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Abstract. Estimating species richness (i.e., the actual number of species present in a
given area) is a basic objective of many field studies carried out in community ecology
and is also of crucial concern when dealing with the conservation and management of
biodiversity. In most studies, the total number of species recorded in an area at a given
time is taken as a measure of species richness. Here we use a capture–recapture approach
to species richness estimation with North American Breeding Bird Survey (BBS) data in
order to estimate species detectability and thus gain insight about its importance. In par-
ticular, competing models making different assumptions about species detectability are
available. We carried out analyses on all survey routes of four states, Arizona, Maryland,
North Dakota, and Wisconsin, in two years, 1970 and 1990. These states were chosen to
provide contrasting habitats, bird species composition, and survey quality. We investigated
the effect of state, year, and observer ability on the proportions of different models selected,
and on estimates of detectability and species richness. Our results indicate that model Mh,
which assumes heterogeneous detection probability among species, is frequently appropriate
for estimating species richness from BBS data. Species detectability varied among states
and was higher for the more skilled observers. These results emphasize the need to take
into account potential heterogeneities in detectability among species in studies of factors
affecting species richness.

Key words: capture–recapture; community ecology; detectability; heterogeneity; model selection;
North American Breeding Bird Survey; species richness.

INTRODUCTION

Estimating species richness (i.e., the actual number
of species present in a given area) is the basic step of
many field studies carried out in community ecology
and is also of crucial concern when dealing with the
conservation and management of biodiversity (May
1988, Colwell and Coddington 1994). In most studies,
count data (e.g., the total number of species recorded
in an area at a given time) are used as an estimate of
species richness (e.g., in recent bird community stud-
ies: Enoksson et al. 1995, Knick and Rotenberry 1995,
McIntyre 1995, Schiek et al. 1995, Riffell et al. 1996),
but see Karr et al. (1990), Dawson et al. (1995), and
Thiollay (1995) for alternatives. Such studies investi-
gate spatial or temporal trends in species richness or
the effects of different environmental factors on the
local occurrence of species. However to test any hy-
potheses about changes in species richness using data
from counts of species, it must be assumed either that
all species are detected (which is not true in most bi-
ological samples), or that detectability of the different
species is the same or at least does not differ among
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groups to be compared. The detectability of a species
can be defined as the probability of detecting at least
one individual of a given species in a particular sam-
pling effort, given that individuals of that species are
present in the area of interest during the sampling ses-
sion.

Unfortunately, the assumption of equal detectability
among species is generally false and unequal species
detection probabilities can invalidate the results of hy-
pothesis tests. A large body of methods exists to es-
timate species richness taking into account species that
are not actually recorded but whose presence can be
inferred from the pattern of observed species occur-
rence (Burnham and Overton 1979, Heltshe and For-
rester 1983, Smith and van Belle 1984, Chao and Lee
1990, Palmer 1990, Baltanas 1992, Mingoti and Mee-
den 1992, Bunge and Fitzpatrick 1993, Hodkinson and
Hodkinson 1993, Colwell and Coddington 1994, Solow
1994). In particular, statistical methods derived from
the capture–recapture approaches used in population
biology provide useful tools for estimating species
richness taking into account variation in species de-
tectability (Burnham and Overton 1979). These meth-
ods nevertheless are seldom used in biodiversity stud-
ies.

These methods are based on a simple analogy be-
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tween surveys of species occurrence and capture–re-
capture studies of closed animal populations used to
estimate population size (Otis et al. 1978). They permit
estimation of species richness when the sampling de-
sign includes at least two identified units of sampling
(e.g., Burnham and Overton 1979). Records of the lists
of species present during sampling sessions carried out
at different times, different locations, or by different
investigators may be used to estimate the species rich-
ness of a given community (Nichols and Conroy 1996).
At the community level, not only will differences in
the behavior of the individuals of each species intro-
duce a potential heterogeneity in detection probability,
but also the fact that the number of individuals to be
potentially detected will vary among species (Nichols
et al., unpublished manuscript). Moreover, variation in
species detectability may exist among samples within
a sampling session, and the detectability of the different
species could be affected by changes in the behavior
of the observer associated with species detection in
previous samples. In the framework of the series of
capture–recapture models for closed populations de-
scribed in Otis et al. (1978), such different patterns of
variation of species detectability may be investigated,
and estimates of species richness that incorporate the
patterns are available.

In this paper we demonstrate the usefulness of cap-
ture–recapture models for closed populations to esti-
mate species richness using information from the North
American Breeding Bird Survey (BBS). The BBS rep-
resents a primary source of information regarding pop-
ulation and community changes of land birds at a con-
tinental scale (Robbins et al. 1989, Peterjohn and Sauer
1993, Sauer et al. 1996). The BBS has a well defined
sampling scheme (Robbins et el. 1986) that permits
estimates of local species richness using a capture–
recapture approach. In particular, each sample unit (sur-
vey route) is composed of a series of counts, each of
which can be considered as a capture occasion. The
BBS is used in a variety of ecological studies, and
species richness is often presented as the unadjusted
count of species on survey routes (e.g., Robbins et al.
1986). Because these counts are typically smaller than
the number of species along routes, they are inappro-
priate for hypothesis tests about changes in species
richness over time and space. Using selected years and
regions, we documented the extent of the bias by es-
timating average species detection probabilities. Be-
cause of the potential importance of observer effects
(Sauer et al. 1994), we evaluated whether probability
of detecting species differed as a function of perceived
observer ability in the survey.

We also evaluated some of the practical aspects of
actually using closed-population capture–recapture es-
timation of species richness on the BBS data. A priori,
we felt that the jackknife estimator that assumed het-
erogeneity in detection probabilities among species
(Burnham and Overton 1979) was well suited for spe-

cies richness estimation, hence we determined how of-
ten the corresponding model was selected as most ap-
propriate among the possible models. Finally, we in-
vestigated the potential use of the limiting form of the
jackknife estimator, which uses species abundance dis-
tributions and can be used for almost any count-based
sample in which numbers of individuals of each species
are recorded.

These analyses permitted us to propose recommen-
dations for the use of capture–recapture models for
closed populations to estimate species richness. Al-
though our analyses were largely exploratory in nature,
we made several a priori predictions: (1) a high prev-
alence of heterogeneity in detection probability exists
among bird species; (2) while detection probability
should change with observer ability in the BBS (e.g.,
Sauer et al. 1994), estimated species richness values
should not; (3) species richness and species detect-
ability should vary among states; (4) jackknife esti-
mates based on observed abundance distributions and
patterns of observations among stops should be highly
correlated; and, (5) that particular patterns of variation
of the detection probability should occur in the data,
but could be accommodated in capture–recapture mod-
els that make assumptions related to behavior, time,
and individual species heterogeneity. Such expected
patterns were based on hypotheses related to sampling.
Specifically, in cases where ‘‘behavioral response’’
models were needed, we predicted that the detection
probabilities for species that had not yet been observed
would be lower than detection probabilities of species
previously observed. This prediction is based on gen-
eral ideas about observers developing a search image
for particular species. In cases where models with tem-
poral variation were selected, we looked for a pattern
of decreasing detection probabilities with time elapsed
since survey route initiation. This prediction is based
on possible reduction in bird vocalization and activity
in later morning hours. Other explanations underlying
the need for models assuming a ‘‘time’’ effect include
habitat heterogeneity producing variation in either de-
tection of individual animals or actual species abun-
dance.

METHODS

Survey methods and data

The BBS provided information on relative abun-
dance of bird species at a landscape scale. The survey
consisted of .4000 roadside routes located on sec-
ondary roads throughout the continental United States
and Canada. Each route was 39.4 km long and surveyed
once each year during the peak of breeding season.
Most routes were surveyed during June. A competent
observer conducted 50 3-min point counts at 0.8-km
intervals on the roadside, recording all birds heard or
seen during these ‘‘stops.’’ The survey was started in
1966 in eastern United States, and it expanded across
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the continental United States and southern Canada by
1968.

Within each survey route, data can be combined dif-
ferently to use various approaches to estimate local
species richness. For example, BBS route data were
generally summarized in five segments of 10 stops
each, and we considered these as five samples from the
area along the route. Species lists for each of the five
groups of 10 stops for each BBS route provided the
raw data used to estimate species richness with the
program CAPTURE (Rexstad and Burnham 1991). The
total number of individuals recorded for each species
over all 50 stops was also used to build species abun-
dance distributions. These data were used to estimate
species richness using program SPECRICH (J. E. Hines
et al., in press), which implements the limiting form
of the jackknife estimator (Burnham and Overton
1979).

We investigated species richness for all routes in four
states, Arizona, Maryland, North Dakota, and Wiscon-
sin, in two years, 1970 and 1990. These states were
chosen to provide contrasting habitats, bird species
composition, and survey quality. Although all states
have a great deal of heterogeneity in habitats, Maryland
is composed primarily of various seral stages of eastern
deciduous forests, Wisconsin of deciduous forest and
prairie habitats, North Dakota of prairies and parklands,
and Arizona of deserts and montane woodlands. The
states also differed in their average number of years of
survey for each route, with Wisconsin (25.5 yr/route),
Maryland (23.3 yr/route), North Dakota (17.5 yr/route),
and Arizona (7.7 yr/route), reflecting regional variation
in availability of qualified observers. An additional
source of heterogeneity in detection probability is time
(Sauer et al. 1994), hence the years 1970 and 1990
were chosen to document possible changes over time
in detection probabilities.

Differences among observers are a major concern in
count-based surveys such as the BBS and can bias es-
timation of both species population change and species
richness (Sauer et al. 1994). In the United States, BBS
coordinators annually screen survey results for overall
quality in the following way. Once routes that did not
follow the prescribed methodology have been elimi-
nated, the total numbers of species and individuals re-
corded are used to subjectively evaluate observer qual-
ity. Surveys by observers with unusually low counts
of individuals or species are flagged to warn analysts
of possible problems and to alert the observer to the
need for additional training. In most published BBS
results (e.g., Robbins et al. 1989), only clearly un-
qualified observers are omitted, as analyses of popu-
lation change explicitly accommodate differences in
counting ability among observers (Link and Sauer
1994). In our analyses, we used these rankings to de-
termine whether the most competent observers had
higher detection probabilities than those with lesser
abilities.

Species richness estimates

Closed population models may be used to estimate
species richness (i.e., the total number of species pres-
ent, either within one taxon or group of species of
interest, or across taxa) within a short time interval
(e.g., within a given breeding season) or within a lim-
ited area in which the ‘‘population’’ of species is de-
fined and not changing (Burnham and Overton 1979,
Nichols and Conroy 1996). Because of this assumption
of closure (the community should not change between
sampling periods or locations), these models would not
be applied to samples from different sampling units
situated far apart (e.g., between years or between points
situated far apart in space) unless it can be assumed
that the probability of a local extinction or colonization
occurring during the time interval, or of a strongly
heterogeneous distribution of species in space at that
spatial scale, is negligible. We thus assumed that each
BBS route sampled a bird community to which the
estimation procedure could be applied.

For the kind of community sampling schemes we
considered primarily, an observer recorded presence or
absence of each species of interest in each of a number
of sampling units within a sampling session. Here, the
sampling units were groups of stops within a survey
route, but they could have been multiple counts done
in the same place within a short period of time. These
sampling units are analogous to the different trapping
periods (e.g., each of the days on which animals are
captured) of the individual capture–recapture applica-
tion.

Eight closed population models seemed potentially
relevant to community ecology estimation under this
kind of sampling scheme, and they differed in their
assumptions about sources of variation in ‘‘detection
probability’’ (analogous to capture probability). The
most simple model, denoted as M0, assumes that de-
tection probability varies neither among species nor
among sampling units (Otis et al. 1978:21–24). Every
species has the same probability of being detected in
every sampling unit. This assumption yields a multi-
nomial model with only two parameters: total number
of species, N, and detection probability, p. The maxi-
mum likelihood (ML) estimator of N under this model
does not exist in a closed form and must be computed
numerically. An estimator of the variance of N is also
available (Otis et al. 1978). The estimator, N̂0, is not
robust to variations in detection probability and is neg-
atively biased when detection probability varies from
one species to another (heterogeneity of detection prob-
ability).

A similar but somewhat less restrictive model, Mt,
permits detection probability to vary among sampling
units but assumes that within each unit all species have
equal detection probabilities (Darroch 1958, Otis et al.
1978:24–28). This model is characterized by K 1 1
parameters (where K denotes the number of sampling
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units; K 5 5 for the BBS example), the total number
of species, N, and the K detection probability param-
eters, pj, where j 5 1, . . . , K. The ML estimator, N̂t,
must again generally be computed numerically. This
estimator, N̂t, also exhibits a substantial negative bias
when heterogeneity of detection probability occurs (see
Otis et al. 1978).

Another somewhat less restrictive model, Mb, per-
mits detection probability to vary by behavioral re-
sponse to capture. This model may be useful in esti-
mating species richness when the capacity for detecting
a species is affected by the fact that the observer has
already recorded it at a previous occasion or in a pre-
viously visited sampling unit. Parameters estimated are
number of species, detection probability on any oc-
casion of species not previously detected, and the prob-
ability of detection on any occasion for species already
detected at least once (Otis et al. 1978:28–32).

The model Mtb assumes detection probability varies
with both time and with behavioral effects. Recapture
probability (denoted as ci) is modeled as a function of
initial capture probability [ci 5 pi

1/u], which permits all
parameters to be identifiable. Parameters estimated are
number of species, initial detection probabilities ( pi),
and u.

The assumption of equal detection probability among
species in models M0, Mt, Mb, and Mtb will probably
greatly restrict their applicability in community ecol-
ogy studies. This assumption is relaxed in model Mh

(Burnham and Overton 1978, 1979, Otis et al. 1978:
33–37), which assumes that each species has a specific
detection probability that is constant for all sampling
units. Conceptually, we think of these species–specific
detection probabilities, pj (where j indexes species), as
a random sample of size N from some probability dis-
tribution F(p). Several frequentist approaches to esti-
mation under model Mh have been proposed (see re-
views in Bunge and Fitzpatrick 1993, Norris and Pol-
lock 1996), and Bayesian approaches are also possible
(Bunge and Fitzpatrick 1993, Solow 1994). For esti-
mation under model Mh, we seriously considered three
frequentist methods: the jackknife estimator of Burn-
ham and Overton (1978, 1979), the coverage estimators
of Lee and Chao (1994), and the new nonparametric
maximum likelihood estimator of Norris and Pollock
(1996). Despite some concerns about its theoretical un-
derpinnings (Bunge and Fitzpatrick 1993, Norris and
Pollock 1996), the jackknife estimator tends to perform
well in simulation studies (Otis et al. 1978, Burnham
and Overton 1979, Pollock and Otto 1983, Norris and
Pollock 1996) and in studies of known communities
(Palmer 1990, 1991). Because of its performance and
because of its availability in the program CAPTURE
(Otis et al. 1978, Rexstad and Burnham 1991) and re-
sultant widespread use, we selected the jackknife es-
timator for use with model Mh in our species richness
estimation work.

The jackknife method of bias reduction (Gray and

Shucany 1972) used by Burnham and Overton (1978,
1979) leads to a series of estimators of the following
form:

K

N̂ 5 c f (1)Ol il i
i51

where N̂l is the richness estimator corresponding to
order 1 of the jackknife procedure, fi is the number of
species detected on exactly i sampling units, cil are
constants generated by the jackknife procedure of order
l, and K is the number of sampling units (Otis et al.
1978). The estimators, corresponding estimators for the
sampling variance, and a procedure for selecting the
most appropriate jackknife estimator and for computing
an interpolated estimator from the series of estimators
of different orders are presented in Burnham and Ov-
erton (1978, 1979). The software CAPTURE imple-
ments these procedures and provides the corresponding
estimates (Rexstad and Burnham 1991).

In model Mth, variation in detection probability is
associated with individual species and with different
sampling units (Otis et al. 1978:38–40). Parameters
estimated are number of species and average detection
probability for each occasion (Chao et al. 1992).

The model Mbh assumes detection probabilities vary
by individual species and by behavioral response to
detection. Parameters of this model include number of
species and two probabilities of detection for each spe-
cies in the community (Otis et al. 1978:40–50). No
specific estimates of these detection probabilities are
available for the estimation methods commonly used
for model Mbh. A newly developed nonparametric max-
imum likelihood estimator of the full Mbh capture–re-
capture model (Norris and Pollock 1995, 1996) does
permit estimation of possible sets of initial detection
probability and detection probability once having been
detected (i.e., estimating support points), and of their
relative occurrence. This estimator is nevertheless not
available in the software CAPTURE.

In the model Mtbh, detection probability can vary with
individual species, with different sampling units and
with a behavioral response to detection (Otis et al.
1978). An estimator has been recently developed for
this model (Lee and Chao 1994), but it makes the ad-
ditional assumption that the relative differences in de-
tection probability among sampling units are known
constants, which is not the case in this study. Moreover,
this estimator is not implemented in the computer soft-
ware we used (CAPTURE, Rexstad and Burnham
1991).

The investigator must decide which, if any, of the
eight described models is appropriate for the data set
considered. Otis et al. (1978) describe goodness-of-fit
tests of specific models to the data and likelihood ratio
tests between specific models and more general alter-
natives. They also describe a model selection procedure
using a discriminant function built with simulated data.
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TABLE 1. Percentage of the Breeding Bird Survey data sets for which the different species richness models were selected
for each state (n 5 number of species). Model Mh was by far the most frequently selected model.

States

Models

M0 Mh Mb Mbh Mt Mth Mtb Mtbh n

Arizona
Maryland
North Dakota
Wisconsin

13.9
0.0
0.0
0.0

33.3
79.1
65.6
64.8

13.9
0.0
3.3
0.8

5.6
12.1

6.6
9.4

0.0
0.0
3.3
0.8

13.9
1.1

11.5
7.0

0.0
0.0
1.6
0.0

19.4
7.7
8.2

17.2

36
91
61

128

Computation of estimates, model test statistics, and
model selection values were all carried out using the
recent update of the computer program CAPTURE
(Rexstad and Burnham 1991), originally developed by
Otis et al. (1978; also see White et al. 1982).

As several samples are used to estimate species rich-
ness for an area of interest, the overall detectability
can be estimated as the total number of species actually
recorded divided by the estimated total number of spe-
cies.

The magnitude of the detection probability and the
sources of variation in this parameter are extremely
important in the CAPTURE models. Bias and precision
of the resulting species richness estimate is directly
related to this probability. Species heterogeneity, vari-
ation among sampling units, and observer behavioral
effect could affect detection probability despite efforts
to eliminate these sources of variation. For example,
even if the investigator expends equal effort on all
sampling units, it may be that species are distributed
very unevenly over units as a result of microhabitat
preferences, gregarious behavior patterns, or any other
factor tending to produce clumped distributions of spe-
cies. Moreover, activities of the birds and their de-
tectability may decrease with the time since the survey
began (surveys of BBS routes begin half an hour before
sunrise; Bystrak 1981). Heterogeneity of detection
probability can result from differences in population
density among species at the time period or the location
of interest and from interspecific differences in the
probability of being heard or observed. We thus sus-
pected that species heterogeneity was going to be the
most common source of variation in detection proba-
bility and that Mh would prove to be the most useful
model for estimating species richness and related pa-
rameters.

Another general sampling scheme sometimes used
by community ecologists does not divide the search
area into spatial sampling units or involve sampling at
different times, but simply involves recording the num-
ber of individuals of each species found within a single
sampling session. In this case a capture–recapture ap-
proach may also be used to estimate species richness.
The data produced by this kind of sampling effort form
a frequency distribution of number of individuals en-
countered per species. This is analogous to the fre-
quency distribution of captures per individual in the
animal population context. Burnham and Overton

(1979:934) pointed out that their model, Mh, can be
made to fit this form of sampling by taking the limiting
values of the coefficients cil as the number of sampling
units K becomes infinite (see Eq. 1). This estimator and
its relevant characteristics have already been discussed
(Burnham and Overton 1979). To investigate its po-
tential use, we computed estimates of species richness
through this limiting form of the jackknife estimator
using the frequency distribution of number of individ-
uals encountered per species for a given route in a given
year, and compared these estimates to those obtained
using the classic jackknife estimator.

Summary of the analyses

The model selected, the significance of the goodness-
of-fit test of the Mh model, estimated average species
detectability under Mh, and estimated species richness
under Mh were computed for each route in each state
during both years. Log-linear models and ANOVAs
were used to test for potential effects of state, year, and
observer ability on overall detection probability and
species richness. Within each state, temporal autocor-
relations of average detectability and species richness
were investigated at the route level. Analyses were per-
formed using SAS (SAS Institute 1990).

RESULTS

Models selected

A total of 317 survey route-years were analyzed. The
largest number of routes per state per year was in Wis-
consin in 1990 (n 5 65 route-years), the smallest in
Arizona in 1970 (n 5 17 route-years). The smallest and
largest total numbers of species recorded on a route
were 11 and 69 species in Arizona, 32 and 84 species
in Maryland, 31 and 85 species in North Dakota, and
34 and 93 species in Wisconsin, respectively.

Globally, the Mh model was selected more often than
any other of the seven alternative models (Table 1).
Overall, model Mh was selected 207 times (65.3% of
survey route-years analyzed). The overall proportion
of goodness-of-fit tests of model Mh (against an om-
nibus alternative to model Mh; Otis et al. 1978) with
P values .0.05 was 63.1%. The proportion of routes
for which the Mh model was selected varied among
states, but not between the two years and not between
the two levels of observer ability (Table 2). No pairwise
interactions between year, state, and level of observer
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TABLE 2. Results of log-linear model analyses testing the
effects of the state, the year, and the level of observer ability
on the proportion of Mh bird-species detectability models
selected.

Source df x2 P

State
Year
Observer ability

3
1
1

11.14
0.56
2.85

0.010
0.455
0.092

State 3 Year
State 3 Observer ability
Year 3 Observer ability

3
3
1

6.34
6.87
2.08

0.096
0.076
0.149

Likelihood ratio 3 2.20 0.532

Note: The tests of the effects of pairwise interactions are
also reported.

TABLE 3. Detailed estimates of the bird-species detection probabilities for non-Mh species richness models selected in
Arizona.

Route
number Year Model

Detection
probability

Sampling unit

1 2 3 4 5

06006

06015†

1970

1970

Mb

Mth

p̂
ĉ

i
ˆ̄p

0.68
0.38
0.36 0.29 0.30 0.18 0.16

06017
06021
06024‡

06028‡

1970
1970
1970

1970

Mth

Mth

Mb

Mb

i
ˆ̄p

i
ˆ̄p
p̂
ĉ
p̂

0.29
0.40
0.27
0.52
0.22

0.42
0.61

0.34
0.58

0.13
0.29

0.13
0.32

06119‡ 1990 Mb

ĉ
p̂
ĉ

0.70
0.07
0.45

Notes: For model Mb, p corresponds to the initial detection probability of a species, and c to the detection probability once
a species has been detected at a previous sampling unit. For model Mth, the i correspond to the average detection probabilitiesp̄
at the different sampling units. No detailed estimates of detection probability are available in software CAPTURE for
previously detected species under model Mbh.

† Pattern of estimated detection probabilities fits the hypothesis of a decrease of detection probability with time of day.
‡ Pattern of estimated detection probabilities fits the hypothesis of a ‘‘behavioral’’ effect corresponding to a higher prob-

abilility of detecting species after their first detection by a given observer.

ability had an effect on the proportion of routes for
which the Mh model was selected (Table 2). For Ari-
zona, Mh models were selected for a relatively small
proportion of the routes (23.5% in 1970 and 40.0% in
1990), but for the three other states Mh was by far the
most frequently selected model (e.g., 74.5% of the
routes in 1970 and 84.1% in 1990 for Maryland).

The second most frequently selected model was Mtbh,
and the only estimator for this model (Lee and Chao
1994) is not incorporated in program CAPTURE and
requires knowledge of relative time (or sampling unit
in our case) effects, which we did not have. Finally
models Mth and Mbh were selected 22 and 29 times (6.9
and 9.1% of all route-years, respectively). Overall,
models including heterogeneity in the detection prob-
abilities among individual species accounted for 94.3%
of the selected models.

For routes on which model Mth was most appropriate,
different hypotheses may explain the particular patterns
of detection probabilities obtained (Tables 3, 4, and 5).
The most likely explanation may be within-route vari-

ation in the detectability of species, which could be
associated with landscape heterogeneity or with het-
erogeneity in the distribution of the species within the
route. A trend in the detectability of the species along
the five sampling segments of each route could suggest
an effect of the time of day on the detectability of the
birds due to a change in their activities. Nevertheless,
for Arizona, North Dakota, and Wisconsin, there was
a decline in the estimates of detectability with time of
day on only three different routes over the 17 Mth and
3 Mt selected models (see Tables 3, 4, and 5 for details
about the corresponding non-Mh selected models). Con-
versely, the patterns of detection probabilities observed
for models Mb and Mtb seemed to fit well with the
prediction of a higher detection probability for species
after its first detection (Tables 3, 4, and 5). Indeed, in
seven of the eight series of estimates available for Mb

and Mtb models selected, the estimated detection prob-
ability of the species increased after initial detection
(Tables 3, 4, and 5).

Species detectabilities

Overall average bird-species detection probabilities
were high but varied among states, from 0.71 for Ar-
izona in 1990 to 0.82 for Maryland in 1970 (Fig. 1).
There was no effect of year, but state and level of
observer ability affected the detection probability (Ta-
ble 6, Fig. 1). No pairwise interactions between these
factors were significant. The overall average detection
probability estimates for the most competent observers
was higher (estimated detectability 5 0.78 6 0.006
[mean 6 1 SE]; n 5 268 route-years with the most
competent observers) than that for observers with less-
er abilities (estimated detectability 5 0.73 6 0.016
[mean 6 1 SE], n 5 48 route-years).
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TABLE 4. Detailed estimates of the bird-species detection probabilities for non-Mh models of species richness selected in
North Dakota.

Route
number Year Model

Detection
probability

Sampling unit

1 2 3 4 5

64012
64022
64020

1970
1970
1970

Mth

Mth

Mt

i
ˆ̄p

i
ˆ̄p
p̂i

0.51
0.33
0.46

0.64
0.35
0.80

0.33
0.46
0.59

0.63
0.22
0.54

0.49
0.31
0.39

64031‡

64032

1970

1970

Mb

Mt

p̂
ĉ
p̂i

0.33
0.55
0.36 0.57 0.36 0.52 0.26

64005‡

64007
64013
64026

1990

1990
1990
1990

Mtb

Mth

Mth

Mth

p̂i

ĉi

i
ˆ̄p

i
ˆ̄p

i
ˆ̄p

0.21
0.00
0.63
0.36
0.43

0.22
0.69
0.67
0.58
0.33

0.13
0.61
0.54
0.40
0.58

0.25
0.71
0.38
0.51
0.30

0.05
0.48
0.44
0.29
0.46

64035‡

64036
64040

1990

1990
1990

Mb

Mth

Mth

p̂
ĉ

i
ˆ̄p

i
ˆ̄p

0.25
0.59
0.39
0.44

0.25
0.37

0.33
0.62

0.39
0.42

0.22
0.28

Notes: For model Mb, p corresponds to the initial detection probability of a species, and c to the detection probability once
a species has been detected at a previous sampling unit. For model Mtb, pi and ci correspond respectively to the initial detection
probability of a species and to the detection probability once a species has been detected at a previous sampling unit, both
at the sample unit i. For model Mth, the p̄i correspond to the average detection probabilities at the different sampling units.
No detailed estimates of detection probability are available in software CAPTURE for previously detected species under
model Mbh.

‡ Pattern of estimated detection probabilities fits the hypothesis of a ‘‘behavioral’’ effect corresponding to a higher probability
of detecting species after their first detection by a given observer.

TABLE 5. Detailed estimates of the bird-species detection probabilities for non-Mh models of species richness selected in
Wisconsin.

Route
number Year Model

Detection
probability

Sampling unit

1 2 3 4 5

91005‡ 1970 Mb p̂
ĉ

0.31
0.60

91011
91019†
91022
91025

1990
1990
1990
1990

Mth

Mth

Mth

Mt

i
ˆ̄p

i
ˆ̄p

i
ˆ̄p
p̂i

0.54
0.41
0.43
0.34

0.63
0.34
0.61
0.30

0.50
0.35
0.65
0.59

0.65
0.34
0.48
0.37

0.50
0.24
0.36
0.30

91035†
91046
91063
91064

1990
1990
1990
1990

Mth

Mth

Mth

Mth

i
ˆ̄p

i
ˆ̄p

i
ˆ̄p

i
ˆ̄p

0.52
0.50
0.39
0.45

0.52
0.30
0.32
0.67

0.49
0.54
0.46
0.69

0.43
0.32
0.27
0.46

0.33
0.33
0.26
0.63

Notes: For model Mb, p corresponds to the initial detection probability of a species, and c to the detection probability once
a species has been detected at a previous sampling unit. For model Mth, the p̄i correspond to the average detection probabilities
at the different sampling units i. No detailed estimates of detection probability are available in software CAPTURE for
previously detected species under model Mbh.

† Pattern of estimated detection probabilities fits the hypothesis of a decrease of detection probability with time.
‡ Pattern of estimated detection probabilities fits the hypothesis of a ‘‘behavioral’’ effect corresponding to a higher probability

of detecting species after their first detection by a given observer.

For routes surveyed in 1970 and 1990, there was no
correlation of the species detection probabilities be-
tween the two years (average detection probabilities
estimated using model Mh: r 5 20.4974, n 5 5 route-
years, P 5 0.39 for Arizona; r 5 20.1043, n 5 42
route-years, P 5 0.51 for Maryland; r 5 0.2723, n 5
20 route-years, P 5 0.25 for North Dakota; r 5 0.2320,
n 5 58 route-years, P 5 0.08 for Wisconsin). This was
also true considering only the 25 routes that were sur-

veyed both years by the same observer (r 5 0.1788, n
5 25 route-years, P 5 0.39).

Species richness estimates

Species richness was different among states and be-
tween the two years considered (Table 7, Fig. 2). There
was no effect of observer ability on the estimate of
species richness, nor any significant interaction be-
tween state and year (Table 7). Arizona had a relatively
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FIG. 1. Overall species detection probability (mean 6
[1.96 3 1 SE]) for Arizona, Maryland, North Dakota, and
Wisconsin, in 1970 and 1990, as estimated from Breeding
Bird Survey data. AZ70 5 Arizona in 1970, AZ90 5 Arizona
in 1990, etc.

TABLE 7. ANOVA results testing the effects of the state, the
year, and the level of observer ability on species richness
estimated through model Mh (jackknife estimate).

Source df Type III SS F P

State
Year
Observer ability
State 3 Year
State 3 Observer ability

3
1
1
3
3

19 309.559
2114.327

72.582
194.398

2527.613

19.02
6.25
0.21
0.19
2.49

0.001
0.013
0.644
0.902
0.060

Year 3 Observer ability
Error

1
303

194.398
146 125.402

0.19 0.902

Note: The tests of the effects of pairwise interactions are
also reported.

FIG. 2. Estimated bird-species richness (mean 6 [1.96 3
1 SE]) for Arizona, Maryland, North Dakota, and Wisconsin,
in 1970 and 1990, based on Breeding Bird Survey data. AR70
5 Arizona in 1970, etc.

TABLE 6. ANOVA results testing the effects of the state, the
year, and the level of observer ability on the overall bird-
species detectability p.

Source df
Type III

SS F P

State
Year
Observer ability
State 3 Year
State 3 Observer ability

3
1
1
3
3

0.2376
0.0027
0.7550
0.0038
0.0451

7.97
0.27
7.59
0.13
1.51

0.001
0.603
0.006
0.943
0.212

Year 3 Observer ability
Error

1
303

0.0000
3.0121

0.00 0.947

Note: The tests of the effects of pairwise interactions are
also reported.

low species richness compared to the three other states.
Moreover, the average of overall species richness per
route was lower in 1970 (N̂ 5 71.52 6 1.76 species
per route [mean 6 1 SE], n 5 150 route-years) than in
1990 (N̂ 5 78.43 6 164 species per route [mean 6 1
SE], n 5 166 route-years).

For each state we computed the correlation of species
richness on each route between the two years, and
found that species richness was not correlated on each
route between 1970 and 1990 for Arizona (n 5 5 route-
years; r 5 0.7655; P 5 0.13) or Maryland (n 5 42
route-years; r 5 0.2164; P 5 0.17), but was correlated
within route for North Dakota (n 5 20 route-years; r
5 0.6240; P , 0.01) and Wisconsin (n 5 58 route-
years; r 5 0.3903; P , 0.01).

The jackknife species richness estimates provided by
CAPTURE were highly correlated with estimates ob-
tained by computing the limiting form of the jackknife
estimator that uses observed abundance distributions
of species. The distribution of the variance of the lim-
iting form of the jackknife estimator was skewed, with
most standard errors lying between 3 and 6 species.
Conversely, the standard errors associated with the
jackknife estimates spread largely between 3 and 14
species. There was a tendency for the jackknife esti-

mate to be higher than the limiting form estimate as
the mean of the difference between the two estimators
computed for each route over the four states was greater
than zero (n 5 316 route-years, 4.56 6 0.736 species
per route [mean 6 1 SE]).

DISCUSSION

In most studies, count data are used as estimates of
species richness when investigating spatial or temporal
trends in species richness or the effect of different en-
vironmental factors on the local occurrence of species.
However to test any hypotheses about changes in spe-
cies richness directly from counts of species, it must
be assumed that detectability of the different species
is the same for the times or locations being compared.

Using a capture–recapture approach, we showed that
heterogeneity in detectability of species is highly prev-
alent in a survey like the BBS: heterogeneity in de-
tectability of species was detected on most routes of
the four states for the two years investigated. The over-
all species detection probabilities estimated using Mh

models were high (range: 0.48–0.96), but varied among
states. These results underline the potential biases in-
duced by using simple counts of species as estimates
of species richness, and the need to use methods that
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take into account heterogeneity of detection probabil-
ities. Model Mh was by far the most frequently selected
model, suggesting that variations due to time (poten-
tially detected by Mt, Mtb, Mth, and Mtbh models) and to
a ‘‘behavioral response’’ (potentially detected by Mb,
Mtb, Mbh, and Mtbh models) were not widespread. In
particular, apart from Arizona, the Mh model was se-
lected for ;70% of the routes. Detailed examination
of the pattern of estimated detection probabilities of
the models selected showed that the patterns of tem-
poral and behavioral variations in detection probabil-
ities were relatively consistent with our predictions.
The selection of Mth on several routes may mean that
variation in species detectability occurs among groups
of stops within routes, and could be explained by het-
erogeneity in the landscape structure or heterogeneity
in the distribution of individuals of each species in
space. We did not find evidence for a ‘‘time-of-day’’
effect in which detection probabilities were higher for
counts near sunrise than for those later in the morning.
We did find evidence for a ‘‘behavioral’’ effect on some
routes, in which the detection probability was higher
for species once they had been previously detected on
the route.

Our investigations showed that model Mh is the main
model selected. The only state where a fair proportion
of other models was selected is Arizona, but it is also
the state with the lowest estimates of detection prob-
abilities and species richness, conditions under which
the model selection of CAPTURE has been shown not
to perform well (Otis et al. 1978, Menkens and An-
derson 1988). The assumption of heterogeneous de-
tectability among species is thus reasonable. Moreover,
simulations showed that the Mh jackknife estimator is
robust to deviations from model assumptions and per-
forms well if the average detection probability is large
enough (e.g., Otis et al. 1978, Burham and Overton
1979, Pollock and Otto 1983, Norris and Pollock 1996).
Finally, as using estimates obtained from different
methods associated with different models (e.g., Mh:
jackknife estimate; Mbh: removal estimate) may intro-
duce biases in comparative tests, at this time we would
recommend the use of the Mh model for large-scale
analyses of data sets like the BBS. The tests using
different models may nevertheless be interesting for
investigating potential sources of variation in detection
probabilities. It may be that proper inclusion of un-
certainty associated with model selection would re-
move some of the problems we anticipate in using dif-
ferent estimators in comparative studies.

Differences in species composition and in the local
abundance of species may largely explain the variation
in average detectability among states. The effect of
habitat structure may also directly affect the detect-
ability of species, notably through interactions with
survey methodology (B. Peterjohn, personal commu-
nication). For example, the BBS methodology empha-
sizes the detection of singing birds rather than visual

identification. In general, birds singing from the top of
trees are detected over greater distances than are birds
singing near the ground. Species occupying denser hab-
itats also tend to be more vocal than those in open
habitat, possibly since their risk of predation may be
reduced by the dense cover. Hence, greater detectabil-
ities for most bird species could be expected in dense
landscapes rather than in open landscapes using the
BBS methodology, although this would not be true for
all species such as hawks that are infrequently iden-
tified by vocalizations on the BBS. In future studies,
we will address this issue using analyses at the scale
of the survey route to test whether landscape structure
is associated with species richness and species detect-
ability. Nevertheless, our results already suggest that
factors other than landscape attributes, such as bird
community composition, may strongly affect species
detectability. Moreover the presence of the different
species is likely to be affected by landscape structure
(Flather and Sauer 1996), and thus may interact with
landscape structure itself to determine the detectability
of species present in a given area. Finally, observer
ability can affect species detectability and, depending
on the survey history in each state, this may affect the
average detectability in some areas.

Although we found no evidence of differences in
detection probabilities within states between 1970 and
1990, other studies have suggested that changes over
time in observer ability may have a temporal compo-
nent (e.g., Sauer et al. 1994). In particular, Kendall et
al. (1996) have shown that start-up effects occur in
BBS routes, in which lower counts tend to be associated
with an observer’s first year of survey along a route.
We suggest that explicit considerations of detection
probabilities be conducted whenever changes of spe-
cies richness are evaluated over time, and computing
Mh estimates for each route will take into account pos-
sible temporal variation in detection probabilities.

Species detectability varied greatly among the states
we examined. It is tempting to argue by analogy that
detectability of individuals within species might be re-
flected by the patterns among species, and that among-
species detection rates could be used as ad hoc esti-
mates of within-species detection rates. In general,
analyses of BBS data are severely limited by our in-
ability to estimate these species-specific detection rates
(Barker and Sauer 1992, Flather and Sauer 1996). How-
ever, the detection rates estimated from Mh represent a
mean estimate from a distribution of species-specific
detection rates, hence it is unclear how the rate asso-
ciated with an individual species would differ from this
mean. However, if the mean detection rate is less than
one (as occurred in our examples), that suggests that
counts of individuals of particular species are also bi-
ased estimates of total populations and may produce
misleading comparisons over time and space. Com-
putation of trends is carried out within routes and spe-
cies by species, which reduces the potential problems
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associated with different detection probabilities of in-
dividuals of different species among routes. Neverthe-
less we have evidence that species detectability may
not be correlated for a given route between two points
in time situated 20 yr apart, which suggests that in-
dividual species detectability may vary in time within
a route.

The pattern of species richness obtained for the four
states could be expected, notably considering that we
worked at the spatial scale of individual BBS routes
(B. Peterjohn, personal communication). The relatively
low species richness along BBS routes in Arizona may
reflect both altitudinal stratification of bird communi-
ties in western North America, and the fact that BBS
routes remain within a single physiographic stratum.
Birds are more generally distributed in habitats within
central and eastern North America, lacking altitudinal
stratification except within a very limited number of
regions, and species totals along BBS routes may tend
to be more closely related to the habitat diversity along
routes. The four different states were selected to exhibit
different species richness in order to test the use of Mh

estimators in contrasting situations. It is interesting to
note a parallel increase through time in species richness
for the four states considered. Particular estimators us-
ing different combinations of Mh based estimators
should be used to investigate such patterns in com-
munity dynamics, and notably spatiotemporal varia-
tions in species richness or composition (e.g., Nichols
et al., in press). In particular, potential effects of
changes in landscape use and structure on community
dynamics parameters could be investigated that way.

What are the implications of these findings for other
types of data sets? Because many surveys contain
counts collected under less standardized conditions
than the BBS, it is likely that detection rates from these
surveys will be even more heterogeneous than those
detected in the BBS. Consequently, use of these meth-
ods is essential to ensure unbiased estimates of species
richness. We suspect that model Mh will be useful in
other situations when there is a sampling replication
over time or space within the area under study. Nu-
merous studies record only the number of individuals
of each species in an area without replicates. In these
cases, using the limiting form of the jackknife may be
valuable. In the case of the BBS data considered, a
good correlation between the estimates from the jack-
knife estimator and the limiting form of the jackknife
estimator was obtained. However, sampling designs us-
ing either multiple sampling occasions or sample areas
permit the testing of assumptions about sources of vari-
ation in detection probability and thus the selection of
the most appropriate model.
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