort ex-
pended in the sampling. The number of species ob-
served in the sample, S, provides an unbiased estimate
of species richness only in situations in which detection
probability is equal to one. Otherwise, estimation of
species richness requires use of statistical methods that
explicitly incorporate species detection probability.

We are not aware of any study that has addressed
detection probabilities in the framework of SARs, as
most species–area curves have been fitted using count
data. Lack of appropriate estimation procedures has
precluded thorough investigation of the influence of
detection probability on the form of SARs using em-
pirical data. Recently developed methods permit esti-
mation of detection probability and species richness
(Burnham and Overton 1979, Boulinier et al. 1998,
Nichols et al. 1998a, b). These estimates are approxi-
mately unbiased in the face of variable sampling effort,
thus removing any influence of sampling effort on the
estimates of richness. Sampling variances associated
with these estimates will be functions of detection
probability and effort (greater effort may lead to higher
detection probability, which produces more precise es-



1120 EMMANUELLE CAM ET AL. Ecology, Vol. 83, No. 4

timates of richness). However, this variation in preci-
sion does not lead to biased estimates of SARs and can
be dealt with via weighted analyses (using the inverse
of the estimated sampling variance) if desired.

The possible confusion between the influence of
sampling effort and area on species richness has long
been known (e.g., Preston 1979), and several ad hoc
methods have been used to attempt to disentangle these
effects. The problem has sometimes been addressed in
the same manner as for the influence of sample size on
richness (e.g., using the rarefaction method; Sanders
1968). Sample size, effort, or sampled area may be
standardized in an attempt to control for sampled area
or effort (e.g., Connor and Simberloff 1978, Stevens
1986, Walter et al. 1995). A distinguishing character-
istic of these approaches is that they assume some re-
lationship between species detection probability and
sampling effort, but there is frequently little empirical
basis for the assumed relationship. Of course, formal
methods do exist for estimating the functional rela-
tionship between sampling effort and detection prob-
ability (e.g., Pollock et al. 1984, Gould and Pollock
1987, Williams et al. 2002), and these have potential
application to the estimation of species richness (Cam
et al. 2001), but we have not seen these methods used
to investigate SARs.

The ad hoc approaches of which we are aware do
not attempt to estimate the probability that a species
present in the area sampled is detected, and hetero-
geneity in species detection probability among species
is either ignored or assumed to be directly proportional
to abundance. Our intent is to use a conceptually dif-
ferent approach, to estimate the probability of detecting
species at the level of the sampled unit of area and to
explicitly incorporate this probability for estimating
species richness in the framework of nested SARs.
Modern statistical approaches to estimation of species
richness permitted us to obtain estimates of richness
that are independent of sampling effort (provided that
we meet certain conditions that are specified later; see
Empirical species–area relationships). Our general ob-
jectives are: (1) to address the contribution of increased
sampling effort, and the consequent increase in detec-
tion probability, to the rate of increase in species counts
with space in nested SARs; and (2) to construct SARs
using species richness estimates that are unbiased in
the face of variable sampling effort and that thus reflect
only the ecological explanations underlying SARs.

Objectives, hypotheses, and predictions

Use of biased estimates of species richness that are
dependent on effort is likely to lead to SARs whose
form reflects not only the actual increase in species
richness with area, but also sampling artifacts (sensu
Rosenzweig 1995). Several functions can be used to
describe SARs (McGuinness 1984, Flather 1996, Con-
nor and McCoy 1979), but a model often fitted is based
on the log10–log10 transformation. To avoid confusion,

we will always refer to the species–area relationship
as the curve in the log10–log10 space. The corresponding
model is Y 5 bX 1 a, where Y 5 log10 (species rich-
ness) and X 5 log10 (number of units of area). Con-
sequently, the rate of increase in species richness with
area will correspond to the slope (b) of the linear model
fitted using that transformation for both the dependent
and the independent variables (i.e., richness estimates
or counts, and area, respectively). Under this model,
species–area relationships are usually linear (with the
exception of relationships from very small areas; Ro-
senzweig 1995).

Nested SARs are obtained by enumerating the num-
ber of species in a unit of area (sampling unit), in-
creasing the size of the total area sampled by sampling
additional contiguous units of area, and assessing the
cumulative number of species in progressively larger
total areas formed by pooling a progressively larger
number of contiguous units of area. Assume that the
same effort is devoted to each unit of area: effort in-
creases as the number of units sampled increases, that
is, as a larger total area is sampled. As some species
are missed in each sampling unit (even though they are
present in the ecological community), a species is more
likely to be detected as more units of area are added
(that is, as larger total areas are sampled, and total effort
increases). When using estimates of species richness
that are not corrected for this bias (quantities such as
count data that depend on total effort), the initial num-
ber of species observed in smaller areas (i.e., initial
areas including a few contiguous sampling units) is
likely to be smaller than the actual number of species
present. Consequently, the initial number of species is
likely to underestimate the actual number of species
present in smaller areas, with the negative bias de-
creasing with increasing area sampled. Thus, the rate
of increase of the cumulative number of species de-
tected with increased area sampled is likely to be great-
er than the actual rate of increase in species richness
with area.

The first specific objective of this paper is to present
species–area curves generated by a model in which
observed species richness depends exclusively on sam-
pling effort (equal effort is devoted to each unit of area,
but total effort increases as the number of contiguous
units added is increased to form larger total areas). The
model includes no potential influence of habitat diver-
sity: the various species are assumed to be distributed
over space in such a way that all species are available
to be detected at each sampled area. This model can
be viewed as a null model corresponding to the sam-
pling component of SARs based on count data. Under
this sampling model, we expect an increase in species
richness with sampling effort. We present two versions
of that model differing in their assumptions about de-
tection probability (homogeneous vs. heterogeneous
detection probability among species). We describe the
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patterns produced by these models in a log10–log10

space.
We compare the estimates of slope parameters of

SARs to those previously reported in the literature. In
a large survey, Connor and McCoy (1979) provided a
range of reasonable values for non-nested SARs. Ko-
bayashi (1974) suggested that the slopes of nested
SARs should be smaller than those of non-nested
SARs, but provided no precise range of values. A cor-
respondence between the characteristics of model-
based curves and curves reported in previous literature
on SARs would indicate that SARs based on count data
from animal communities might partly reflect failure
to account for species detection probability. However,
whether the characteristics of model-based curves fall
within a specific range corresponding to curves based
on actual data is not critical here, as curves based on
actual data should also reflect ecological processes not
accounted for in models based on sampling effort only.
We address the characteristics of model-based curves
relying on various assumptions about species detection
probability: a positive slope in these curves would sup-
port the hypothesis that sampling processes may con-
tribute to shape curves based on actual data. Initially,
we generate SARs based on hypothetical species de-
tection probabilities. Then, we generate curves using
estimates of detection probability corresponding to data
from the North American Breeding Bird Survey (BBS;
Robbins et al. 1986, Peterjohn and Sauer 1993).

Our second objective is to estimate species richness
using an approach incorporating detection probability
(Nichols and Conroy 1996, Boulinier et al. 1998) and
to construct SARs from data on avian communities.
The previously discussed modeling demonstrates the
dependency of observed species richness (a biased es-
timate of richness) on total sampling effort (i.e., the
size of the total area sampled). If detection probability
is estimated and explicitly incorporated when estimat-
ing species richness, the estimates of richness obtained
are independent of the total effort devoted to an area
of a given size (i.e., a given number of contiguous units
of area). As these estimates of richness corresponding
to areas of different size are corrected for the proportion
of species that are missed in each unit of area, they are
not sensitive to the increase in the size of the total area
sampled (and thus the increase in sampling effort). We
compare the curves obtained using these estimates to
those based on count data. Our prediction is that the
slopes of curves based on the number of species ob-
served should be steeper than those of SARs based on
estimates of richness. The reasoning underlying this
prediction is that variation in the cumulative number
of species over space in the first case reflects both
sampling artifact (the increase in sampling effort with
larger area) and change in ecological conditions (e.g.,
change in habitat), whereas in the latter case only ecol-
ogy is involved.

A final, specific objective is to use estimated species

richness to test one of the ecological hypotheses put
forward to explain variation in the slope of SARs: the
influence of habitat diversity (Preston 1960, 1962a,
Lack 1973, Freemark and Merriam 1986, Kohn and
Walsh 1994, Berg 1997). The habitat diversity hypoth-
esis assumes specialization of species on limited sets
of ecological conditions. In this view, as larger areas
tend to contain more habitats, they also contain more
species, which would be associated with a steeper
slopes for SARs. Although put forward in several pa-
pers, this hypothesis has seldom been formally ad-
dressed, and we are not aware of any study that has
addressed it using approaches explicitly incorporating
species detection probability for estimating species
richness. We address that question using data on avian
communities.

DATA ON AVIAN COMMUNITIES

The BBS data are collected once a year in spring.
This survey is based on a standardized sampling de-
sign: observers collect data on .4000 permanent sur-
vey routes located along secondary roads in the United
States and Canada (Peterjohn and Sauer 1993). The
routes are 39.4 km long, with 50 stops spaced at 0.8-
km intervals. The observer drives along the route and
records all the species seen or heard during a 3-min
point count. This corresponds well with our view that
each unit of area (the area sampled by a single point
count: a circular area of radius 0.4 km) is associated
with a unit of effort (3-min point count). That is, equal
effort is devoted to each unit of area. We selected the
data collected on BBS routes in Maryland in 1997.

ESTIMATION OF DETECTION PROBABILITY AND

SPECIES RICHNESS USING AVIAN DATA

Our objectives required estimates of species richness
and detection probability in order to parameterize our
models and then to investigate SARs with richness es-
timates. We used closed capture–recapture models
(Otis et al. 1978, Pollock et al. 1990) with BBS data
to estimate both detection probability and species rich-
ness in bird communities (Burnham and Overton 1979,
Nichols and Conroy 1996, Boulinier et al. 1998). The
area of interest is divided into k sampling units (k 5
50 circular areas sampled by the BBS point counts) and
species are enumerated in each unit. This results in a
detection history for each species: a combination of k
1’s and 0’s reflecting the units where the species was
recorded, or not, respectively.

Several closed capture–recapture models can be used
to estimate species richness from detection history data
(Nichols and Conroy 1996, Boulinier et al. 1998, Nich-
ols et al. 1998a, b, Pledger 2000). The models are based
on different assumptions about sources of variation in
detection probability. Here we consider only two of
these models: a model with homogeneous detection
probability among species and sampling units, M(0),
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and a model with heterogeneous detection probability
among species, M(h) (Otis et al. 1978).

Under model M(0), the constant detection probabil-
ity and species richness were estimated using maximum
likelihood methods implemented in program CAP-
TURE (Otis et al. 1978, Rexstad and Burnham 1991).
Under model M(h), the average detection probability
and species richness were estimated using the jackknife
estimators of Burnham and Overton (1978, 1979) as
implemented in programs CAPTURE (Rexstad and
Burnham 1991) and COMDYN (Hines et al. 1999). The
jackknife estimators have performed well in simulation
studies (Otis et al. 1978, Burnham and Overton 1979,
Pollock and Otto 1983, Norris and Pollock 1996; R.
Alpizar-Jara, J. D. Nichols, J. E. Hines, J. R. Sauer, K.
P. Pollock, and C. Rosenberry, unpublished manu-
script) and in studies of known communities (Palmer
1990, 1991). Note that we do not restrict interest to
the first-order jackknife, but use the selection procedure
of Burnham and Overton (1979; implemented in CAP-
TURE, Rexstad and Burnham 1991) to choose the prop-
er order and compute the interpolated jackknife esti-
mator.

In order to model heterogeneous species detection
probabilities, we needed information not only about
average detection probability but also about dispersion
of these probabilities. When the jackknife estimator for
model M(h) is used to estimate species richness when
detection probability varies among species (as previ-
ously explained), only the average detection probabil-
ity is estimated, and this approach cannot be used to
assess dispersion of detection probabilities. Because we
also needed information about dispersion in order to
construct SAR curves under our sampling model (see
Species–area relationships generated under a sampling
model), we used a second approach to estimation of
detection probabilities in the presence of heterogeneity
in these probabilities among species.

We used the approach of Pledger (2000) based on a
two-group distribution for capture probability. The
population is assumed to be composed of two cate-
gories of individuals, each category with a specific cap-
ture probability (i.e., there is a low-p group, pl and a
high-p group, ph). Let g be the proportion of species
in the low-p group. The mean detection probability for
the community can be written as

l hp̄ 5 gp 1 (1 2 g)p . (1)

The coefficient of variation of the two-group distri-
bution is given by

h l 2Ïg(1 2 g)(p 2 p )
CV(p) 5 (2)

l hgp 1 (1 2 g)p

(e.g., see Carothers 1973). We emphasize that use of
this two-point distribution is not restrictive, because
two groups are sufficient to account for heterogeneity
in detection probability among species for the purpose

of investigating influences on richness estimates (see
Carothers 1973, Pledger 2000). The methods and as-
sociated software developed by Pledger (2000) pro-
vided estimates of the two group-specific detection
probabilities (pl and ph), the proportion of species in
the low-p group, and the CV(p) from BBS data.

To summarize, we used models M(0) and M(h) to
estimate species richness from BBS data. Model M(0)
was used to estimate detection probability assuming
homogeneity among species. For the specific purpose
of generating model-based SARs in the presence of
heterogeneity in detection probability among species,
we needed to estimate a dispersion parameter for these
probabilities. For this purpose, we used the new esti-
mator developed by Pledger (2000), assuming a two-
group distribution for detection probabilities.

SPECIES–AREA RELATIONSHIPS GENERATED UNDER

A SAMPLING MODEL

In our sampling model, we envision an area of ho-
mogeneous habitat and an associated animal commu-
nity. We envision sampling effort that can be measured
in discrete units, such that it is sensible to think of
detection probabilities associated with each unit of ef-
fort. In community sampling, effort could be measured
in a variety of ways, including quantities such as ob-
servation hours, trap-nights, or mist-net hours. How-
ever, because of our focus on area relationships, we
equate one unit of area sampled with one unit of effort.
Thus we assume that total sampling effort varies only
with total area sampled (a given number of contiguous
units of area sampled), implying equal expenditure of
time and application of sampling methods on each unit
of area. The homogeneity of the habitat leads to the
additional assumption that a particular species is equal-
ly likely to be detected in any location and, thus, by
any unit of sampling effort (i.e., the habitat is not
patchy with some hot spots and with other areas where
the species has no chance of being detected). Note that
this assumption does not imply that each species is
present at the time of sampling in each unit of area
sampled, but only that a species has the same a priori
probability of being present in each sampling unit re-
gardless of the specific location of the sampling unit.

Homogeneous detection probability among species

Let p be the probability of detecting a species during
a single unit of sampling effort (one unit of area), con-
ditional on species presence in the community. Assume
that this probability is the same for each species in the
community. The expected proportion of species in the
community detected in each unit area is p; 1 2 p is the
proportion of species missed. Let k be the number of
units of area sampled. The proportion of species detected
as a function of the number of units of area (equivalent
to units of effort) is given by the following:
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TABLE 1. Estimated parameters of species–area relation-
ships generated under the sampling model using expected
values.

p50 p â b̂

0.10
0.20
0.30
0.40
0.50

0.002
0.004
0.007
0.010
0.014

20.67
20.33
20.12

0.05
0.19

0.98
0.97
0.95
0.93
0.90

0.60
0.70
0.80
0.90
0.91

0.018
0.024
0.032
0.045
0.047

0.33
0.47
0.62
0.81
0.83

0.87
0.83
0.79
0.71
0.70

0.92
0.93
0.94
0.95
0.96

0.049
0.052
0.055
0.058
0.062

0.85
0.89
0.92
0.95
0.98

0.69
0.68
0.66
0.65
0.63

0.97
0.98
0.99
0.995
0.999

0.068
0.075
0.088
0.100
0.129

1.03
1.09
1.18
1.25
1.38

0.61
0.58
0.53
0.49
0.41

Notes: Detection probability is homogeneous among spe-
cies. The model fitted is Y 5 bX 1 a, where Y 5 log10(species
richness), and X 5 log10(number of units of effort). In the
column heads, p50 is species detection probability at the route
level (50 units of area); p is species detection probability at
the level of one unit of area; is the estimate of the interceptâ
parameter of the linear model; and is the estimate of theb̂
slope parameter of the linear model.

TABLE 2. Estimated parameters of species–area relation-
ships generated under the sampling model using expected
values.

Route p̂ p̂50 â b̂

150
51
34
17
11
07

0.1918
0.1487
0.1990
0.1992
0.1587
0.1621

.0.99

.0.99

.0.99

.0.99

.0.99

.0.99

1.57
1.45
1.48
1.58
1.48
1.49

0.29
0.37
0.35
0.28
0.35
0.34

Notes: Detection probability is estimated from six Mary-
land BBS routes using model M(0) in Program CAPTURE.
The model fitted is Y 5 bX 1 a, where Y 5 log10(species
richness), and X 5 log10(number of units of effort). Column
heads are as defined in Table 1, except that p̂50 and p̂ are
estimates.

Number
of units
of area Proportion of species detected

1 p
2 2p 1 p(1 2 p) 5 1 2 (1 2 p)
3 3p 1 p(1 2 p) 1 p(1 2 p)(1 2 p) 5 1 2 (1 2 p)
_
k k1 2 (1 2 p) .

If N is the total number of species present in the total
area sampled, then the expected number of species de-
tected in k units of sampling effort (denoted as Sk) is
given by:

kE(S ) 5 N(1 2 (1 2 p) ).k (3)

We generated species–area curves based on k 5 50
sampling units, for consistency with the sampling de-
sign of the BBS. The total number of species (N) was
arbitrarily set to 100. If p is the detection probability
at the sampling unit level, then the detection probability
for the total area sampled (i.e., for k sampling units)
is given by

kp 5 1 2 (1 2 p) .k (4)

We used Eq. 3 to generate expected values of observed
species richness, E(Sk), for different numbers of sam-
pling units. Expected species richness was then mod-
eled as a linear function of the number of sampling
units, k (PROC GLM, SAS; SAS Institute 1988), using
the log10–log10 transformation.

Model-based curves generated using arbitrary p.—
We first constructed curves corresponding to arbitrary
values of detection probability selected between two
extremes: 0.1 and 0.999 (p50 5 0.1 to 0.999; associated
values of p range from 0.002 to 0.129). Here, p50 is the
detection probability at the route level, which includes
50 stops (50 units of area); p is the detection probability
at the stop level (i.e., the unit of area, or sampling unit).
The higher the detection probability, the flatter the spe-
cies–area curve, and the higher the intercept (Table 1).
This reflects the positive relationship between detection
probability and the proportion of species in the com-
munity collected in the first samples (i.e., in smaller
total areas formed by a considering a few contiguous
sampling units). Most estimates of slope parameters
fall out of the range of values listed by Connor and
McCoy (1979; i.e., reasonable values for non-nested
SARs: 0.20–0.40). Relatively high (yet reasonable) de-
tection probabilities (i.e., p . 0.088; p50 . 0.99) are
needed in order to generate values in this general range
(Table 1).

Model-based curves generated using estimated p.—
We then selected six BBS routes in Maryland where
the total number of species observed was among the
highest values. We estimated detection probability un-
der model M(0). The detection probabilities at the stop
level (p) fall between 0.15 and 0.20 for the six routes

(Table 2). These values lead to a detection probability
approaching 1.00 at the route level (p50) . Estimates of
slope parameters of the model-based species–area
curves generated with these values of detection prob-
ability under the sampling model (Table 2) fall within
the range of reasonable values for non-nested SARs
(e.g., see Connor and McCoy 1979).

Heterogeneous detection probability among species

For modeling heterogeneous detection probabilities,
we followed the general approach of Carothers (1973)
and considered two groups of species in each com-
munity (see Estimation of detection probability and
species richness). If N is the total number of species
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TABLE 3. Estimated parameters of species–area relation-
ships generated under the sampling model.

p̄50 pl ph g â b̂

A) CV(p) 5 0.5
0.49
0.60
0.72
0.81
0.99
0.995

0.012
0.005
0.012
0.001
0.075
0.096

0.013
0.029
0.044
0.318
0.226
0.257

0.9
0.3
0.4
0.2
0.5
0.8

0.13
0.44
0.62
1.66
1.42
0.92

0.91
0.82
0.76
0.17
0.37
0.47

B) CV(p) 5 1.0
0.52
0.59
0.69
0.80
0.99
0.995

0.001
0.016
0.016
0.022
0.078
0.094

0.019
0.009
0.120
0.266
0.953
0.689

0.5
0.9
0.7
0.6
0.6
0.7

0.07
0.48
0.84
1.26
1.63
1.55

0.87
0.78
0.61
0.39
0.22
0.29

C) CV(p) 5 1.5
0.52
0.59
0.73
0.79
0.99†

0.010
0.016
0.024
0.001
0.086

0.160
0.177
0.264
0.202
0.947

0.8
0.9
0.9
0.7
0.9

0.76
0.61
0.78
1.05
1.34

0.58
0.70
0.65
0.31
0.42

Notes: Detection probability is heterogeneous among spe-
cies. The model fitted is Y 5 bX 1 a, where Y 5 log10(species
richness), and X 5 log10(number of units of effort). Column
heads are defined as follows: p̂50 is mean species detection
probability at the route level (50 units of area); pl is detection
probability for the low-p group at the level of one unit of
area; ph is detection probability for the high-p group at the
level of one unit of area; g is the proportion of species in the
low-p group; and are estimates of the intercept and slopeâ b̂
parameter, respectively, of the linear model.

† We could not find combinations of parameters satisfying
Eq. 2 and leading to higher values of p̄50.

TABLE 4. Estimated parameters of species–area relation-
ships generated under the sampling model.

Route p̂l p̂h p̄50 ĝ (p)CV̂ â b̂

150
51
34
17
11
07

0.0677
0.0782
0.0909
0.0652
0.0594
0.0623

0.3880
0.4222
0.4585
0.4515
0.4045
0.3292

0.99
0.99
0.99
0.99
0.99
0.99

0.62
0.80
0.81
0.66
0.72
0.64

0.82
0.93
0.90
0.93
0.99
0.81

1.56
1.47
1.52
1.53
1.44
1.51

0.27
0.33
0.30
0.28
0.34
0.30

Notes: Detection probability is estimated from BBS data
(six Maryland routes) using Pledger’s estimators (Pledger
2000). The model fitted is Y 5 bX 1 a, where Y 5
log10(species richness), and X 5 log10(number of units of ef-
fort). See Table 3 for definition of column heads; hat symbols
denote estimates, and the bar symbol (p̄50) denotes a mean
value. (p) is an estimate of the coefficient of variation ofCV̂

species-level detection probability.

present in the area of interest, then the expected number
of species detected in a sample of k units of area is
given by

l k h kE(S ) 5 N[g(1 2 (1 2 p ) ) 1 (1 2 g)(1 2 (1 2 p ) )].k

(5)
Model-based curves generated using arbitrary p̄.—

We first generated three sets of curves based on three
arbitrary values of the coefficient of variation of de-
tection probability (CV(p) 5 0.5, 1.0, and 1.5; Table
3). For each value of the CV(p), we computed sets of
two detection probabilities (a low p and a high p), and
the proportion of species in the low-p group (g) to
satisfy Eq. 2. For two values of the CV(p) (0.5 and 1.0),
when the mean detection probability at the route level
(p̄50) is far lower than 1, the mean detection probability
influences the shape of the species–area relationship in
the same way as for homogeneous detection probability
(i.e., the higher the detection probability, the flatter the
curve, and the higher the intercept; Table 3). However,
this association is not observed for some combinations
of g, pl, and ph corresponding to very high mean de-
tection probability at the route level, or to CV(p) 5 1.5
(Table 3). As with the homogeneous detection proba-
bility, most estimates of slope parameters are high rel-
ative to the values listed by Connor and McCoy (1979)

for non-nested SARs. However, curves generated on
the basis of a large difference between detection prob-
abilities of the low-p and the high-p groups lead to
estimates of slope parameters falling within the range
of reasonable values (i.e., 0.20–0.40).

Model-based curves generated using estimated p̄.—
We then used the same six BBS routes in Maryland as
for the homogeneous detection probability examples,
and we estimated detection probability with Pledger’s
(2000) model assuming two groups of species.
Pledger’s approach led to a large difference between
the estimates of detection probability for the low-p and
the high-p groups at the stop level (i.e., p̂l , 0.10 and
p̂h . 0.35; Table 4). In addition, the estimated pro-
portion of species in the low-p group ( ) is higher thanĝ
0.60 in all cases (Table 4). The estimated CV(p) were
slightly less than one, so our selected CV(p) in Table
3 bracketed our BBS estimates. The mean estimated
detection probability at the route level again approach-
es 1.00. As with the homogeneous detection probabil-
ity, estimates of the slope parameters of curves gen-
erated under the sampling model with heterogeneous
detection probability fall within the range of values
reported for various non-nested SARs (Connor and Mc-
Coy 1979).

Conclusion from modeling exercises

The modeling exercises reported in this section sup-
port the contention that sampling variation associated
with incomplete detection of species can produce SARs
with positive slopes. Detection probabilities estimated
from BBS data can produce SARs that have the general
appearance of those reported in the literature. We con-
clude that sampling variation associated with nonde-
tection of species and with increased sampling effort
on larger areas is probably responsible for at least some
of the shape characteristics of empirical SARs based
on count data.

EMPIRICAL SPECIES–AREA RELATIONSHIPS BASED

ON COUNTS (Sk) AND ESTIMATES (N̂k)

To construct nested SARs using the BBS data, we
used both species counts and species richness estimates
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for groups of 4, 6, 8, 10, . . . ., 50 stops successively,
starting with the four central stops, and successively
adding one stop to each end of this central group. Sam-
pling is conducted in a standardized manner at each
stop, and equal effort is devoted to each of these units
of area. This construction corresponds to the strict def-
inition of a nested SAR: Each successively smaller area
comes from within the previous larger area (Leitner
and Rosenzweig 1997). In every area specified that way
(even the smallest: a group of four units of area, or
stops), sampling is replicated (a minimum number of
four stops). Total effort increases with area (i.e., the
number of replicates increases as more units of area
are lumped together). However, for every area formed
by lumping units of area together, we estimated species
detection probability (accounting for the fact that more
replicates corresponds to greater effort and, likely,
higher detection probability) and corrected observed
species richness by this specific detection probability.
Estimates of richness obtained for areas of different
size are thus independent of the total sampling effort
devoted to each of these areas.

Estimation was based on model M(h), which is the
model selected in the highest proportion of cases with
BBS data (Boulinier et al. 1998). We used data from
the 51 routes run in Maryland in 1997. We used the
jackknife estimator of Burnham and Overton (1978,
1979) to estimate species richness. For each route, we
modeled both the count data (Sk 5 S4, S6, S8, . . . S50)
and estimated species richness (N̂k 5 N̂4, N̂6, N̂8, . . .
N̂50) as a linear function of the number of stops, k (using
the log10 transformation for both the dependent and the
independent variables).

When modeling the species richness estimates, we
could not justify the use of standard linear regression
and had to think of a more general approach. Specif-
ically, when we recognize that our N̂k are estimates,
rather than known values, we must consider their sam-
pling variance–covariance structure and incorporate
this into our modeling and estimation. Given that our
estimates, N̂k, are reasonable and have small bias, then
we can write the SAR estimation equation as:

ˆlog N 5 log a 1 b log k 1 «10 k 10 10 k (6)

where k is the number of units of area associated with
N̂k, and «k is a random error term with expectation E(«)
5 0 (the estimators, N̂k, should have small bias), and
covariance matrix E(««9) 5 S. Because the route seg-
ments are nested, with data from smaller segments also
used to estimate richness on larger segments, we expect
a covariance between any pair of richness estimates,
N̂i and N̂j. In order to estimate this sampling covariance,
we follow the approach of Otis et al. (1978:69–70) in
their analysis of nested subgrids for density estimation
from capture–recapture data. We assume that the sam-
pling correlation between N̂i and N̂j is equal to the pro-
portion of overlapping area between the two route seg-

ments (computed as i/j where i , j) and then estimate
cov(N̂i, N̂j) as

ˆ ˆ ˆ ˆ ˆ ˆ̂ ̂cov(N , N ) 5 SE(N ) 3 SE(N ) 3 corr(N , N )i j i j i j

ˆ ˆ̂ ̂5 SE(N ) 3 SE(N ) 3 (i / j) (7)i j

for i , j. The (N̂k) come directly from our jackknifeŜE

estimation algorithm (Burnham and Overton 1978,
1979). Generalized linear least squares is then used
with the log10-transformed data in order to directly es-
timate model parameters a and b under the model of
Eq. 6.

We estimated the slope parameters of species–area
relationships based on counts on the one hand, and on
estimates on the other hand. In 45 routes out of 51, the
slope of the relationship based on counts was steeper
than that of the curve based on estimates (Table 5). A
common relationship was fit to the data from all routes
pooled. The estimated slope parameter of the relation-
ship based on counts was higher than that of the re-
lationship based on estimates of species richness (Fig.
1). We also used the difference between estimates and
counts (which estimates the species not detected) and
addressed the relationship between that quantity and
the number of sampling units (model built: Y 5 bX 1
a, where Y 5 log10(N̂k 2 Sk) and X 5 log10(k)). Our
prediction was that this difference should decrease as
the number of sampling units increases, and the results
were consistent with this prediction (F 1, 1222 5 329.26,
P , 0.0001, 5 0.267, 5 0.009; 5 20.116,̂â SE b̂

5 0.006). The results of our empirical analyses fol-ŜE

lowed our prediction that SARs based on raw species
counts would reflect both sampling artifact and true
ecological explanations and would thus be steeper than
SARs that were based on estimates (counts corrected
for effort) that would thus reflect only ecological ex-
planations.

INFLUENCE OF HABITAT HETEROGENEITY ON THE

SLOPE OF SARS

To address the question of the influence of habitat
heterogeneity on the slope of SARs, we used GIS to
specify a circular buffer of radius 0.40 km centered on
each stop of nine Maryland BBS routes run in 1997
for which individual stops have been digitized. We used
the coverage developed by Jones et al. (1997) from
data collected by satellite to assess habitat diversity.
In this coverage, habitat is classified into 15 categories
(e.g., mixed, deciduous, or conifer forest, row crop,
woody wetlands, high- and low-intensity developed,
etc.). We characterized habitat diversity in buffers cen-
tered on groups of stops. As for species richness, we
started with the four central stops, then progressively
added two circular buffers at each end of this group,
and assessed habitat diversity in the total area corre-
sponding to the juxtaposition of buffers.

We assessed habitat diversity in two ways. We first
used Shannon’s Diversity Index (McGarigal and Marks
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TABLE 5. Estimates of slope parameters of species–area
curves constructed from count data ( c) and from estimatesb̂
( e) of species richness (Model M(h)) corresponding to 51b̂
BBS routes in Maryland.

Route

Count data

cb̂ ( c)SE b̂̂ Estimates

eb̂ ( e)SE b̂̂ c2 eb̂ b̂

1
3
4
5
6
7

0.55
0.40
0.57
0.27
0.24
0.36

0.03
0.01
0.02
0.01
0.01
0.01

0.39
0.23
0.55
0.16
0.09
0.27

0.12
0.08
0.08
0.04
0.06
0.09

0.16
0.17
0.02
0.11
0.15
0.09

8
9

11
12
13
14

0.28
0.22
0.45
0.43
0.50
0.33

0.01
0.01
0.02
0.02
0.02
0.01

0.12
0.09
0.47
0.45
0.46
0.28

0.05
0.05
0.12
0.07
0.17
0.08

0.16
0.13

20.02
20.02

0.04
0.05

15
16
17
18
19
20

0.45
0.21
0.31
0.55
0.37
0.45

0.01
0.01
0.01
0.03
0.02
0.01

0.62
0.02
0.21
0.66
0.37
0.43

0.14
0.09
0.09
0.10
0.12
0.08

20.17
0.19
0.10

20.11
0.00
0.02

22
24
27
28
29

0.46
0.30
0.42
0.30
0.35

0.02
0.03
0.01
0.02
0.01

0.49
0.11
0.34

20.05
0.20

0.10
0.08
0.06
0.12
0.11

20.03
0.19
0.08
0.35
0.15

30
31
32
33
34

0.46
0.25
0.40
0.35
0.35

0.01
0.02
0.01
0.01
0.02

0.26
0.02
0.33
0.17
0.14

0.12
0.06
0.14
0.07
0.06

0.20
0.23
0.07
0.18
0.21

36
37
38
39
40

0.37
0.29
0.43
0.33
0.28

0.01
0.02
0.02
0.01
0.01

0.20
0.25
0.31
0.26
0.32

0.08
0.08
0.07
0.12
0.08

0.17
0.04
0.12
0.07

20.04
44
45
46
47
48
51

0.38
0.36
0.44
0.32
0.34
0.42

0.01
0.02
0.01
0.01
0.02
0.02

0.29
0.25
0.34
0.20
0.09
0.27

0.10
0.09
0.11
0.09
0.09
0.10

0.09
0.11
0.10
0.12
0.25
0.15

52
53
54
55

102
110

0.60
0.48
0.31
0.46
0.44
0.33

0.02
0.02
0.02
0.03
0.01
0.01

0.39
0.28
0.16
0.17
0.27
0.18

0.15
0.11
0.06
0.10
0.09
0.01

0.21
0.20
0.15
0.29
0.17
0.15

112
121
123
125
126
150

0.29
0.39
0.21
0.30
0.28
0.30

0.01
0.01
0.01
0.01
0.03
0.01

0.28
0.29

20.01
0.18
0.07
0.04

0.11
0.09
0.10
0.06
0.07
0.07

0.01
0.10
0.22
0.12
0.21
0.26

Notes: The model fitted is Y 5 bX 1 a, where Y 5 log10

(species richness), and X 5 log10 (number of stops). is theSÊ

estimated standard error.

1994), which is based on the proportion of patches of
each category. Here a patch corresponds to a pixel in
the digital map. That index increases when habitat di-
versity increases. It has no upper limit, but approaches
zero when there is no diversity. We also used the num-
ber of land types in the area of interest (i.e., the buffers
centered on the stops in a group of k stops) as an al-
ternative diversity metric.

We estimated the slope of relationships between one
of the measures of habitat diversity (i.e., Shannon’s
Diversity Index or the number of land types) and area
(i.e., the number of stops taken into account). To test
the hypothesis of an influence of habitat diversity on
the rate of increase of species richness with area, we
modeled the slope of species–area relationships as a
function of the slope of habitat–area relationships
(PROC GLM, SAS 1988). By using this approach, it
is the actual rate of increase in diversity obtained by
adding units of area that may include different habitat
types (not previously encountered) that is assessed. An
alternative approach would rely on assessment of the
overall habitat diversity at the scale of the larger area
considered, and comparison among slopes of SARs (for
bird communities) corresponding to different overall
levels of habitat diversity. However, the same overall
level of diversity may result from very different spatial
arrangements of the patches of different types: diversity
may be high only at one end of the total area consid-
ered. We believe that the slope of the habitat–area re-
lationship is more relevant for the purpose of testing
the hypothesis of a relationship between changes in
habitat diversity and the slope of species–area rela-
tionship in bird communities. Using this approach to
quantify habitat diversity, if bird species actually spe-
cialize on a specific set of habitat types, we might ex-
pect a positive relationship between the rate of increase
in habitat diversity on the one hand, and in the number
of bird species on the other hand, with area.

We wanted to restrict inference to ecological hy-
potheses, so we used estimates of species richness (not
observed richness) computed using the jackknife es-
timator of Burnham and Overton (1979; see Estimation
of detection probability and species richness using avi-
an data). We estimated the slope of species–area re-
lationships for the nine routes whose stops have been
digitized.

Under the hypothesis of a higher rate of increase in
species richness with area in cases in which habitat
diversity increased more quickly with area, we might
expect a positive relationship between the slope of the
species–area relationship and that of the habitat–area
relationship. We did not find evidence of an influence
of the slope of the habitat–area relationship based on
Shannon’s Index on the slope of species–area relation-
ships (F1, 7 5 0.13, P 5 0.73, R2 5 0.02). Results were
similar using the slope of the habitat–area relationship
based on the number of land types (F1, 7 5 0.25, P 5
0.63, R2 5 0.03).

DISCUSSION

Species–area relationships have long been present in
the literature on animal and plant communities (Preston
1960, Kilburn 1966, MacArthur and Wilson 1967), and
they still form the basis of current theoretical and em-
pirical studies (Caswell and Cohen 1993, Haydon et
al. 1993). Here we consider a specific kind of sampling
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FIG 1. Species–area relationships based on
count data and estimates of species richness
[model M(h)] from 51 BBS routes in Maryland,
USA. Expected values are based on a linear
model. The model fitted is Y 5 bX 1 a, where
Y 5 log10(species richness) and X 5
log10(number of units of area).

artifact (some species present in sampled areas are
missed during sampling efforts) and investigate the in-
fluence of this artifact on species–area analyses.

Our results indicate that accounting for species de-
tection probability influences the slope of species–area
relationships in a predictable manner: the slope of
SARs based on counts is steeper than that of SARs
based on estimates of species richness (in a log10–log10

space). This is exactly what would be predicted if both
sampling and ecological processes contribute to SARs
based on count data. In addition, species–area curves
generated under sampling models can look realistic:
their slope parameters can fall within the range of es-
timates reported in the large survey of Connor and
McCoy (1979). These authors, however, addressed
non-nested SARs. Kobayashi (1974) suggested that the
slopes of nested SARs (continuous sampling; Kobay-
ashi 1974, 1975) should be smaller than those of non-
nested SARs (discrete sampling; Kobayashi 1974).
However, we are not aware of any published work re-
porting ranges of values expected for nested SARs.
Many of the values that we obtained using arbitrary
detection probabilities (assuming either homogeneity
or heterogeneity in detection probability) led to very
large slope parameters for model-based SARs. As ex-
pected, the smaller the detection probability, the larger
the slope parameter. However, the slopes of model-
based SARs generated using values estimated from
BBS data were closer to values reported in the litera-
ture.

Under our sampling models, the increase in species
counts with space depends on sampling effort exclu-
sively: these curves do not reflect any potential eco-
logical component underlying SARs. The sampling
process underlying these model-based curves is likely
to contribute to the form of relationships based on spe-
cies counts. This process will not be reflected in re-
lationships based on estimates of richness, because es-

timates can be viewed as counts ‘‘corrected for effort’’
and are independent of total effort devoted to sampling
(and thus of the size of the area sampled).

Tests of hypotheses concerning ecological processes
underlying SARs are possible on condition that one has
access to the increase in richness with space that is
exclusively explained by these processes. Estimates of
richness obtained using capture–recapture models lead
to species–area curves that do not include the sampling
component of variation present in curves based on
count data. This permitted us to test one of the hy-
potheses proposed to explain variation in the slope of
SARs: the influence of habitat diversity. We addressed
that question by investigating the relationship between
the rate of increase in habitat diversity with area and
the rate of increase in species richness with area. Our
results do not provide evidence that the slope of the
habitat–area relationship influences the slope of SARs.
Of course it is possible that these results reflect use of
categories of habitat or of an index of habitat diversity
that do not contain the features structuring bird com-
munities and determining local species richness. Even
if the selected habitat components are indeed relevant
to the structuring of bird communities, it is possible
that the mobility of birds does not permit the discrim-
ination of structure at this geographic scale with this
type of sampling. Lastly, higher habitat diversity im-
plies less area per habitat: the hypothesis of a positive
relationship between the slope of SARs and the degree
of habitat diversity should probably be assessed not
only in the light of the hypothesis of habitat speciali-
zation, but also of area requirements. Further work is
needed to investigate that question more thoroughly. If
data are available, the approach presented here can be
used to explore the relationship between the rate of
increase in species richness in communities defined
ecologically (e.g., groups of species such as forest spe-
cies) with space and the rate of increase in habitat
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diversity with space using highly stratified data on hab-
itat (e.g., different types of forests, characteristics of
trees, etc.).

Early work on the contribution of ecology and sam-
pling processes to the form of SARs noted the potential
importance of sampling artifacts (Williams 1943, Pres-
ton 1960). This motivated several attempts to address
the increase in richness not linked to collection of larg-
er samples (i.e., to increased sampling effort; reviewed
by Rosenzweig 1995). Rarefaction (Sanders 1968, Sim-
berloff 1972, Heck et al. 1975) has been recommended
as a means of comparing species richness of two sam-
pled communities. The approach is based on the as-
sumption of similar species abundance distributions for
the communities to be compared. The proportion of
total community individuals in each species is esti-
mated using the larger of the two community samples,
and the expected number of species detected in the
smaller sample of n individuals is then computed from
these estimates. Sanders (1968) recommended rarefac-
tion in comparisons involving similar sampling meth-
ods, similar taxa, and similar habitats (also see Sim-
berloff 1979). These restrictions seem to be related to
the assumptions of similar species abundance distri-
butions and similar individual-level detection proba-
bilities for members of any species in the two different
locations or communities. Our approach of using prob-
abilistic estimators for species detection probability
and species richness does not require these restrictive
assumptions and does not require a close correspon-
dence between the number of individuals in a species
and its detection probability (although such a relation-
ship is likely to exist; R. Alpizar-Jara, J. D. Nichols,
J. E. Hines, J. R. Sauer, K. P. Pollock, and C. Rosen-
berg, unpublished manuscript). Thus far, debates con-
cerning the mathematics of species–area curves have
focused on the form of the relationship, hence, on the
equation that should be used (Connor and McCoy
1979), and on the underlying species abundance dis-
tribution (Connor and McCoy 1979, Coleman 1981,
McGuinness 1984). They have not focused on the in-
fluence of the sampling process itself on the shape of
curves.

Our results indicate that the rate of increase in spe-
cies richness over space (using the log10–log10 trans-
formation) can be overestimated when using count
data. The contribution of sampling artifacts to the in-
crease in species richness based on empirical data is
likely to vary according to the kind of organisms stud-
ied and the design of the study. Lists of species from
long-term survey programs with repeated collection of
data in each location, for example, may approximate
true species richness well and thus mitigate the con-
tribution of increased sampling effort with area to the
increase in richness over space. However, it is not al-
ways possible to take advantage of cumulative field
effort over time to obtain a more accurate estimate of
richness. The objectives in conservation biology might

sometimes be incompatible with the use of data col-
lected repeatedly over long periods of time. Assessment
of the contemporary state of ecological systems may
require data collected within short periods of time. In
addition, data from long-term survey programs can be
used to explore variation of species richness with space
on condition that one assumes that local extinction and
colonization events in the area of interest are negligible
during the period of time over which the data are col-
lected. If long-term data are not used, and in situations
in which not all of the species are detected during sam-
pling efforts, count data are likely to lead to under-
estimation of species richness. Approaches to estima-
tion of species richness should be used for further in-
vestigations of factors influencing the characteristics
of SARs. Estimates can certainly also be used to ad-
dress the form of the relationship between species rich-
ness and area (e.g., Connor and McCoy 1979). This is
beyond the scope of this paper.

Although the modeling and estimation presented
here have concerned nested SARs, we believe that
probabilistic estimates of species richness should be
used to investigate non-nested SARs as well. There is
large potential for differing detection probabilities in
studies of non-nested SARs for a variety of reasons,
including different observers and different habitats as
well as differing amounts of sampling effort. Because
estimates of species richness permit different detection
probabilities for different locations, this approach
should also be used to address non-nested SARs. Ob-
taining reliable estimates of richness that do not reflect
sampling processes is a step that should precede in-
vestigations of the relevance of the various mathe-
matical functions that could be used to describe the
shape of SARs. Hypotheses about ecological processes
assumed to influence the shape of SARs (e.g., reviewed
in Connor and McCoy 1979) should also be tested using
approaches that disentange true variation in species
richness over space and variation resulting from sam-
pling processes.

The sampling model developed here describes the
increase in species richness linked to the increase in
sampling effort exclusively: this does not involve any
ecological process. In their important paper on the sta-
tistics and biology of the SAR, Connor and McCoy
(1979) stated that the idea that the species–area rela-
tionship is purely a sampling phenomenon should be
considered as a null hypothesis; all hypotheses invok-
ing biological processes to explain the species–area
relationship would be considered alternatives. Mc-
Guinness (1984) noted that ‘‘They did not, however,
amplify this, nor did they describe analytical tools that
would make a statistical test of this hypothesis possi-
ble.’’ The sampling model presented here differs from
that described by Connor and McCoy (1979): the phe-
nomenon that they invoked corresponds to passive sam-
pling from the species pool (larger areas are supposed
to receive larger samples and, consequently, more spe-
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cies). However, they have in common the underlying
idea of assessing the rate of increase in species richness
with space under the assumption that no (or minimal)
ecological process is involved. Under this view, the
sampling model presented here can be considered as a
null model for use in studies based on count data, which
is the case in the vast majority of previous studies.
However, for future work we recommend use of esti-
mation methods of species richness integrating species
detection probability.
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