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Model-based estimation of individual ® tness
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abstract Fitness is the cur rency of natural selection, a measure of the propagation rate

of genotypes into future generations. Its various de® nitions have the common feature that

they are functions of survival and fertility rates. At the individual level, the operative

level for natural selection, these rates must be understood as latent features, genetically

determined propensities existing at birth. This conception of rates requires that individual

® tness be de® ned and estimated by consideration of the individual in a modelled relation

to a group of similar individuals; the only alternative is to consider a sample of size one,

unless a clone of identical individuals is available. We present hierarchical models describing

individual heterogeneity in survival and fertility rates and allowing for associations between

these rates at the individual level. We apply these models to an analysis of life histories of

Kittiwakes ( Rissa tridactyla) obser ved at several colonies on the B rittany coast of France.

We compare B ayesian estimation of the population distribution of individual ® tness with

estimation based on treating individual life histories in isolation, as samples of size one

(e.g. McGraw & Caswell, 1996).

1 Introduction: growth rate and ® tness

Evolutionary ecology is the study of the causes and consequences of variation in

genetic traits, speci® cally, of those traits that contribute to variation in the ® tness

of genotypes. In broadest terms, ® tness is the capacity of a given genotype to be

propagated into future generations (Fisher, 1930). Thus, the projected growth rate

of a genotype is regarded as a reasonable measure of ® tness (Lande, 1982, a,b);

Danchin et al., 1995; Caswell, 2001). Projected growth rates of genotypes are

determined not only by the total numbers of oþ spring produced by individuals,

but also by how early in the lifespan those oþ spring are produced.
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For populations with overlapping generations, projected growth rate under time

invariant conditions is given as the dominant eigenvalue k of a primitive, non-

negative projection matrix (Caswell, 2001). Derivatives of k with respect to the

individual elements of the matrix are compared to determine which aspects of the

demography have the largest potential eþ ects on ® tness, and are targets for

selection. However, natural selection operates at the level of the individual, and

analysis of matrix projection models constructed using parameter values calculated

from aggregates of individuals may not adequately characterize ® tness diþ erences

at the individual level (Cooch et al., this issue). Traditional solutions to this problem

have involved use of net reproductive rate (R0 ) and related metrics, which can be

calculated on an individual basis (Kalisz, 1986; Stearns, 1992). However, such

measures are often poor proxies for ® tness, since they do not account for diþ erences

in timing of reproduction, and are only reasonable under restrictive assumptions

(Stearns, 1992).

2 Latent process de ® nition of individual ® tness

Given that natural selection occurs at the individual level, and given that individuals

are not all the same in their capacity for propagating their genotypes, a suitable

measure of ® tness at the individual level is desirable. McGraw & Caswell (1996)

propose that individual ® tness be measured using k , the unique non-negative

eigenvalue of an individual-speci® c Leslie matrix. Individual ® tness, as measured by

k , could in theory be related to variation in individual traits (e.g. body size), with

the resulting slopes serving as estimates of the selection gradient on that trait

(McGraw & Caswell, 1996; Caswell, 2001). This approach has been adopted in a

number of studies (cited in Caswell, 2001, p. 297).

However, while the intuitive appeal of this approach is clear, there remains the

question of what k calculated from an `individual matrix’ actually represents? Here,

we formally de® ne individual ® tness in terms of latent breeding and survival rates,

as distinguished from realized rates. The distinction is an important one, and

perhaps most easily understood by consideration at the population level.

Much confusion can be avoided by distinguishing population propensities from

® nite population rates. Genetically identical populations, under identical condi-

tions, would be anticipated to have slight diþ erences in realized fertility and survival

rates, simply due to natural variation and chance events. Even though two such

populations would be described by common latent survival and fertility rates, a

prior i, the realized survival and fertility rates for the two populations would vary.

Consequently, the two populations would be described by a common latent value

of k , but would yield distinct realized values. For many applications, we believe

that the latent value is of greater interest; realized values are understood as estimates

of the latent value.

Extending this distinction to the individual level allows individual ® tness to be

de® ned in perfect analogy to population ® tness. We may suppose that associated

with each individual there are, a prior i, individual survival probabilities and

fecundities. These are latent features, genetically determined and existing regardless

of the individual’s realized history. Individual ® tness is then de® ned as the unique

non-negative eigenvalue of the individual-speci® c Leslie matrix calculated using

the latent rates. McGraw & Caswell’ s measure of individual ® tness is naturally

distinguished as realized individual ® tness, since it is calculated using realized rather

than latent individual rates.
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Thus we de® ne individual ® tness as a latent feature, directly analogous to a

latent population feature. This conception of individual ® tness is not new; indeed

it appears to underlie McGraw & Caswell’ s (1996) discussion, and is evident in

Fisher (1930). The distinction of realized ® tness and latent ® tness may not be

particularly important in discussion of large populations, averaged over varying

environmental conditions. At the individual level, though, the distinction is impor-

tant, as we demonstrate in Section 4.

3 Formal de® nition of individual ® tness

For a species with maximum lifetime J, the population Leslie matrix M for

changes in pre-breeding population size is characterized by two vectors, P and F,

corresponding to age-speci® c adult survival and fertility rates: M is the J 3 J matrix

with F 5 (F1 , F2 , . . . , FJ ) ¢ along its ® rst row, P 5 (P1 , P2 , . . . , PJ 2 1 ) ¢ along the ® rst

subdiagonal, and zeros elsewhere. The stable population growth rate associated

with P and F is the unique non-negative eigenvalue of M , the existence of which

is guaranteed by the Perron- Frobenius theorem (as discussed at length in Caswell,

2001).

We de® ne a vector S 5 (S1 , S2 , . . . , SJ) ¢ of cumulative survival probabilities; here,

S1 5 1 and Sk 5 Pk 2 1 S k 2 1 , for k 5 2, 3, . . . , J. It will be convenient to write v ab b for

the vector formed by element-wise multiplication of J-vectors a and b. For any

J-vector a 5 (a1 , a2 , . . . , aJ) ¢ we de® ne the polynomial

h(x; a) 5 x
J 2 +

J

k 5 1

ak x
J 2 k (1)

Here and throughout, we assume that a i > 0, for all i, with strict inequality for at

least one i; under these conditions there exists a unique non-negative solution in x

of h(x; a) 5 0, which we designate as k (a). In particular, the stable population

growth rate is k ( v SF b ): it is the unique non-negative solution in x of

h(x; v SF b ) 5 x
J

2 +
J

k 5 1

(Sk Fk )x
J 2 k

5 0

We de® ne individual ® tness analogously, supposing that associated with each

individual there are, a prior i, vectors s and f of cumulative survival probabilities

and fecundities. These are latent features, genetically determined and existing

regardless of the individual’ s realized history. Individual ® tness is then also a latent

feature, the unique positive solution of h(x; v sf b ) 5 0, denoted by k ( v sf b ).

4 Realized individual ® tness as an estimator of latent individual ® tness

Individual ® tness, de® ned as a latent feature, cannot be observed. It is an a prior i

summary of parameters governing potential realizations of an individual’ s life

history. Putting aside for the moment the possibility of estimating these individual

parameters in the context of a model-based analysis of groups of individuals, we

here consider what can be done to estimate an individual’ s latent ® tness using the

only data speci® cally relevant to the individual, the individual’ s `realized history’ .

Since the realized history is a sample of size 1 of the potential realizations governed

by the parameters determining latent ® tness, we might have doubts as to the

feasibility of the endeavour. In this section we show that McGraw & Caswell’ s
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measure of individual ® tness can be thought of as an estimator, albeit biased, of

individual latent ® tness. We demonstrate that the bias can vary among individuals

having the same latent ® tness, and argue for the need of model-based estimation

of individual ® tness.

Suppose that we are able to observe the life history of a particular individual

described by latent vectors s and f , and let X denote the maximum age the

individual attains. Let 1k denote a vector consisting of k ones followed by J 2 k

zeros; thus the vector v 1k f b consists of the individual’ s fecundity in years 1 through

k, followed by J 2 k zeros. Replacing k by X, the random vector v 1k f b is an

unbiased estimator of v sf b , based only on the available information from the

realized lifetime. It is natural therefore to describe k ( v 1X f b ) as the individual’ s

realized ® tness. This is precisely the approach taken by McGraw & Caswell (1996):

it can be shown without diý culty that the measure of individual ® tness they

propose, based on individual Leslie matrices, is equivalent to k ( v 1X f b ).

Realized individual ® tness may be of interest in its own right, but the natural

question is how realized ® tness relates to latent ® tness. Since v 1X f b is an unbiased

estimator of v sf b , it is natural to ask whether k ( v 1X f b ) is also an unbiased estimator

of k ( v sf b ); that is, whether realized individual ® tness is an unbiased estimator of

latent ® tness. This amounts to asking whether

E( k v 1X f b ) 5 k (E( v 1X f b ))

where E(´) denotes mathematical expectation. Since k (a) is non-linear, it is not

surprising that the question is answered in the negative. In the Appendix we

demonstrate that realized ® tness always has a negative bias as an estimator of latent

® tness. As McGraw & Caswell (1996) point out, bias need not preclude the

usefulness of an estimator. Since realized ® tness might only be used as an index to

individual quality, we might not be concerned with bias: if we could be con® dent

that the amount of bias were reasonably consistent for distinct values of the latent

parameters p and f , realized ® tness would serve as a useful index to latent ® tness,

even though negatively biased.

The performance of realized ® tness as an estimator of latent ® tness is easily

assessed, particularly if we restrict our attention to a special case of a ® xed fecundity

vector f. Under this restriction, there are only J distinct life histories, determined

by the number of age-classes into which the individual survives. Given the latent

vector p of survival rates, one may calculate the probability distribution for survival,

and directly calculate the expected value of the latent ® tness. Figure 1 summarizes

1000 calculations of the expected value of the realized ® tness, all for individuals

with f 5 (0,1,1,1,1,1,0,0) ¢ , each having a distinct vector p. Each vector p consists

of seven survival probabilities, chosen at random over the range (0.25, 0.75). The

median values of latent and average realized ® tness were 0.98 and 0.60, respectively.

A Loess curve through the cloud of points is roughly parallel to the identity,

suggesting that the bias, although consistently negative, is reasonably constant.

In Fig. 2, however, not only is the bias typically greater (median latent and

average realized ® tnesses are 0.95 and 0.14, respectively), but the magnitude of

the bias varies: when the latent ® tness is 0.6, the bias is typically about 2 0.55;

when the latent ® tness is 1.10, the bias is typically about 2 0.84. Figure 2 was

produced with constant f 5 (0,0,0,5,5,5,5,5) ¢ , and with individual latent survival

rates chosen at random over the range (0.10, 0.90).

Realized ® tness is zero for individuals that die before sexual maturity. Their

latent ® tness, however, may not be zero; a prior i, such individuals may have a
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Fig. 1. Expected value of realized ® tness compared to latent ® tness. 1000 calculations of the expected

value of the realized ® tness, all for individuals with f 5 (0,1,1,1,1, 1,0,0) ¢ , each having a distinct vector

p. Each vector p consists of seven survival probabilities, chosen at random over the range (0.25, 0.75).

Fig. 2. Expected value of realized ® tness compared to latent ® tness. 1000 calculations of the expected

value of the realized ® tness, all for individuals with f 5 (0,0,0,5,5, 5,5,5) ¢ , and with individual latent

survival rates chosen at random over the range (0.10 , 0.90).
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Fig. 3. Expected value of realized ® tness, given survival to breeding age, compared to latent ® tness.

Latent parameters as for Fig. 1.

potential for reaching sexual maturity and breeding. It is interesting to evaluate the

relation between latent ® tness and realized ® tness, conditional on the individual

reaching sexual maturity. Under the conditions given for Fig. 1, breeding requires

X > 1; we thus computed the expected value of the realized ® tness conditional on

X > 1 for the same 1000 individuals, and plot the results in Fig. 3. There is very

little association between these expected realized ® tnesses and the corresponding

latent ® tnesses.

In Figs 1 and 2 it is apparent that two individuals having approximately the same

latent ® tness can have distinct average expected ® tnesses. In fact, it is easy to

construct examples of latent parameter vectors corresponding to equal latent

® tness, but with substantially diþ erent average realized ® tnesses. Suppose J 5 5,

and start with latent vectors p1 5 (0.8, 0.8, 0.8, 0.8) ¢ and f1 5 (0, 1, 2, 3, 2) ¢ . Halving

the ® rst survival rate and doubling subsequent fecundities yields vectors

p2 5 (0.4, 0.8, 0.8, 0.8) ¢ and f2 5 (0, 2, 4, 6, 4) ¢ . Both pairs result in the same value

for v sf b and consequently have equal latent ® tnesses, k ( v sf b ) 5 1.56; however, the

realized ® tness (a random variable) has mean of 1.28 (SD 5 0.70) in the ® rst case

and mean of 0.82 (SD 5 1.03) in the second. Repeating the process twice more,

the latent ® tness remains unchanged, but the average expected ® tness drops ® rst

to 0.54 (SD 5 1.08), then to 0.35 (SD 5 1.07). Such inconsistencies diminish the

value of realized ® tness as an index to latent ® tness. The magnitude of the variability

in the realized ® tness is also cause for concern, especially if realized ® tness is to be

used as an explanatory variable in subsequent analyses.

Based on a single life history, viewed in isolation, realized ® tness may be the

only reasonable estimate of latent ® tness. Fortunately, it would be an unusual

circumstance in which only a single life history were available, without any other

data. In the next sections we investigate model-based estimation of latent ® tness.
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5 Modelling individual ® tnessÐ a sample population

Suppose that individual survival and fertility rates are described by parametric

models at the population level. It is then possible to obtain better estimates of v sf b
than v 1X f b and, consequently, to improve estimation of individual ® tness.

We begin by describing such a model, which we will then use to illustrate

techniques for estimating individual ® tness, and as the basis of simulations compar-

ing the population distribution of latent ® tness with the population distribution of

expected values of realized individual ® tness. The model we describe is based on

analyses of data for Kittiwakes (Rissa tridactyla) observed at several colonies on the

Brittany coast of France by Jean-Yves Monnat, Etienne Danchin and a team of

collaborators (Danchin & Monnat, 1992; Danchin et al., 1998).

The model we describe here includes individual-speci® c covariation in breeding

and survival rates, leading to variation in latent ® tness among individuals. At

present, we have only estimated these components of variation for birds that have

attempted breeding at least once, and must use population average values up to

and including the age of ® rst breeding. Thus, our parameterization of life histories

has two parts, the ® rst (up to age of ® rst breeding attempt) without individual-

speci® c variation, the second (after ® rst breeding attempt) including individual-

speci® c variation.

In our investigations of the population distribution of individual ® tness, the age

of ® rst breeding attempt (AFBA) was treated as a latent feature; individuals could

die prior to attempting breeding. The probability distribution for age of ® rst

breeding attempt is given in Table 1, and was obtained using transition probabilities

obtained by Cam et al. (in Press, a).

Parameter values used for the ® rst part of the model (up to age at ® rst breeding

attempt, AFBA) are given in Table 1. Yearly survival rates up to AFBA were

obtained using multistate capture- recapture models (Nichols & Kendall, 1995;

Cam et al., in Press, a). Estimates of fertility at AFBA were obtained through

analysis of complete life histories of 423 Kittiwakes of known age, the only

Table 1. Kittiwake survival and breeding rates up to age of ® rst breeding

attempt (AFBA)

Rates by age, through AFBA

Individual survival rates, age t 2 1 to t, prior to AFBA:

t 1 2 3 4 5 > 6

u t 0.605 0.600 0.808 0.717 0.704 0.551

Fertility, age of ® rst breeding attempt:

Age/

Young 0 1 2

3 0.784 0.183 0.033

4 0.669 0.280 0.051

5 0.557 0.375 0.068

6 0.697 0.257 0.046

7 0.774 0.191 0.035

Age of ® rst breeding attempt (AFBA)

Age 3 4 5 6 7

Prob 0.221 0.403 0.219 0.099 0.058
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restriction being that selected birds attempted breeding at least once. All were born

before 1987, and died before 1999; only eight of the 423 survived more than 15

years, with 20 years as the maximum.

We used the life histories of these 423 Kittiwakes for our modelling of life history

parameters after AFBA. We supposed that once an individual bird becomes a

breeder, its annual cycle could be described by a sequence of Bernoulli trials. The

® rst, with success probability u , is an indicator of survival from year t 2 1 to t.

Given that the individual survives, a second Bernoulli trial has parameter b , the

conditional probability of successful breeding. Given that the individual breeds

successfully, a third Bernoulli trial with parameter d determines whether the

individual produces 1 or 2 chicks. Nests producing three or more chicks are

su ý ciently uncommon that we omit them from this simple model. The expected

number of chicks produced, given survival, is b + b d .

We ® tted linear models for the logits of the rate parameters; these all included

additive, mean zero normal random year eþ ects. We informally examined the

eþ ects of AFBA and aging, using quadratic, linear, and factor models; we also

examined individual-speci® c variation and covariation in rates; our ® nal selection

of models was guided by results presented in Cam et al. (in Press, b). The data

appear to be satisfactorily described by models including linear e þ ects of aging on

u and c , with correlated individual e þ ects on u and b . Successful breeding rates b

varied among, but not within, individuals. On the other hand, the conditional

probability of producing a second chick, c , appeared to vary within individuals

(increasing with age) but not among individuals.

Thus the second part of our model, that dealing with life histories after AFBA,

was described by survival rates u t (age t 2 1 to t), successful breeding rates b t (one

or more young at age t, given that it survived to age t), and multiple breeding rates

d t (two young at age t, given successful breeding at age t). These are given by

logit ( u t) 5 a u + B u t

logit ( b t) 5 a b

and

logit ( d t ) 5 l d + B d t

here, a 5 ( a u , a b ) is a bivariate normal random variable with mean vector ( l u , l b ) ¢
and covariance matrix described by standard deviations r u and r b and correlation

q . We describe estimation techniques in the next section.

Of special interest in the model are the individual eþ ects. Individual heterogeneity

is described by individual-speci® c e þ ects a u and a b , which are additive on the logit

scale. Fairly strong positive correlation was in evidence: birds more likely to survive

also had greater conditional probabilities of breeding, given that they survived.

6 Estimation

Our analysis was Bayesian; model ® tting was done using Markov chain Monte

Carlo, implemented using program BUGS (Spiegelhalter et al., 1995, software

available for free; download from http: / /www.mrc-bsu.cam.ac.uk /bugs /). Prior

distributions for l u , l b , l d , B u and B d were speci® ed as mean zero normal, with

large variances corresponding to vague prior knowledge. Variances were given
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diþ use inverse gamma priors, and the prior distribution of the correlation parameter

q was uniform on ( 2 1, 1).

The bivariate normal individual eþ ects a 5 ( a u , a b ) were modelled as a u 5 r u Z1

and a b 5 r b ( q Z1 + Î 1 2 q
2
Z2 ) , where Z1 and Z2 are independent standard normal

random variables.

Bayesian inference about a parameter c is based on the posterior distribution of

c . Markov chain Monte Carlo (MCMC) is a useful technique for evaluating this

distribution, which usually cannot be calculated in closed form: several realizations

of a Markov chain with stationary distribution equal to the posterior are generated,

initial values possibly not representative of the stationary distribution are discarded,

and a subset of the remaining values are treated as (dependent) samples of the

posterior distribution. For an introduction to MCMC see Gilks et al. (1996).

Our MCMC implementation consisted of generating ® ve realizations of a Markov

chain for the posterior distribution of c 5 ( l b , l u , l d , B u , B d , s b , s u , r b , r u , q ) ¢ ; here,

s u and s b are the standard deviations of the year eþ ects on survival and successful

breeding rates. The Markov chains we generated were of length 7500; we discarded

the ® rst 500 observations from each chain, and assessed convergence to the

stationary distribution by applying the Gelman- Rubin diagnostic (Gelman, 1996)

to the remaining 7000 observations. We combined the last 2000 observations from

each of the ® ve chains, and based our evaluations of posterior distributions on

these sets of 10 000 values. Summaries for c are given in Table 2.

It is helpful to recall that if X* is sampled from the distribution of X, then q(X*)

has the same distribution as q(X). Thus, if a particular individual’ s ® tness is

desired, one may simply include the pair individual’ s parameters a 5 ( a u , a b ) in the

vector c , then calculate vectors of survival, breeding, and multiple breeding rates

( u t , b t , and d t) for each of the 10 000 observations produced by the MCMC sample

of values. Using these and the pre-breeding survival rates of Table 1, one could

produce MCMC samples of individual speci® c latent survival and fecundity vectors

s and f, and latent ® tness k ( v sf b ). The posterior distribution of the individual’ s

latent ® tness could then be examined; in particular, the posterior mean might be

taken as a Bayesian point estimate. This approach might be of value if individual

speci® c values of latent ® tness were to be used as explanatory variables in sub-

sequent investigation.

We suggest that interest will generally focus on the population distribution of

latent ® tness, rather than on the individual latent ® tnesses. Features of this

distribution are simply functions q(c) of the parameter vector c 5 ( l b , l u , l d , B W , B d ,

s b , s u , r b , r u , q ) ¢ ; we need not (nor should we) obtain estimates of the individual

latent ® tnesses to estimate such values q(c ). The only diý culty is that the function

values q(c ) cannot be calculated analytically, and must themselves be computed

by simulation. We describe this procedure in the next section.

7 Evaluation of population distribution of individual ® tness

Even if c 5 ( l b , l u , l d , B W , B d , s b , s u , r b , r u , q ) ¢ were known, computation of the

population distribution of k ( v sf b ) would be analytically intractable. Given a speci-

® ed value c , the best we can do is to decide which features of this distribution we

are interested in (e.g. mean, standard deviation, percentiles), and to approximate

these features through simulation. We sample one set of individual eþ ects

a 5 ( a u , a b ) from the speci® ed bivariate normal distribution, and calculate a corre-

sponding value of latent ® tness k ( v sf b ). Pre-breeding survival rates are obtained by
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adding a u to the logit of pre-breeding survival rates given in Table 1; survival and

breeding rates are averaged against the distribution of AFBA given there.

This procedure is then repeated for a large number of individual eþ ects

a 5 ( a u , a b ) sampled from the distribution determined by the same c . Moments

and percentiles of the population distribution of k ( v sf b ), for the ® xed value of c ,

are approximated to any desired precision by repeating the simulation. We have

`computed’ q(c) from c .

Since c is unknown, we repeat this simulation for a sample of values c* sampled

from the posterior distribution of c . Each simulation summary is then, to arbitrarily

close approximation, a sample q(c*) from the posterior distribution of q(c ).

Here is how we applied the procedure to the kittiwake data. We conducted 1000

simulations, one simulation for every 10th value c* among the 10 000 values from

the MCMC analysis. Using a subset of the sampled values c* reduces the

computational burden without too much loss of eý ciency, since it also reduces the

within chain autocorrelation. Each simulation consisted of 399 replications. The

2.5th, 10th, 25th, 50th, 75th, 90th and 97.5th percentiles were estimated by the

10th, 40th, 100th, 200th, 300th, 360th and 390th order statistics respectively; we

also recorded the mean and standard deviation among the 399 values. These values

are summarized in Table 3. For example, a Bayesian point estimate of the 90th

percentile of latent ® tnesses is its posterior mean (0.9393), with 95% credible

interval (0.8794, 0.9853). Similarly, a Bayesian estimate of the proportion of

individuals with k > 1 is 0.0309, with 95% credible interval (0.0000, 0.0777).

Table 3 also includes a population level estimate of ® tness, denoted by K , computed

using the average survival and fecundity vectors for each set of 399 simulated

individuals.

8 Evaluation of realized ® tness

For each of the 1000 3 399 parameter sets generated in the analysis described in

the previous section, we generated two random life histories, and calculated the

corresponding realized ® tnesses. This allows evaluation of sources of variation in

realized ® tness, and consideration of the relation between realized and latent

® tness. In particular, it allows an evaluation of the anticipated performance of

latent ® tness were it possible to obtain complete life histories of the entire

population of Kittiwakes, as we have modelled it.

We refer to the variation within the 1000 3 399 pairs of realized ® tnesses as

realization variation. This quantity, which cannot be measured using the data

provided by a single life history, accounted for 47% [95% credible interval:

(40%, 53%)] of the total variance among each set of 399 individuals. The magni-

tude of realization variation accounts, in part, for its poor performance as a

surrogate for latent ® tness: the correlation between latent and realized ® tness is

only 0.23 (0.12, 0.32).

Realized ® tness is zero for 89% of the individuals (85%, 92%) and takes values

greater than 0.79 for all others. The (population) mean realized ® tness was

0.107 (0.073, 0.148), considerably lower than the mean latent ® tness of 0.749

(0.684, 0.812).

9 Discussion

We regard individual ® tness as a latent characteristic, of individuals. Unlike

population ® tness, individual ® tness cannot be consistently estimated, in the
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probabilistic sense; there is a sample of size 1 (the individual life history) and no

prospect of replication.

The only exception to this rule is when the individual is a member of a clone, in

which case individual and population survival and breeding rates coincide. From a

mathematical perspective, a consistent estimator has been obtained by a strong

model assumption (that individuals within the clone are replicates), so that data

from other individuals provide the requisite replication.

McGraw & Caswell (1996) describe their measure of individual ® tness (which

we have distinguished as `realized ® tness’ ) as a `consistent’ estimator; their use of

the term surely being in the colloquial sense, rather than in the sense relating to

replication. That is, individuals with similar latent ® tnesses should have similar

realized ® tnesses. We have demonstrated that this is not the case. Even without

this inconsistency, the large variability in realized ® tness about its expected value

mitigates its value as an estimator, especially if realized ® tness is to be used as an

explanatory variable in subsequent analyses. These comments are not to say that

realized ® tness is of no value, but to highlight the limitations imposed by attempting

to estimate an individual’ s ® tness using only the sample of size 1 that the individual

life history provides, alone.

Fortunately, the strong model assumption associated with using a clone can be

relaxed, and replication, of a sort, can be obtained. We suggest that improved

estimators of individual ® tness can be reasonably obtained under speci® c models

of individual heterogeneity in survival and breeding rates.

Our model for the Kittiwake data incorporates individual heterogeneity through

additive random eþ ects on the logits of survival and breeding; these eþ ects have a

bivariate normal distribution. The correlation coeý cient in these individual eþ ects

is certainly positive: the estimate was 0.670, with 95% credible interval

(0.282, 0.978), thus birds with higher survival probabilities also have higher

probabilities of breeding, given that they survive.

An estimate of the population density for individual ® tness is displayed in Fig.

4; this was calculated using a kernel density smoother on a sample of the 399 3 1000

values obtained in the simulations described in Section. There is some indication

of a negative skew in the distribution: the posterior probability that the median

exceeds the mean was 0.986, although the estimate of the diþ erence was only

0.016 (0.001, 0.039). However, Fig. 5 shows that the diþ erence between the

cumulative distribution of latent ® tness (solid central line) and an approximating

normal distribution (dashed line) is not large. Our estimates of the cumulative

distribution of latent ® tness, pointwise 95% credible intervals and estimators of

diþ erence between median and mean were obtained by the methods of Section 5;

the approximating normal distribution is based on the posterior means for the

mean and standard deviation of latent ® tness.

Interest naturally focuses on the proportion of individuals with latent ® tness

exceeding 1 and on whether mean individual ® tness is greater than 1, because of

the implications for population growth associated with population ® tness exceeding

1. It is always the case that the average individual ® tness is smaller than the

population ® tness (e.g. 0.7485 versus 0.8294 in Table 3); this is demonstrated

using the same reasoning that proves realized ® tness to be negatively biased as an

estimator of latent ® tness, at the individual level. Thus, the interpretation of mean

latent ® tness, and indeed, of individual ® tnesses themselves must be approached

with caution. In the case of the Kittiwake data described herein, the pre-breeding

survival rates are 1 minus the probability of death or permanent emigration. While



220 W. A. Link et al.

Fig. 4. Estimated population density function for individual latent ® tness. Box plot highlights 5th,

25th, 50th, 75th, and 95th percentiles.

Fig. 5. Cumulative distribution of latent ® tness (posterior mean, with pointwise 95% credible intervals).

Dashed line is cumulative distribution function based on estimated mean and variance, and assuming

normality.
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Fig. 6. Estimated population density function for individual latent ® tness. Pre-breeding survival rates

adjusted to re¯ ect 50% loss due to permanent emigration. Box plot highlights 5th, 25th, 50th, 75th,

and 95th percentiles.

Fig. 7. Cumulative distribution of latent ® tness (posterior mean, with pointwise 95% credible intervals).

Pre-breeding survival rates adjusted to re¯ ect 50% loss due to permanent emigration. Dashed line is

cumulative distribution function based on estimated mean and variance, and assuming normality.
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it is known that there is a high degree of site ® delity among adults, it may be that

some of the loss among pre-breeders is due to permanent emigration. Latent ® tness

estimates will obviously be negatively biased when survival rates estimates for pre-

breeders are too low.

Coulson & NeÁ ve de MeÂ vergnies (1992) estimated that 36% of young kittiwakes

are faithful to the natal colony, and that 21% move more than 100 km away. Taking

these numbers as rough guides, we repeated the analyses of Section 5, under the

assumption that half of the pre-breeding loss was due to permanent emigration.

Our results are summarized in Table 4, and Figs 6 and 7. We regard the larger

estimates of ® tness provided there as our most credible estimates of population

values for the kittiwakes.

Finally, we reiterate that the Bayesian approach to analysis of individual hetero-

geneity in survival and breeding rates presented in this paper is appropriate for

other de® nitions of individual ® tness (e.g. net reproductive rate) as well.
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Appendix

To show that

k ( v sf b ) 5 k (E( v 1X f b )) 5 k ( +
J

k 5 1

Pr(X 5 k) v 1k f b )
> +

J

k 5 1

Pr(X 5 k) k ( v 1k f b ) 5 E( k ( v 1Xf b ))

it su ý ces to demonstrate that for any vectors a and b satisfying k (a) < k (b), and

p Î (0, 1),

k (pa + (1 2 p)b) > p k (a) + (1 2 p) k (b) (A1)

Fix a and b, and de® ne the following notation:

· K (p) 5 k ( pa + (1 2 p)b), 0 < p < 1

· cp 5 pa + (1 2 p)b

· h ¢ (x;a) 5 dh(x;a) /dx; h"(x;a) 5 d2
h(x; a) /dx

2 ; K ¢ (p) 5 d K (p) /dp

The following facts are easily veri® ed:

(F1) h(x; cp ) 5 ph(x; a) + (1 2 p)h(x; b)

(F2) h ¢ ( k (a);a) > 0; h"( k (a);a) > 0

(F3) K ¢ (p) < 0

(F4) h ¢ ( K (p);a) 2 h ¢ ( K (p);b) < 0

By de® nition, h( K ( p);cp ) 5 0. Expanding this using (F1), and taking second

derivatives with respect to p, we establish that

2 K ¢ (p)[h ¢ ( K (p);a) 2 h ¢ ( K (p);b)] + h"( K (p);cp )[ K ¢ (p)]2 + h ¢ ( K (p);cp ) K "( p) 5 0

Using (F2), (F3) and (F4), the signs of the terms are summarized as

( < 0)( < 0) + ( > 0)( > 0) + ( > 0) K "(p) 5 0

from which it follows that K "( p) < 0; (A1) follows as an immediate consequence.


