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Abstract. Researchers have used occupancy, or probability of occupancy, as a response or
state variable in a variety of studies (e.g., habitat modeling), and occupancy is increasingly
favored by numerous state, federal, and international agencies engaged in monitoring
programs. Recent advances in estimation methods have emphasized that reliable inferences
can be made from these types of studies if detection and occupancy probabilities are
simultaneously estimated. The need for temporal replication at sampled sites to estimate
detection probability creates a trade-off between spatial replication (number of sample sites
distributed within the area of interest/inference) and temporal replication (number of repeated
surveys at each site). Here, we discuss a suite of questions commonly encountered during the
design phase of occupancy studies, and we describe software (program GENPRES) developed
to allow investigators to easily explore design trade-offs focused on particularities of their
study system and sampling limitations. We illustrate the utility of program GENPRES using
an amphibian example from Greater Yellowstone National Park, USA.
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INTRODUCTION

Various fields of ecology use occupancy, or probability

that a patch is occupied by a species, as a state variable to

address hypotheses about habitat associations (e.g.,

Scott et al. 2002), species distribution (e.g., Fisher and

Shaffer 1996, Van Buskirk 2005), and metapopulation

dynamics (e.g., Hames et al. 2001, Barbraud et al. 2003,

Martinez-Solano et al. 2003). Often, occupancy is the

state variable of interest to wildlife managers assessing

the impacts of management actions (Mazerolle et al.

2005), and it is commonly the focal variable in long-term

monitoring programs (Manley et al. 2004). Recent

papers have emphasized that reliable inferences from
these types of studies require estimating occupancy from

detection�nondetection (presence�absence) data in a

manner that deals with detection probabilities ,1

(Moilanen 2002, MacKenzie et al. 2002, 2003, 2005,

Gu and Swihart 2004). A key feature of these new

estimation methods is that they generally require both

spatial and temporal replication. The need for temporal

replication at sampled sites to estimate detection

probability creates a trade-off between spatial replication

(number of sample sites distributed within the area of

interest/inference) and temporal replication (number of

repeated surveys at each site).

MacKenzie and Royle (2005) presented the first

investigation of these trade-offs, and their findings

provide some needed guidance for efficient design of

occupancy studies (also see Field et al. 2005). MacKenzie

and Royle (2005) investigated three possible designs for

single-season studies: ‘‘standard design,’’ in which each

site is surveyed the same number of times; ‘‘double-

sampling design,’’ in which a subset of sites is surveyed

multiple times and the remaining sites are sampled only

once; and ‘‘removal design,’’ in which sites are surveyed

multiple times until the target species is detected. The

authors found that there was an optimal number of

repeated surveys for each design, regardless of whether

the objective was to: (1) achieve a desired level of

precision for minimal total survey effort; or (2) minimize

the variance of the occupancy estimator (var(ŵ)) for a

given total number of surveys (MacKenzie and Royle

2005). This optimal number of surveys depended on the

study design and the true occupancy and detection

probability for the target species, but was independent of

the number of study sites. In general, the standard design

outperformed the double-sampling design, and the

removal design was also promising if detection proba-

bility was believed to be constant across surveys.

MacKenzie and Royle (2005) considered their results

to be a useful starting point for practitioners planning

occupancy studies, but cautioned that their results were

based on a simple model, namely one that assumed that

occupancy probability was similar across all sites and

that detection probability was constant over both time

and space (sites). Furthermore, their results were based

on asymptotic (large sample) methods and the results

may not hold for studies with small sample sizes. These

authors, and others, recommend that study designs be

evaluated on a case-by-case basis, tailoring the design to
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specific scientific goals, the biology of the target species,

and logistical or economical constraints.

In this paper, we describe software (program GEN-

PRES) developed to allow investigators to explore design

trade-offs focused on the specifics of their study systems

and attendant sampling limitations. The program

permits investigation of both single-season and multi-

ple-season situations, with one or more groups of sites

that differ in their sampling intensity, occupancy, or

detection probabilities. Users supply information on the

model type (single- or multiple-season), construct a

relevant sampling design using a flexible general frame-

work, and provide realistic parameter values, based on

either guesses or, preferably, on analysis of pilot data.

Evaluations can be performed via analytic-numeric

approximations (based on expected values of sample

data) or simulations with either predefined or user-

defined occupancy models. Detection histories are

generated and can be saved as input files for multi-

model evaluation using other software programs such as

program MARK (White and Burnham 1999) or PRES-

ENCE (MacKenzie et al. 2006). We illustrate the use of

program GENPRES using an amphibian example from

the Greater Yellowstone National Park Network.

BACKGROUND: OCCUPANCY MODELS

AND PARAMETER ESTIMATION

Estimating occupancy probability while adjusting for

imperfect detection has been the focus of several recent

papers (MacKenzie et al. 2002, Tyre et al. 2003, Wintle

et al. 2004). The MacKenzie et al. (2002) approach has

proved to be the most flexible, and both single-season

and multi-season models (MacKenzie et al. 2003) are

included in estimation software programs PRESENCE

and MARK.

These methods assume that s sites are selected, using

some type of probability-based sampling, from a

population of S possible sites within the area of interest.

The sampling units, or ‘‘sites,’’ may be defined by the

investigator (e.g., habitat quadrats) or may be naturally

occurring, discrete patches, such as the ponds used in our

amphibian example. Appropriate methods are used to

survey the sites multiple times each season, perhaps for

multiple seasons (e.g., years). Detection and nondetec-

tion information is recorded for each survey of a site.

Nondetection may arise if either the target species does

not occupy the site or the investigator does not detect the

species at an occupied site. Within a given season, sites

are assumed to be closed to changes in occupancy (i.e.,

sites are either always occupied or unoccupied by the

species), but this assumption may be relaxed, provided

that any changes occur completely at random (Mac-

Kenzie et al. 2006). Between seasons (e.g., t ! t þ 1),

changes in occupancy may occur due to processes such as

colonization and local extinction. Additional assump-

tions that apply to both single- and multi-season models

include: (1) detections occur independently at sites; (2)

occupancy and detection probabilities are similar across

sites and time, except when differences can be modeled

with covariates (e.g., habitat features); and (3) the target

species is identified correctly.

Single-season model and parameter definitions

MacKenzie et al. (2002, 2005, 2006) defined a

probability-based model that consisted of two kinds of

parameters: w represents the probability that a site is

occupied by the target species, and pj is the probability of

detecting the species at an occupied site during the jth

independent survey of a site. Assuming that detection

histories from all s sites are independent, maximum

likelihood methods are used to estimate occupancy and

detection probability. Additionally, it is possible tomodel

either occupancy or detection probability as a function of

measured covariates using the logistic equation

hi ¼
exp Xibð Þ

1þ exp Xibð Þ

where hi represents the parameter of interest for site i,Xi is

the row vector of covariate information for site i, and b is

the column vector of coefficients to be estimated.

Occupancy probability may be modeled as a function of

site-specific covariates that do not change during the

season (e.g., habitat type), whereas detection probability

may be modeled as a function of either site-specific or

survey-specific covariates (e.g., weather conditions or

observer). The samemodeling procedure also can be used

with a Bayesian philosophy to statistical inference and

can be easily implemented using Markov chain Monte

Carlo methods.

Multi-season model and parameter definitions

MacKenzie et al. (2003, 2006) extended the single-

season model by introducing two vital rate parameters

that govern changes in the occupancy state between

successive seasons: et represents the probability that an

occupied site in season t becomes unoccupied in season t

þ 1 (i.e., the species goes locally extinct), and ct
represents the probability that an unoccupied site in

season t is occupied by the species in season t þ 1

(colonization). The extinction and colonization process-

es are explicitly incorporated into a general model that

also includes detection probability (MacKenzie et al.

2003, 2005a). The multi-season model is also likelihood

based and parameters may be modeled as functions of

measured covariates. Additionally, both single- and

multiple-season models can accommodate ‘‘missing

data,’’ as illustrated in our subsequent examples in

which some sites are visited less often than others.

MacKenzie et al. (2005a) provide an excellent resource

for more details on occupancy models.

PROGRAM GENPRES

Analytic-numeric approximations and simulations

Program GENPRES offers practitioners two methods

for evaluating bias and precision of occupancy estima-
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tors under different analysis models: simulations and

analytic-numeric approximations. The analytic-numeric

method involves using a known, ‘‘true’’ model with

realistic parameter values to generate an artificial data

set consisting of the expected value of each detection

history under the assumed model (Nichols et al. 1981,

Burnham et al. 1987:214–217, 292–295, Gimenez et al.

2004). Next, the generated data are analyzed as if they

were real data, under any model of interest. The method

is strictly numerical, but ‘‘analytical,’’ not Monte Carlo

(Burnham et al. 1987:215). With large sample sizes, this

method can be used to approximate estimator bias and

precision, and power of likelihood ratio tests (Burnham

et al. 1987:214–217, Gimenez et al. 2004). Program

GENPRES aids the investigator in these tasks (data

generation and analysis) for a wide variety of user-

defined model and parameter combinations (examples

will be discussed). The validity of the numeric-analytic

approximations of bias and precision depends on the

sample size being large (Nichols et al. 1981, Burnham et

al. 1987:216); this method can give poor results if the

design includes a small number of sites.

To examine small-sample properties, or to obtain

empirical sampling distributions of estimators, users can

select the ‘‘simulations’’ option and input the number of

simulations they wish to run. Sequences of random

numbers are compared with input parameter values in

order to generate simulated detection history data.

Resulting detection history data sets thus differ, despite

being generated by the same input parameters and

model. The model of interest is fit to each data set, and

maximum likelihood estimates are thus obtained. The

distribution of resulting estimates, and statistics com-

puted from this distribution (e.g., standard deviation),

permit evaluation of estimator performance, even in the

case of small sample sizes.

Overview of program GENPRES

GENPRES is written in C and RAPIDQ (a visual

BASIC variant) and can be downloaded from the

Patuxent Wildlife Research Center website (available

online).4 Input information required for program GEN-

PRES includes the generating model type and structure,

parameter values, analysis model(s), and evaluation

method (either simulations or expected values; Fig. 1).

The choice of the generating model type (single- or

multi-season) defines the scope of parameters that are

supplied by the user. Occupancy and detection param-

eters are required by both model types; if the user

chooses a multi-season generating model, fields appear

for the probability that an occupied site remains

occupied (u ¼ 1 � e) and the probability that an

unoccupied site becomes colonized (c).
Ecologists can investigate the impact of unmodeled

parameter heterogeneity or the power of a given study

design to detect parameter differences by including

multiple groups of sites. Sites within each group are

assumed to have the same parameter values, but these

parameters may vary among groups. For example, an

investigator may be interested in exploring variation of

occupancy probabilities among two habitat types; here,

each habitat type defines a group, and one might ask:

what is the power to detect a 0.20 difference in occupancy

probabilities between the two habitats for a fixed number

of sites in each habitat (group)? Alternatively, resource

managers can investigate trade-offs in estimator preci-

sion for different survey designs, where each group of

sites may have a different survey frequency (examples

follow). Program GENPRES requires the following

information for each group of sites: the number of sites,

the number of surveys, and relevant parameter values.

Next, users identify models for analysis from a list of

predefined models or construct their own models under a

‘‘user-defined’’ option. Finally, users may evaluate

properties of estimators with analytic-numeric approxi-

mations (expected values) or simulations (Fig. 1). Output

using the analytic-numeric approximation method can

be used to approximate bias [E(ĥ)� h], relative bias [E(ĥ)

� h]/h, root mean square error

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½EðĥÞ � h�2

q
, or similar

metrics, where ĥ denotes an estimator and h the true

parameter value. Simulation results, consisting of

parameter estimates and standard errors calculated from

each simulated data set, can be used to assess bias and

precision of estimators using these metrics, except that

E(ĥ) is estimated using the arithmetic mean of estimates

FIG. 1. Process used by practitioners to explore precision
and bias of estimators in occupancy models.

4 hhttp://www.mbr-pwrc.usgs.gov/software/i
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from each simulation, ĥ. The sampling variances (or

standard deviations) of parameter estimates, var(ĥ),
estimate the true sampling variances and can be

compared to the arithmetic mean of the model-based

asymptotic variance estimates, vâr(ĥ), to assess possible

bias in the variance estimators. Mean squared error or

root mean square error (RMSE) is often used to make

comparisons among estimators because it represents the

sum of variance and squared bias (Cochran 1977).

EXAMPLE: AMPHIBIANS IN GREATER

YELLOWSTONE NETWORK

Ecologists engaged in occupancy studies are often

faced with issues of survey design, whether it be

determining the number of cameras and their respective

deployment time for studies of elusive mammals

(MacKenzie et al. 2005, O’Connell et al. 2006),

addressing potential observer bias for a cryptic insect

species (MacKenzie et. al. 2006:116–122), or developing

multi-species avian monitoring programs that inform

managers in time to implement management action

(Field et al. 2005). Here we use one scenario from

Yellowstone National Park, USA, to illustrate common

questions that arise during the planning stages of large-

scale studies or long-term monitoring programs. Our

purpose is to demonstrate how program GENPRES can

be used to address sampling design issues; therefore,

although the scenario and pilot data for amphibians in

Yellowstone National Park are realistic, we have not

represented all of the complexities present in this system.

Pilot data description

Scientists associated with the USGS Amphibian

Research and Monitoring Initiative (ARMI) and the

National Park Service have gathered preliminary data

on amphibian occurrence and distribution in various

drainage catchments within Yellowstone National Park

(Corn et al. 2005). Water bodies in one catchment have

been surveyed during multiple seasons (years) from 2002

to 2004, using visual encounter surveys (for details on

sampling protocol, see Corn et al. [2005] and Muths et

al. [2005]). Between 44 and 77 water bodies (i.e., sites)

were visited each season, but not all sites were

resurveyed within a season and some sites were

unavailable for amphibian occupancy during dry

seasons. Species-specific detection data from each season

were analyzed separately using single-season occupancy

models (MacKenzie et al. 2002). The tiger salamander,

Ambystoma tigrinum, consistently showed an increase in

detection probabilities throughout the season, with

estimates ranging from p̂ ¼ 0.12–0.33 for early surveys

in June to p̂ � 0.70 at the end of July. Occupancy

probabilities for available (wet) sites ranged from ;0.35

to 0.75 for this species. Assuming that these data are

representative of a larger area of interest, we use similar

parameter values and patterns to address three common

design questions. In each case, we are interested in: (1)

comparing precision and bias of estimators under

different sampling designs and analysis models and (2)

exploring whether sampling designs differ in their

robustness to model misspecification. In addition to

these shared objectives, the scenarios represent real

studies with differing goals, hypotheses, and logistical

limitations that may influence study design recommen-

dations.

Single-season example: temporal trade-offs

Repeated surveys at sites can be accomplished in

multiple ways; for example, a site may be surveyed by a

single observer on different days, or a site could be

surveyed by multiple independent observers on the same

day (MacKenzie et al. 2002, 2006). In some situations,

the modeling of data for these two different sampling

designs would be identical, whereas in other situations

the modeling might differ. For example, if multiple visits

by the same investigator to a site could not be viewed as

independent (the investigator retained knowledge of

where to look for the species), then modeling would

have to incorporate different detection probabilities for

initial and subsequent detections. In situations where

temporary emigration from the site is possible, then

random emigration will cause parameter definitions to

change slightly (Mackenzie et al. 2006:105–106).

In large, remote areas, such as Yellowstone National

Park, observers usually work in groups for logistical and

safety concerns; thus multiple independent observers are

a logical choice for a survey method. However, there

was concern among investigators that these data may

not be sufficient to model occupancy in the presence of

temporal changes in detection probability within each

season. Although we were confident that temporal

variation in detection probability would not translate

into biased occupancy estimates if detection were

properly modeled, we were interested in bias resulting

from poor modeling of variation in detection probabil-

ity. Thus, we examined three designs being considered

by the investigators (Table 1) and assessed performance

of estimators when detection probability was properly

modeled and when it was not. Importantly, note that

although the designs differ in the level of spatial and

temporal replication, the total number of surveys is the

same for all three designs. We assumed that enough

resources are available for two observers to visit 12 sites

every two weeks; a typical survey season in Yellowstone

consists of four possible biweekly survey periods (eight

possible surveys: four biweekly periods 3 two observ-

ers). Using information obtained from the analysis of

the pilot data, a reasonable occupancy probability was

set at w ¼ 0.60, and we anticipated negligible detection

differences among observers. We assumed that detection

probability could be expressed using the following logit

function: logit(p) ¼ b0 þ b1 3 (biweekly survey period).

Use of b0 ’�1.80 and b1 ’ 0.95 yields p1&2¼ 0.30, p3&4

¼ 0.53, p5&6¼ 0.75, p7&8¼ 0.88, which mimics estimates

obtained from the pilot data. Here, p is detection

probability, and the subscripts indicate sequential survey
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by two (numbered) observers. The three survey designs

were constructed within GENPRES by grouping sites

according to sampling frequency and detection proba-

bility.

First, we analyzed each design with large-sample

numeric-analytic approximations (using expected values

of detection history data). Table 2 contains occupancy

estimates and standard errors for six candidate models

that vary in their detection structure. Three models are

consistent with the generating detection function:

w(.)p(linear) is the ‘‘true’’ generating model (i.e., logit(p)

is linear on a biweekly scale), w(.)p(biweek) has different
detection parameters for each two-week period, and

w(.)p(t) has eight separate detection parameters. Notice

that all three of these models have the same value for

�2log(likelihood). The remaining three models are

inconsistent with the generating model: w(.)p(.) denotes
a model with constant detection probability across all

surveys, while w(.)p(month) and w(.)p(obs) represent

models with detection varying among months and

observers, respectively.

Next, we used simulations to explore how well the

large-sample numeric-analytic approximations per-

formed for our study containing relatively small sample

sizes (s � 48). Appendix A contains the command lines

used to construct analysis models not found in the

predefined list. Simulation results are based on 1000

iterations for each design 3 analysis model combination

and are presented in Table 3.

Focusing on results from models consistent with the

generating data, occupancy estimators are approximate-

ly unbiased for all three sampling designs, as expected

(Table 2). Theoretical standard errors for the occupancy

estimator are slightly better for designs 1 and 3 (CV ’

16%) compared to design 2 (CV¼ 17.8%), but precision

of detection probability estimates is better using designs

2 and 3 (results not shown). Design 1 appears less robust

to model misspecification, producing greater estimator

bias under models that are inconsistent with the

generating data (Table 2).

These same general findings hold true in the

simulation evaluations, but simulations also reveal some

bias in estimators based on good approximating models

(Table 3). Relative bias calculated for the occupancy

estimator under model w(.)p(linear) is þ3.5% for design

1,þ1.3% for design 2, andþ2.6% for design 3 (Table 3).

Using model w(.) p(biweek), the relative bias in

occupancy is: þ6.0%, þ4.3%, and þ0.8% for designs 1,

2, and 3, respectively. All designs suggest that models

that appropriately contain time variation in detection

probability may slightly overestimate occupancy, where-

as models lacking time-specific detection probabilities

TABLE 1. Representation of three designs used to explore trade-offs between spatial and temporal
replication for a single-season occupancy example: distribution of sampling effort across four
biweekly survey periods.

Design 1 (s ¼ 48 sites) Design 2 (s ¼ 30 sites) Design 3 (s ¼ 36 sites)

No. sites

Survey period

No. sites

Survey period

No. sites

Survey period

1 2 3 4 1 2 3 4 1 2 3 4

12 xx — — — 6 xx xx xx xx 6 xx — xx —
12 — xx — — 6 xx — — — 6 — xx — xx
12 — — xx — 6 — xx — — 6 xx — — —
12 — — — xx 6 — — xx — 6 — xx — —

6 — — — xx 6 — — xx —
6 — — — xx

Notes: Each design assumes that two independent observers conduct surveys biweekly (every two
weeks); each x denotes a survey by a single observer. Dashes indicate that those sites were not
visited during those periods. Designs differ in the total number of sites and the temporal replication
at each site, but the total number of surveys (98) is the same for all designs.

TABLE 2. Summary of models fit to expected values of detection histories under three designs shown in Table 1.

Design 1, 48 sites Design 2, 30 sites Design 3, 36 sites

Model np �2l ŵ cSE(ŵ) �2l ŵ cSE(ŵ) �2l ŵ cSE(ŵ)

w(.) p(linear) 3 106.28 0.600 0.097 93.34 0.600 0.107 100.37 0.600 0.096
w(.) p(month) 3 107.94 0.589 0.097 95.38 0.595 0.108 102.30 0.594 0.096
w(.) p(biweek) 5 106.28 0.600 0.097 93.34 0.600 0.107 100.37 0.600 0.096
w(.) p(.) 2 113.46 0.532 0.086 103.48 0.566 0.105 110.44 0.573 0.096
w(.) p(obs) 3 113.46 0.532 0.086 103.48 0.566 0.105 110.44 0.573 0.096
w(.) p(t) 9 106.28 0.600 0.097 93.34 0.600 0.107 100.37 0.600 0.096

Notes: Given for each model is the number of parameters (np), and under each design, twice the negative log-likelihood (�2l ),
estimates of occupancy (ŵ), and their corresponding standard errors. True probability of occupancy is 0.60. Models highlighted in
boldface are consistent with the true generating model, w(.)p(linear). Model w(.)p(biweek) has different detection parameters for
each two-week period; w(.)p(t) has eight separate detection parameters; w(.)p(.) denotes a model with constant detection probability
across all surveys; w(.)p(month) and w(.)p(obs) represent models with detection varying among months and observers, respectively.
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underestimate occupancy to a greater degree. Consistent

with analytic-numeric methods, precision of the occu-

pancy estimator is slightly better for design 1, but this is

not necessarily encouraging because occupancy estima-

tors have greater bias under design 1. RMSE, a metric

that combines precision and bias, suggests that design 3

performs slightly better than either of the other two

designs (Table 3). Together these findings suggest that

sampling more sites with minimal temporal replication

usually is not the best policy in planning occupancy

studies; a finding echoed by MacKenzie and Royle

(2005) and Field et al. (2005).

Multiple-season examples: allocation over space and time

Many occupancy studies and monitoring programs

are planned for multiple seasons, where objectives focus

on vital rates (colonization and extinction) and temporal

and spatial factors that affect these rates. Using our tiger

salamander example from Yellowstone National Park,

we explored two general study design questions. The

first question focuses again on how investigators might

best allocate their survey effort over multiple seasons in

order to maximize the precision of vital rate estimators.

The second question focuses on how sites might be

allocated among groups of sites with different habitat

types or treatments that are believed to affect vital rates.

Focusing on our first question, we note that others

have investigated this issue (MacKenzie 2005, Mac-

Kenzie et al. 2006). These authors used simulations to

explore the relative benefits of using a ‘‘standard design’’

in which all sites are surveyed each season vs. a ‘‘rotating

panel design,’’ in which only a subset of sites is surveyed

every season and the remaining sites are surveyed less

frequently (e.g., surveyed every fifth season). Rotating

panel designs are favored by some investigators because

the spatial coverage of a study can be increased (i.e., the

total number of sites surveyed at least once every five

years is greater under the rotating panel design).

However, others are critical of this type of design

because increasing the spatial replication in this manner

does not increase the effective sample size (e.g., for the

purpose of estimating a trend in occupancy) and spatial

and temporal effects may be confounded (MacKenzie et

al. 2006).

Yellowstone National Park is included in a large

amphibian study in the Rocky Mountain region (Corn

et al. 2005). Investigators were trying to decide between

two sampling designs: a standard design (design 1) in

which the same 24 sites are surveyed every season vs. a

rotating panel design (design 2) in which only 12 sites are

surveyed every year, but 36 additional sites would be

surveyed every other year (Table 4). Note that under

design 2, the total number of surveys conducted is 25%

greater than under design 1. In the rotating panel design,

sampling effort would be concentrated in Yellowstone

National Park one year and in other parks the following

year. We explored the trade-offs in terms of precision

and bias of vital rate estimators under these two designs.

We generated these designs for a four-season tiger

salamander study with the following parameter values:

initial occupancy was w ¼ 0.60 and time-constant

extinction and colonization probabilities were e ¼ 0.25

TABLE 3. Simulation results for three sampling designs for specified analysis models (1000 replications each).

Design 1, 48 sites Design 2, 30 sites Design 3, 36 sites

Model np ŵ cSE(ŵ) cSE(ŵ) RMSE ŵ cSE(ŵ) cSE(ŵ) RMSE ŵ cSE(ŵ) cSE(ŵ) RMSE

w(.) p(linear) 3 0.621 0.101 0.097 0.103 0.608 0.104 0.105 0.105 0.616 0.096 0.096 0.097
w(.) p(month) 3 0.606 0.099 0.097 0.099 0.605 0.108 0.106 0.108 0.608 0.098 0.095 0.098
w(.) p(biweek) 5 0.636 0.102 0.101 0.108 0.626 0.113 0.105 0.116 0.605 0.055 0.056 0.055
w(.) p(.) 2 0.543 0.088 0.090 0.105 0.572 0.104 0.105 0.108 0.582 0.096 0.096 0.097
w(.) p(obs) 3 0.538 0.089 0.089 0.109 0.573 0.102 0.104 0.105 0.581 0.099 0.096 0.101
w(.) p(t) 9 0.617 0.105 0.096 0.107 0.605 0.111 0.104 0.111 0.610 0.100 0.095 0.101

Notes: The generating model had occupancy probability w¼ 0.60 and detection probabilities that were equivalent among two

observers but varied over four biweekly survey periods: p ¼ 0.30, 0.53, 0.75, and 0.88. Reported estimates include: average

occupancy (ŵ), estimated true sampling variance [reported as cSE(ŵ), the estimated standard error of the occupancy estimates], the

average of the asymptotic standard errors [denotedcSE(ŵ)], and root mean square error (RMSE). Models highlighted in boldface are

consistent with the true generating model; np is the number of parameters.

TABLE 4. Representation of two designs used to explore trade-offs between spatial and temporal
replication for a multiple-season example: distribution of sampling effort across four seasons.

Design 1: Standard (24 sites, 192 surveys) Design 2: Rotating panel (48 sites, 240 surveys)

Season Season

No. sites 1 2 3 4 No. sites 1 2 3 4

24 xx xx xx xx 12 xx xx xx xx
36 — xx — xx

Notes: Each x denotes a survey by a single independent observer. Dashes indicate that those sites
were not visited during those periods.
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and c ¼ 0.20, respectively. These vital rate probabilities

applied over four years produce a 22% decline from the

initial occupancy level (w4 ¼ 0.47). For simplicity, we

assume that designated sites were visited twice within a

season by single, independent observers. Early-season

detection probability was assumed to be p1 ¼ 0.25, and

late-season detection probability was p2 ¼ 0.75.

Table 5 contains parameter and standard error

estimates for four candidate models. Three of the four

models are nested (parameters of the less general models

can be obtained by constraining parameters of the more

general), and the data were generated from the least

general of these models. Thus, large-sample approxima-

tions of�2 log(likelihood) are the same for these models.

Of these three models, precision of estimators under a

model assuming constant extinction and colonization is

not expected to be worse under a rotating panel design,

and this expectation is upheld (Table 5). However, in

cases where extinction and colonization are modeled as

time specific, the reduction in number of sites in years 1

and 3 under the rotating panel was expected to yield less

precise estimates, and indeed this expectation was also

shown to be reasonable (Table 5). The standard design

also appears to produce estimators that are more robust

to model misspecification, but both designs produce

severe, negative bias in vital rate estimates if variation in

detection probability is not included in the analysis

model.

The generated detection histories and expected values

may be analyzed under other parameterizations avail-

able in program MARK to allow season-specific

occupancy estimates (results not shown). When we

applied those models to these two sampling designs,

our findings agreed with results from MacKenzie (2005):

namely, that the key determinant of the precision of the

season-specific occupancy estimate was the number of

sites surveyed within the season, not the total number of

sites surveyed over the duration of the study. Thus, in

seasons 2 and 4, when 48 sites were sampled under

design 2, occupancy estimates were more precise than

under design 1 with only 24 sites surveyed. However, the

opposite is true of occupancy estimators in seasons 1

and 3, when more sites were surveyed under design 1.

Another common objective in multi-season occupan-

cy studies is to test a priori hypotheses about factors that

may affect the vital rates that are responsible for

population change. For example, in Yellowstone Na-

tional Park, biologists have observed some amphibian

species more frequently at sites influenced by geothermal

activity (Koch and Peterson 1995). These sites generally

have higher pH, conductivity, and acid-neutralizing

capacity than other sites, perhaps allowing some

resistance to acidification or disease (Koch and Peterson

1995). Alternatively, these sites, and the terrestrial

habitat around them, may serve as refuges during severe

winters. The following exercise may be performed by

investigators interested in sample-size requirements to

test hypotheses about differences in vital rates among

sites with and without known geothermic influence.

Suppose biologists believe that occupancy probabilities

of tiger salamanders are fairly high on geothermally

influenced sites (GS) and that these populations are

quite stable, with low extinction probabilities. Parameter

values for GS sites might be set at: initial occupancy wGS

¼ 0.70 and extinction probability eGS¼ 0.10 (/GS¼ 1�
eGS ¼ 0.90). Assuming that the system is near

equilibrium, colonization probability could be calculat-

ed using the recursive equation, wtþ1¼ wt(1� et)þ (1�
wt)ct, yielding cGS ¼ 0.23. Notice that under these

parameter values, occupancy levels remain constant

across all four seasons. Suppose pilot data are available

suggesting that sites without geothermal influence

(NGS) have lower occupancy probabilities for tiger

salamanders (e.g., wNGS ¼ 0.50), and it is believed that

extinction probabilities at these sites may be three times

higher than on GS sites. Then parameter values for NGS

sites may be: initial occupancy wNGS ¼ 0.50, extinction

probability eNGS ¼ 0.30 (/NGS ¼ 1 � eNGS ¼ 0.70) and

colonization probability is cNGS ¼ 0.30.

Assuming that enough resources are available to

survey 48 sites twice each year, one might ask: is it better

to have a balanced design (survey 24 sites in each

habitat), or an unbalanced design in which a higher

number of NGS sites are sampled (survey 20 GS sites

and 28 NGS sites)? To address this question, we

generated the two standard sampling designs (balanced

TABLE 5. Summary of multi-season models fit to expected values of detection histories for two designs: standard and rotating
panel design.

Design 1, standard (s ¼ 24 sites) Design 2, rotating panel (s ¼ 48 sites)

Model np �2l ŵ cSE(ŵ) ê cSE(ê) ĉ cSE(ĉ) �2l ŵ cSE(ŵ) ê cSE(ê) ĉ cSE(ĉ)

w(.) e(.)c(.)p(.j) 5 184.29 0.600 0.135 0.250 0.114 0.200 0.097 233.95 0.600 0.146 0.250 0.106 0.200 0.091
w(.) e(t)c(t)p(.j) 9 184.29 0.600 0.142 0.250� 0.175� 0.200� 0.159� 233.95 0.600 0.181 0.250� 0.199� 0.200� 0.180�
w(.) e(t)c(t)p(tj) 15 184.29 0.600 0.187 0.250� 0.198� 0.200� 0.183� 233.95 0.600 0.259 0.250� 0.213� 0.200� 0.199�
w(.) e(.)c(.)p(t.) 7 208.39 0.703 0.159 0.155 0.107 0.143 0.132 262.67 0.723 0.193 0.129 0.110 0.135 0.164

Notes: The number of parameters (np) is given for each model. Also presented for each model under each design are twice the
negative log-likelihood (�2l ) and estimates of initial occupancy (ŵ1), colonization (ĉt), and extinction probabilities (êt), with their
corresponding standard errors. True probabilities are: initial occupancy w¼ 0.60, time-constant vital rates et¼ 0.25 and ct¼ 0.20,
and time-specific detection probabilities p1¼ 0.25 (early season) and p2¼ 0.75 (late season); j represents each independent survey of
a site. Boldface models are consistent with the true generating model.

� The time-specific estimate exhibiting the smallest bias and greatest precision.
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and unbalanced) with the parameter values and detec-

tion probabilities used in previous examples: p1 ¼ 0.25

and p2 ¼ 0.75. We analyzed each design with numeric-

analytic large-sample approximations (with expected

values) only, under the true model used to generate the

data: w(g)e(g)c(g)p(.j), where g denotes the two habitat

groups. We used likelihood ratio tests to explore

whether sampling designs affected the ability to deter-

mine habitat differences in initial occupancy, extinction,

and colonization probabilities (Table 6). In each case the

‘‘true’’ generating model was considered the alternative

hypothesis, and the null hypotheses were represented by

reduced models containing no habitat effect for each

parameter separately and for all parameters simulta-

neously (see Table 6 and Appendix B for a list of all

candidate models). We approximated test power (as-

suming a ¼ 0.05) by using the resulting chi-square

statistic as the noncentrality parameter, k, and calculat-

ing power from a noncentral chi-squared distribution

(Burnham et al. 1987).

Our results suggest very low power and little

difference between the designs in the ability to detect

habitat differences among model parameters (Table 6).

The balanced design performed slightly better than the

unbalanced design that included more sites in the

‘‘poorer’’ (non-geothermally influenced) habitat. Notice

that the magnitudes of the differences between the

habitats are not equivalent for all parameters: jwGS �
wNGSj ¼ Dw ¼ 0.20, jeGS � eNGSj ¼ De ¼ 0.20, jcGS �
cNGSj ¼ Dc ¼ 0.07. Proportionally, the difference is

greatest for extinction probabilities De/eNGS ¼ 0.66

compared to occupancy Dw/wNGS ¼ 0.40 and coloniza-

tion probabilities Dc/cNGS ¼ 0.23. Power approxima-

tions were higher for tests involving parameters with

larger proportional differences between habitats, and

there was very low power to detect colonization

differences in this scenario. Building on these results,

investigators should be motivated to include more sites.

If the number of sites were increased to 50 sites in each

habitat type, then the power to detect differences in

occupancy, extinction, or all parameters simultaneously

would nearly double (approximate power ¼ 35%, 65%,

and 67%, respectively). If the duration of the study were

doubled for these same 100 sites (i.e., sites were sampled

for eight years), then the power to detect habitat

differences for extinction probability and all parameters

simultaneously would rise to levels above 90%.

It is also possible to investigate the issue of power via

simulation. Data are simulated under Ha, models Ha

and H0 are fit to each data set, and a likelihood ratio

statistic is computed. The proportion of simulations for

which H0 is rejected is an estimate of power. Similarly,

within a model selection framework, AICc can be

computed for each simulated data set and the propor-

tion of simulations for which Ha has the smallest AICc

can be computed. Alternatively, the average AICc

weights for the two models can be computed over all

simulations, as another metric reflecting the discrimi-

nating ability of data resulting from a particular study

design and sample size. Output from program GEN-

PRES allows researchers to investigate all of these

discriminating metrics.

DISCUSSION

Numerous investigators have emphasized the impor-

tance of clear and relevant goals when designing large-

scale or long-term studies (Yoccoz et al. 2001, Pollock et

al. 2002, MacKenzie et al. 2006). Well-defined study

objectives are easily translated into mathematical

models representing competing hypothesis about the

status and behavior of the study system. Inherently,

clear objectives address ‘‘why’’ the study is to be

conducted and help determine ‘‘what’’ state variable is

appropriate to measure. Only after the questions of

‘‘why’’ and ‘‘what’’ to sample have been adequately

addressed does exploring the question of ‘‘how’’ to

sample (i.e., survey design trade-offs) have relevance. In

some cases, study design may focus on the estimation of

TABLE 6. Deviance values and likelihood ratio tests for the null hypothesis (H0: no habitat effect) vs. the alternative hypothesis
(Ha) of habitat-specific parameter estimates under two sampling designs.

Parameter used in hypothesis Models tested (H0 vs. Ha)

Deviance Test statistic

H0 Ha v2 df Power

Design 1: Standard (balanced) design

Occupancy probability w(.) e(g)c(g)p(.j) vs. w(g)e(g)c(g)p(.j) 392.47 391.12 1.353 1 21%
Extinction probability w(g)e(,)c(g)p(.j) vs. w(g)e(g)c(g)p(.j) 393.95 391.12 2.631 1 37%
Colonization probability w(g)e(g)c(.)p(.j) vs. w(g)e(g)c(g)p(.j) 391.31 391.12 0.184 1 7%
All parameters w(.)e(.)c(.)p(.j) vs. w(g)e(g)c(g)p(.j) 395.10 391.12 3.975 3 36%

Design 2: Unbalanced design

Occupancy probability w(.)e(g)c(g)p(.j) vs. w(g)e(g)c(g)p(.j) 389.19 387.87 1.319 1 21%
Extinction probability w(g)e(,)c(g)p(.j) vs. w(g)e(g)c(g)p(.j) 388.04 387.87 2.589 1 36%
Colonization probability w(g)e(g)c(.)p(.j) vs. w(g)e(g)c(g)p(.j) 390.45 387.87 0.170 1 7%
All parameters w(.)e(.)c(.)p(.j) vs. w(g)e(g)c(g)p(.j) 391.78 387.87 3.900 3 35%

Notes: The standard balanced design has 24 sites in each of the two habitat types; the unbalanced design has 28 sites in the
‘‘poorer’’ amphibian habitat and 20 remaining sites in the better habitat. The alternative hypothesis (Ha) represents the true
generating model w(g)e(g)c(g)p(.j), where g denotes the two habitat groups. Other terms are defined in Table 5. True differences
between parameters from the different habitats are specified in the text, and all tests are based on a significance level a¼0.05. Power
is approximated using methods detailed in Burnham et al. (1987).
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a set of parameters, and the objective will be to

maximize precision. These parameters may include

occupancy and rates of extinction and colonization, or

slope parameters describing functional relationships

between these basic parameters and covariates. We

would hope that study design frequently focuses on

discriminating among competing models of system

dynamics, in which case the design objective will involve

quantities such as power and discriminating ability of

model selection statistics.

Program GENPRES can be used to address these

kinds of design issues, for example, allowing users to

explore trade-offs in temporal and spatial allocation of

sample effort. Its flexibility allows scientists to tailor

sampling designs to address various hypotheses and

objectives, while incorporating biological and logistical

constraints. Our example involving tiger salamanders in

Yellowstone National Park illustrates how pilot infor-

mation can be analyzed and used to inform future study

designs. The available pilot data are representative of the

information available on many species throughout the

world, in the sense that many species have been studied

within small areas compared to their overall distribu-

tions, yet these data provide a useful starting point for

exploring common study design questions. If no pilot

information were available, information from other

systems or species, or even expert opinion could be used

to explore study design trade-offs over a range of

plausible parameter values. Based on the pilot data, we

explored sampling designs that would allow adequate

modeling of detection probability, p. We considered two

multi-season sampling regimes reported in the literature

(standard vs. rotating panel, McDonald 2003, Mac-

Kenzie et al. 2006), in order to determine the impact on

the precision of our estimates. Finally, we explored trade-

offs among designs focused on testing factors thought to

influence both amphibian occupancy and vital rates.

Results from the tiger salamander example suggest

that simply sampling the maximum number of sites

possible, within a set of economic and logistical

constraints, may not be the most advantageous design.

Both single- and multiple-season scenarios revealed that

occupancy and especially time-specific vital rate estima-

tors were generally less biased under designs that include

temporal survey replication both within and among

seasons. The magnitude of the bias was strongly affected

by the model structure for p (detection probability). In

all cases, failing to model p with sufficient complexity led

to severe negative bias in occupancy (single-season

scenario) and vital rate estimates (multi-season studies).

In the likely case in which the appropriate detection

probability structure is unknown, designs involving

more temporal replication at a higher proportion of

sites were more robust to model misspecification. This

finding is most evident when simulation-based analysis is

performed, and it emphasizes the importance of

investigating bias and precision with simulations for

studies with small (realistic) sample sizes.

Finally, there was little difference between standard

balanced vs. unbalanced study designs to detect habitat

differences among multi-season model parameters.

These results, together with the inference of very low

power, can be extremely valuable to investigators during

the study planning process. Using our balanced design,

we found that doubling the sample size would certainly

increase the power of detecting habitat differences in

vital rates, but doubling both the sample size and study

duration was necessary to increase power to .90%. This

introduces yet another trade-off between the number of

sites sampled per season and the number of seasons for

which the study can be conducted (MacKenzie 2005,

MacKenzie et al. 2006). If seasonal funding limitations

prevent sampling at a large number of sites, then

researchers may be required to conduct longer duration

studies in order to differentiate among competing

hypothesis. We also note that conclusions based upon

longer duration studies are likely to be more robust to

the short-term effects on the population caused, for

example, by cyclic climatic conditions.

The greatest utility of program GENPRES is its

flexibility to examine a wide variety of design options,

tailored to a given biological system, and subject to

economic constraints; thus, giving investigators an

extremely useful tool during the critical planning phase

of a study.
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APPENDIX A

User-defined code for single-season models that are not in predefined list (Ecological Archives A017-010-A1).

APPENDIX B

List of candidate models for exploration of habitat differences (Ecological Archives A017-010-A2).
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