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Prior distributions for strati® ed capture-
recapture models

J. A. DUPUIS, Laboratoire de Statistique et ProbabiliteÂ s, University Paul Sabatier,

France

abstract We consider the Arnason- Schwarz model, usually used to estimate survival

and movement probabilities from capture- recapture data. A missing data structure of this

model is constructed which allows a clear separation of information relative to capture

and relative to movement. Extensions of the Arnason- Schwarz model are considered. For

example, we consider a model that takes into account both the individual mig ration

history and the individual reproduction history. B iological assumptions of these extensions

are summarized via a directed g raph. Owing to missing data, the posterior distribution

of parameters is numerically intractable. To overcome those computational diý culties we

advocate a Gibbs sampling algorithm that takes advantage of the missing data structure

inherent in capture- recapture models. Prior information on survival, capture and move-

ment probabilities typically consists of a prior mean and of a prior 95% credible con® dence

interval. Dirichlet distributions are used to incorporate some prior information on capture,

survival probabilities, and movement probabilities. Finally, the in¯ uence of the prior on

the B ayesian estimates of movement probabilities is examined.

1 Introduction

When information about the movement of animals among populations is provided

by capture- recapture data, multi-strata models have been developed to estimate

movement probabilities (Arnason, 1973; Schwarz et al., 1993; Brownie et al., 1993).

Based upon observations only, frequentist statistical analyses do not take into

account the knowledge that biologists have on the studied species. For open popula-

tions, Seber (1992) and Pollock (1991) suggest we can adopt the Bayesian viewpoint,

integrating the prior knowledge of experts, as has been done for closed populations

(Casteldine, 1981; George & Robert, 1992). In all these papers, prior modelling has
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focused on the size of the population, which was the parameter of interest. Since

these recommendations, Bayesian procedures have been developed in the setting of

open populations (Vounatsou & Smith, 1995; Brooks et al., 2000a); however, in

most studies (apart from Brooks et al., 2000b), the authors only contemplate non-

informative distributions, although information about capture, survival, and move-

ment parameters is often available, as pointed out, for instance, by Pollock (1991).

In most situations, biologists know or can appreciate some qualitative or /and

quantitative elements that are liable to aþ ect the value of some parameters (Breslow,

1990). For instance, capture parameters will depend: upon the studied animal

species, upon the protocol implemented to capture animals, upon the time spent to

capture them during a given capture session, upon the dexterity of the experimenter,

upon time-dependent environmental covariates, etc. In this paper, we deliberately

adopt an informative point of view. In Sections 4 and 5, we show how to incorporate

some prior information on capture, survival or movement probabilities. In Section

6, we examine to what extent an informative prior distribution on a given movement

parameter can aþ ect the Bayesian estimation of the corresponding parameters. To

reach this goal we need eý cient algorithms for computing Bayesian estimations of

these probabilities. Because of the complexity of the posterior distribution, we have

proposed in Dupuis (1995) a Gibbs sampling algorithm that takes advantage of the

missing data structure of the Arnason- Schwarz model. This speci® c structure is

reviewed in Section 2. In Section 3, extensions of the Arnason- Schwarz model are

considered and a Bayesian statistical analysis of these complex models is outlined.

2 The Arnason-Schwarz model

The experimental protocol is standard, and is not reviewed in this paper (see

Schwarz et al., 1993 or Dupuis, 1995). We denote by T the number of capture

occasions, including the ® rst tagging period. The capture- recapture data thus

include T 2 1 cohorts. We denote by n the number of tagged animals. We assume

there is no loss on capture, no mark loss and that no observation can be collected

from dead animals. The study zone denoted by K , has been divided in k > 2 strata.

Moreover, the marked sample is assumed to be representative; in particular, we

assume that tagging does not in¯ uence movement.

2.1 The missing data structure

The description of the AS (Arnason- Schwarz) model we develop in this paper

stresses the missing data structure of this model. The key idea is to model the two

processes that underlie the data: that is the capture process and the movement

process (which constitutes the process of interest). This formulation, ® rst proposed

in Dupuis (1995), gives a new light to usual formulations of the AS model, while

providing an appropriate framework to implement the algorithms we develop to

obtain the posterior quantities of interest. We de® ne 1 < s i < T 2 1 as the time at

which animal i has been marked. We denote by z (i, t) Î K ² 5 K e {² } the state of

animal i at time t > s i , where z(i, t) 5 r Î K means that animal i is alive at time t in

stratum r, and where z(i, t) 5 ² means that it is dead at time t (or outside K ). We

denote by y i 5 ( y(i, t) ;t > s i) the capture- recapture history related to the animal i; for

instance, a possible occurrence when T 5 8, and k 5 2 is:

y i 5 1 2 2 . 2 1 . . (1)
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This sequence means that the i th animal, marked at time t 5 1 in stratum r 5 1, has

been recaptured at times t 5 2, 3, 5 in stratum r 5 2, and has been recaptured, at

time t 5 6, in stratum 1. It has not been recaptured at times t 5 4, 7, 8. At these

times, states z(i, t) are not available from the data y i . The notation y(i, t) 5 . means that

z(i, t) is missing: animal i is, at time t, either dead (or outside K ), or alive (in K ) but

it has not been captured. Note that, although state z(i, t) at time t 5 4 is not available

from the data y i , we know that z (i, t) Î K , since animal i has been later recaptured.

For equation (1), we de® ne the corresponding capture process:

x i 5 1 1 1 0 1 1 0 0

where x(i, t) 5 1 if the animal i is captured at time t and x(i, t) 5 0 otherwise. The

capture- recapture history y i can be viewed as the stacking of the movement process

z i , and of the capture process x i . A possible z i for the above y i is:

z i 5 1 2 2 1 2 1 1 ²

where we have indicated in bold face the missing z (i, t) . Given y i , there are 14

possibilities for z i which are: 1 2 2 1 2 1 1 1; 1 2 2 1 2 1 1 2; 1 2 2 1 2 1 2 2; 1 2 2 1 2 1 2 1;

1 2 2 1 2 1 1 ² ; 1 2 2 1 2 1 2 ² ; 1 2 2 1 2 1 ² ² ; the other seven possibilities are obtained

from z i,4) 5 2.

By considering the two underlying processes x i and z i we can formulate biological

assumptions concerning capture and movement, as well as some possible dependen-

cies between those two processes (see below, Section 2.2).

2.2 Assumptions and parameters

The (usual) following biological assumptions are made:

(i) the n individual processes (xi , z i) are independently and identically distrib-

uted; thus we assume that animals behave independently with respect to

capture, and movement;

(ii) the probability of being at time t, in r Î K ² depends upon the capture and

movement history until t 2 1, only through the location at time t 2 1; thus,

movement is modelled by a ® rst-order Markov chain;

(iii) the probability of being captured at time t depends upon the capture and

movement history up to t only through z (i, t) ; thus we assume that there is

no trap-response;

(iv) movements among strata between sampling times are unconstrained and

migrations beyond the study strata are permanent.

Assumptions (ii) and (iii) characterize the dependence structure between x i and

z i ; they are summarized in the directed graph [ AS below:

[ AS

. . . x(i, t 2 1) x (i, t) x(i, t +1) . . .

­ ­ ­
. . . z(i, t 2 1) ® z (i, t) ® z (i, t +1) . . .

This representation allows a visual and clear formulation of the conditional

independence assumptions between the diþ erent random variables present in the

model; see for example, Whittaker (1990) for details. Such a representation is the

signature of the AS model. The presence (or absence) of arrows between variables

that constitute the graph has a translation in biological terms (see further). Directed
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graphs thus appear as an attractive tool to summarize current capture- recapture

models or to devise new ones (see Section 3 for illustration).

Consistent with the previous assumptions, we introduce the following parameters.

The capture probability Pr{x(i, t) 5 1 ½ z(i, t) 5 r}, where r Î K , is denoted by pt(r). In

this paper the state ² is assumed to be not observable (thus pr(² ) 5 0), but our

approach can be easily extended to the situation where pt(² ) Î [0, 1] (see Dupuis

et al., 2001). The capture probability depends on z(i, t) . This is consistent with the

graph, since x(i, t) and z (i, t) are connected by an arrow. The absence of an arrow (for

all t) between the x(i, t) s is interpreted as an absence of any trap-response. The

absence of an arrow (for all t) between x(i, t) and z(i, t + 1) is interpreted as an absence

of e þ ect of capture upon movement.

For 1 < t < T 2 1, r Î K ² , s Î K ² we denote by qt (r, s) the transition probability

Pr{z i, t +1) 5 s ½ z (i, t) 5 r }. In order to obtain expressions in terms of quantities of

biological interest (see Brownie et al., 1993, and Schwarz et al., 1993, for biological

justi® cations), the transition probability q t(r, s) is, for r and s in K , decomposed as

the product of a survival probability u t(r) and an interstratum movement probability

c t(r, s), namely: q t(r, s) 5 u t(r)c t(r, s) where u t(r) 5 R s Î K q t(r, s) 5 1 2 q t(r, ² ). Note that

R s Î K c t(r, s) 5 1, while R s Î K ² qt (r, s) 5 1. Let c t(r) 5 (c t(r, 1), . . . , c t(r, s), . . . , c t(r, k)).

We denote by h 5 (p, u ,c ) the parameters of the model, where: c 5 (c t(r); t 5 1,

T 2 1; r Î K); p 5 (p t(r); t 5 2, T ; r Î K); and u 5 ( u t(r); t 5 1, T 2 1; r Î K). Note that

the model associated to this parameterization is not identi® able, as it is often the

case in missing data models (e.g. Robert & Casella, 1999). From a Bayesian point

of view, this is not a problem as long as we use proper prior distributions, which

ensures the existence of the posterior distribution of h .

2.3 Prior distributions

The density of the prior distribution on h is denoted by p ( h ). We assume that:

c t (r) ~ X k (et(r, 1), . . . , et (r, k)), p t(r) ~ V e(a t(r), b t(r)), u t ~ V e( a t (r), b t(r)),

all independently, where (et(r, 1), . . . , et(r, k)), (at(r), bt(r)), and ( a t(r), b t(r)), are

determined by the prior information. The choice of Beta and Dirichlet distributions

is justi ® ed by practical and computational considerations, and their use allows us

to incorporate easily the expert knowledge (see Sections 4 and 5).

2.4 Estimation via a Gibbs sampling algorithm

In this paper, the only Bayesian estimator of h we consider is the posterior mean

of h ; it is denoted by [ h ½ y]. Owing to missing data, the likelihood, L( h ½ y), is

complex (see Schwarz et al., 1993). As pointed out in Dupuis (1995), the posterior

distribution of parameters p ( h ½ y), which is proportional to L( h ½ y) 3 p (h ), is numeri-

cally intractable. To overcome these computational diý culties, we advocate a

Gibbs sampling algorithm that takes advantage of the missing data structure. This

strategy is now very common in Bayesian analysis of missing data models (e.g.

Robert & Casella, 1999). The alternative would consist of implementing the Gibbs

sampling on each component of h , but this approach is more diý cult to implement

than the missing data approach, because speci® c algorithms have to be developed

to simulate the conditional distributions that appear in this implementation of the

Gibbs algorithm (Vounatsou & Smith, 1995). In our case, the Gibbs sampling

algorithm produces two chains: one is ( h
(l ), l > 1) and the other one is (z

(l )
m , l > 0),
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where zm denotes the set of the missing z(i, t)s. The missing data simulation phase

and the parameter simulation phase are reviewed in Dupuis (1995). Nevertheless,

we would like to make clear what we mean by: `to take advantage of the missing

data structure’ . One ® rst takes advantage of the fact that the likelihood of the

complete data, we denote by L( h ½ y, zm ), where y 5 (y1 , . . . , y i , . . . , yn ), is very

simple. Taking into account assumptions (i), (ii), and (iii) we have shown, in

Dupuis (1995), that L( h ½ y, zm ) is equal to:

*
2 < t < T
1 < r < k

pt (r)ut(r) {1 2 pt (r)}vt(r)
3 *

1 < t < T 2 1
1 < r < k

{ u t (r)w t(r,.){1 2 u t (r)}w t(r, ² ) *
s Î K

c t(r, s)w t(r,s)}
where w t(r, s) denotes the number of transitions from r Î K to s Î K ² , between times

t and t + 1, counted on the complete data (y, zm ), and where w t(r,.) 5 R s Î K w t(r, s).

Moreover u t(r) denotes the number of animals captured in stratum r at time t, and

v t(r) denotes the number (counted on the complete data (y, zm )) of animals such

that x(i, t) 5 0 and z (i, t) 5 r. Then, taking into account that p ( h ½ y, zm )µ L( h ½ y, zm ) p ( h ),

it is very easy to simulate according to p ( h ½ y, zm ), since p ( h ) is conjugate for the

complete likelihood, i.e. pt(r) and u t(r) are simulated according to Beta distributions,

and c t(r) is simulated according to a Dirichlet distribution.

Since the sequence (h (l), l > 0) produced by the Gibbs sampling algorithm con-

verges to p ( h ½ y), (Dupuis, 1995), we can use it to construct posterior 95% credible

intervals for each of the parameters. In addition, by applying the ergodic theorem,

we can approximate the Bayes estimator of pt(r), u t(r) and c t(r, s). For instance,

[c t(r, s) ½ y] is approximated, for `large’ L , by (1/L) R L
l 5 1 c (l )

t (r, s). The rate of

convergence of h
(l ) to p ( h ½ y) is geometric; in practice, it ensures a good rate of

convergence of the Gibbs sampling algorithm.

3 Extensions of the AS model

As pointed out in Section 2.2, a directed graph representation is an appealing tool

to visualize most assumptions of biological interest. We now provide the directed

graph of some extensions of the AS model.

The directed graph [ ASt
below assumes the presence of a (® rst-order) trap-

response. This extension of the AS model, is denoted ASt

. . . x(i, t 2 1) ® x(i, t) ® x(i, t + 1) . . .

[ AS t ­ ­ ­
. . . z(i, t 2 1) ® z(i, t) ® z(i, t + 1) . . .

Conditionally on the z(i, t) s, the x(i, t) s are no longer independent, unlike the AS

model. The x(i, t) s now constitute a ® rst-order Markov chain, conditionally on the

z(i, t) s. The directed graph [ AST below assumes a possible in¯ uence of capture at

time t on the transition between times t and t + 1.

An immediate extension of this model would be to consider that x(i, t) represents

the treatment administered at the animal i, at time t (after it has been captured).



230 J. A. Dupuis

This extension of the AS model is denoted AST. Such an extension has been

considered by Doligez et al. (this issue) to assess responses to clutch size manipula-

tion according to dispersal status.

The Hestbeck- Brownie model (Hestbeck et al., 1991; Brownie et al., 1993)

assumes that the movement behaviour includes a memory eþ ect, i.e. a second-order

Markov chain. The directed graph [ HB below summarizes the main assumptions of

this model.

. . . x(i, t 2 1) x(i, t) x(i, t + 1) . . .

[ HB ­ ­ ­
. . . z(i, t 2 1) ® z(i, t) ® z(i, t + 1) . . .

¯ ­
® ® ® ® ®

More complex models can be contemplated. Danchin et al. (1998) were interested

in investigating some lagged eþ ects between reproduction and ® delity in black-

lagged kittiwake (Rissa tridactila). In their article, r(i, t) denotes the breeding status

of animal i at time t and z(i, t) represents its breeding site. A simple biological

framework is: r(i, t) Î {0, 1} where r(i, t) 5 0 means a failed reproduction. This extension

of the AS model is denoted ASR. Biological considerations leads these authors to

propose a modelling that can be summarized in the graph [ ASR below.

For simplicity, we have omitted in this graph the possible interactions between bird

i and birds that nest in the same location as bird i (see Danchin et al., 1998 and

Section 7).

For each of the above extensions, the posterior distribution of parameters is

numerically intractable, and we advocate a Gibbs sampling algorithm that takes

advantage of the missing data structure. We believe that the missing data formula-

tion is the only feasible approach in the HB and ASR models, on account of the

complexity of the likelihood of these two extensions. As in the AS model, the

complete likelihood of all those extensions is very simple, which makes the

simulation parameters phase of the Gibbs sampling algorithm very easy to imple-

ment. Moreover the directed graph representation constitutes a valuable tool to

calculate the conditional distributions that appear in the missing data phase. The

Bayesian analysis of the AS t , AST, HB and ASR models is presented in Dupuis &

Clobert (2000).

4 Arguments for the Beta distribution

This section is organized as follows. We ® rst provide arguments for the Beta

distribution to incorporate some prior information on survival and capture para-

meters, as well as on movement parameters (when the study zone includes two

strata). Then, computational arguments are produced; the latter concern the AS

model and its extensions.
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To develop our arguments it is convenient to consider an abstract parameter

h Î [0, 1], which can be thought of as the parameter of a Bernoulli distribution b( h ).

Recall that h ~ B e(a, b) if its density p ( h ) is equal to:

p ( h ) µ h
a 2 1(1 2 h )b 2 1

[0,1]( h ) (2)

where a and b are two strictly positive real numbers.

Argument 1

Prior information on a proportion h typically consists of a prior 95% credible

con® dence interval I 5 ]g, h[ and of a prior mean l (so that l Î I ); or of a prior

variance v and of a prior mean l . This is exactly the type of prior information that

can be very easily incorporated via a Beta distribution. The coeý cients a and b are

easily obtained from l and v (Berger, 1985). The other type of prior information,

which is composed of a prior mean l and a prior 95% CI, has been proposed in

Dupuis (1995). As pointed out by Berger (1985), prior information composed of

quantiles is much more robust than one based on a variance v. Moreover, in

practice, it is much more convenient to manipulate prior con® dence intervals than

prior variances. To determine a and b from l and I we consider a new parameteriza-

tion of the Beta distribution, by k > 0 and l Î ]0, 1[, such that

a 5 k l and b 5 k (1 2 l ) (3)

The Beta distribution is re-parameterized by two parameters, its mean l 5 a /(a + b)

and k 5 a + b. We now search for a and b so that [ h ] 5 l and p ( h Î I ) < 0.95,

where l Î I and I 5 ]g, h[ are given. Using the parameterization (3), we only have

to ® nd k so that p k ( h Î I ) 5 0.95 where h ~ V e( k l , k (1 2 l )). We assume that k > 2,

which corresponds to informative situations (see argument 6). Our procedure

includes two steps.

Step 1. Determine k Î so that: p k ( h Î I ) < 0.95 and p k +1( h Î I )> 0.95. To ® nd such

a k , start with k 5 2, and increase k until this condition is satis® ed. Such a k

always exists since k ® + ` , implies Var h ® 0, and h Ã p ® l (a.s). Therefore

p k ( h Î I < 0.95) ® 1 (when k ® + ` ), since I is such that l Î I.

Step 2. Determine (by dichotomy) k Î ] k Ä , k Ä + 1[, where k Ä is the value found in Step

1, so that: ½ p k ( h Î I ) 2 0.95 ½ > e ; where e denotes the wanted precision.

To illustrate this approach we give two examples. For [ h ] 5 0.9, I 5 [0.7, 1]

and [ h ] 5 0.4, I 5 [0.2, 0.6], the parameters (a, b) of the Beta distribution are

respectively equal to: (13.05, 1.45) and to (8, 12).

Argument 2

As pointed out by Box & Tiao (1973), the Beta distribution is suitable for a wide

range of situations. These authors provide the diþ erent shapes of the density of a

Beta distribution, depending upon the values of a and b. When the parameterization

(3) is used, the Beta distribution is particularly suitable to incorporate prior

information on h . First note that the parameter k is a measure of the dispersion

(or of the concentration) of h around the mean l , since Var h 5 l (1 2 l ) /(1 + k ) is

a decreasing function of k . The parameter k can thus be interpreted as a measure

of the precision of the prior information: the larger is k , the more precise is the

prior information. Let y 5 ( y1 , . . . , yi , . . . , yn ), where the y is are i.i.d. and where

y i ~ b( h ). It is easy to check that:

h Ã n 5
n

k + n
h Ã ml +

k

k + n
[ h ] (4)
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where h Ã ml 5 (1/n) R n
i y i denotes the maximum likelihood estimator of h , based upon

y. Let us consider the two extreme situations: k ® 0 and k ® + ` . If k ® 0, then

Var h ® l (1 2 l ) and h Ã p ® h Ã ml which does not depend on l . If k ® + ` , then

Var h ® 0, and h Ã p ® l (a.s), which does not depend on the data.

As pointed out by many authors (e.g. Gelman et al., 1995), h Ã p appears as an

average of h Ã ml and [ h ], where weightings are respectively proportional to the size

of the sample (that is n) and to the precision of the prior (that is k ). Note that,

when a and b are integer, k can be thought of as the size of a virtual sample that

would support the prior information. More precisely, if we denote by x a virtual

sample including a 5 k l successes, then the MLE of h , based upon (x, y) is equal

to the Bayesian estimation of h based upon y and such that h ~ V e(a, b).

Argument 3

We can generalize the Beta distribution to take into account a prior constraint

between two parameters that take their values in [0, 1]. For instance, the following

distribution on ( h 1 , h 2 ) Î [0, 1] 3 [0, 1]

p ( h 1 , h 2 )µ g1( h 1 )g2 (h 2 ) E ( h 1 , h 2 ) (5)

where E 5 {(h 1 , h 2 ) ½ 0 < h 1 < h 2 < 1} and where the functions g r( h r ); r 5 1, 2 are

densities of Beta distributions, allows us to take into account the a prior i constraint

h 1 < h 2 . If h r represents the capture probability pt(r) where r Î {1, 2} and if

g1(p t(1)) 5 g2(pt(2)) 5 1, then the prior distribution (5) simply expresses that the

only available prior information we have on the capture probabilities during the

capture session t, is that: pt(1) < pt(2). Such a prior can be justi® ed, for instance,

that during the session t, the catch eþ ort was more intensive in stratum 2 than in

stratum 1. From a computational point of view, the simulation parameter phase of

the Gibbs sampling associated to the prior distribution (5) is especially easy

to implement. Of course, constraints can also include survival and movement

parameters.

Argument 4

The use of a Beta distribution on h leads to a closed expression for the Bayes

estimator of h Î [0, 1] (see equation (4)). In a capture- recapture set-up the use of

Beta distributions on pt(r) and u t(r) allows us easily to implement the Gibbs

sampling algorithm based on ( h , zm ), because those distributions are conjugate for

the complete likelihood L( h ½ y, zm ) (see Section 2.4 or Dupuis, 1995).

Argument 5

In multi-strata capture- recapture models, classical numerical optimization

methods encounter very serious diý culties in obtaining the MLE, especially when

the number of strata exceeds 3 (see Brownie et al., 1993; Schwarz et al., 1993;

Lebreton & Pradel, this issue). The eþ ectiveness of the Gibbs sampling algorithm

implemented in Dupuis (1995) is not at all aþ ected by the number of strata in K .

It is well known that, for a large enough sample size n, the non-informative Bayes

estimators are very close to the MLE (Berger, 1985). Note that Beta distribution

includes the uniform distribution ( l 5 0.5 and k 5 2) and the Je þ rey distribution

( l 5 0.5 and k 5 1). The improper Haldane distribution p ( h ) 5 [ h (1 2 h )] 2 1
[0,1]( h )

corresponds to k ® 0. Therefore, if the MLE is of interest, the non-informative

Bayesian approach turns out to be an attractive alternative to numerical methods

when the latter encounter computational diý culties in obtaining the MLE (Dupuis,
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1997). For moderate sample size n, the likelihood associated to the AS model, can

exhibit several local maxima, as is often the case in missing data models (Diebolt,

1997). In that situation, non-informative Bayesian estimators can constitute an

ideal starting point for classical optimization numerical methods.

5 Arguments for the Dirichlet distribution

We now provide arguments for the Dirichlet distribution to incorporate some prior

information on movement parameters (when the study zone includes k > 3 strata).

It is convenient to consider with an abstract parameter h 5 ( h 1 , . . . , h j , . . . , h k ) where

h j Î ]0, 1[ and where R k
j 5 1 h j 5 1, which can be thought as the parameter of a

Multinomial distribution. The Dirichlet distribution generalizes the Beta distribu-

tion, and arguments in favour of the Beta distribution could also be used in favour

of the Dirichlet distribution. Recall that a random variable

h ~ X k(a1 , . . . , a j , . . . , ak ), where the parameters a j are strictly positive, if the density

of h is such that: p ( h )µ P k
j 5 1 h

aj 2 1
j . The particular case k 5 2 reduces to the Beta

distribution. We can reparameterize the Dirichlet distribution by k > 0 and

l 5 ( l 1 , . . . , l j , . . . , l k ) where l j Î ]0, 1[ and R k
j 5 1 l j 5 1; the new parameters k > 0

and l being linked to the a js by a j 5 k l j . It is easy to verify that:

k 5 +
k

j 5 1

a j l j 5 [ h j] Var h j 5
l j(1 2 l j)

1 + k
(6)

As in the Beta distribution, the parameter k is a measure of the concentration of

the random variable h around its mean l 5 ( l j ; j 5 1, . . . , k). The parameter k can

be interpreted as a measure of the precision of the prior information. It is easy to

check that the posterior mean of h is:

h Ã p 5
n

k + n
h Ã ml +

k

k + n
[ h ] (7)

where [ h ] 5 l , and h Ã ml 5 (N j /n; j 5 1, . . . , k) where N j denotes the count associated

with the category j in the multinomial experiment. Thus, the formula (4) also

applies, and the consequences that we have outlined from equation (4) remain valid.

Let h be a random variable with density p ( h ), such that h ~ X k(a1 , . . . , a j , . . . , ak).

It is of great practical interest to notice that the parameters a js are completely

determined by the mean vector l and by an interval I 5 ]g , h[ so that p j( h j Î I ) 5 0.95,

where j represents any one of the k components of h , and p j(.) denotes the density

of h j . Starting from the parameterization ( k , l ), the condition p j( h j Î I ) 5 0.95 allows

us to determine k . Because h j ~ V e( k l j , k (1 2 l j)), the problem reduces to that in

Section 4, and the algorithm given in Section 4 can be used to determine k (see

Dupuis, 1995, for examples). It should be noted that a Dirichlet distribution

cannot incorporate prior information that would consist, for each h j , of a prior

mean l j and of a prior variance v j 5 Var [ h j ]), because the v js are constrained

with the terms Var h j /[ l j (1 2 l j)] constant (equal to 1/ k ). Moreover, a Dirichlet

distribution cannot incorporate prior information that would consist, for each h j ,

of a prior mean l j and of a prior 95% credible interval Ij , because k is a one-

dimensional parameter that, only globally, characterizes the dispersion of h round

l . In practice, we recommend, once the parameters a j have been determined,

examining whether the resulting 95% credible intervals of the component h j are

reasonable.
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6 In¯ uence of prior on Bayesian movement parameters estimations

In this section we examine to what extent an informative prior distribution on a

given movement probability can in¯ uence the Bayes estimate of this parameter,

and how it can aþ ect the Bayes estimate of the other parameters. Moreover, in this

section we aim to rediscover, in a simple capture- recapture set-up, some general

observations we have made in Section 4 concerning the Bayes estimator of a

proportion. Nevertheless, let us underline that the formulae (4) and (7) are no

more valid in capture- recapture set-ups. As an illustration, we assume that survival

parameters are equal to 1, and we consider an arti® cial, but meaningful, data set.

For an illustration on a real data set, see Dupuis (1995).

6.1 The data set and methods

The data set was constructed as follows. Starting with a given h , the data set y, of

size n, is such as nh 5 [N h ] where nh denotes the observed count associated to the

capture- recapture history h, and the expectation of N h is taken under the (closed)

AS model and for the given h . Note that R h nh 5 n and that nh 5 nph if we denote

ph 5 Pr(y i 5 h ½ h ). Actually this procedure is not necessary for our purpose and we

could have chosen any data set; its interest is that it allows us to consider a data

set that is plausible under the AS model and for the selected h .

We assume that K includes two strata 1 and 2, and that the experimental protocol

includes T 5 3 capture- recapture sessions (including the tagging session); for

convenience, we assume that tagging has been carried out only at time t 5 1 and

in stratum 2. The number of marked animals is n 5 40. The parameter of the AS

model is: h 5 (c 1(2, 1), p2(1), p2(2), c 2(1, 1), c 2(2, 1), p3(1), p3(2)) 5 (0.75, 0.4, 0.8,

0.5, 0.5, 0.5, 0.5). It is easy to check that the expected counts are for each history:

222(2), 221(2), 220(4), 211(3), 212(3), 210(6), 201(5), 202(5), 200(10). For

example, for h 5 201, we have: ph 5 c 1(2, 1)(1 2 p2(1))c 2(1, 1)p3(1) + c 1(2, 2)

(1 2 p2(2))c 2(2, 1)p3(1) 5 0.8. Thus nh 5 [N h ] 5 Nph 5 40 3 0.8 5 5.

To facilitate our analysis, we have focused on only one parameter, c 1(2, 1), but

similar results occur with the other movement parameters. We consider diþ erent

informative prior distributions on c 1(2, 1), while putting uniform prior distribution

on all the other parameters. Then, we compare the Bayesian estimates of all the

parameters for those diþ erent prior distributions. We also compare these estimates

with those obtained by putting a non-informative prior on c 1(2, 1).

We have used a single run of L 5 104 iterations of the Gibbs sampler. The

convergence of the algorithm has been visually appreciated; it has been based on a

stabilization of all the empirical averages (1/L) R L
l 5 1 c (l )

t (r, s) and (1/L) R L
l 5 1 p

(l )
t (r); see

for example Robert & Casella (1999) for discussion about this criteria.

6.2 Results analysis and discussion

In Table 1, we have reported the posterior means and posterior 95% credible

intervals of p2(1), p2(2) and c 1(2, 1), for three non-informative prior distributions

on c 1(2, 1) (uniform, Jeþ rey and Haldane). The (Bayesian) estimations of c 2(2, 1),

c 2(1, 1), p3(1) and p3(2), as well as the corresponding posterior credible intervals,

have not been reported since they were not aþ ected by the choice of the non-

informative prior on c 1(2, 1). The Bayesian estimations and the posterior 95%

con® dence intervals of c 1(2, 1), p2(1) and p2(2) are similar for the three non-
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Table 1. Posterior mean and posterior 95% credible interval of c 1(2, 1),

p2(1) and p2(2)

Uniform Jeþ rey Haldane

0.57 0.57 0.59

c 1(2, 1) [0.27, 0.83] [0.26, 0.84] [0.26, 0.85]

0.56 0.56 0.55

p2(1) [0.29, 0.95] [0.28, 0.95] [0.28, 0.95]

0.52 0.53 0.55

p2(2) [0.21, 0.95] [0.21, 0.95] [0.21, 0.96]

Table 2. Posterior mean and posterior 95% credible interval of c 1(2, 1), p2(1) and p2(2)

Be(0.7, 5) Be(0.7 , 10) Be(0.7, 20) Be(0.7 , 30) Be(0.75, 10) Be(0.8 , 10)

[0.30, 0.97) [0.40, 0.93] [0.48, 0.87] [0.54, 0.84] [0.46, 0.96] [0.52, 0.97]

0.64 0.66 0.68 0.69 0.69 0.72

c 1(2, 1) [0.35, 0.85] [0.42, 0.83] [0.49, 0.82] 0.53, 0.81] [0.45, 0.85] [0.49, 0.87]

0.50 0.48 0.46 0.45 0.46 0.44

p2(1) [0.27, 0.88] [0.27, 0.80] [0.27, 0.72] [0.27, 0.69] [0.27, 0.76] [0.26, 0.70]

0.59 0.61 0.63 0.64 0.61 0.68

p2(2) [0.24, 0.96] [0.26, 0.97] [0.29, 0.96] [0.30, 0.97] [0.28, 0.97] [0.30, 0.98]

informative distributions. Therefore, the Bayesian estimations of these parameters

is not very sensitive to the choice of the non-informative prior put on c 1(2, 1).

Note that the MLE of c 1(2, 1), obtained by program MARK, is 0.56; it is very

near to the Bayesian estimate obtained with a uniform prior on c 1(2, 1). Moreover,

the 95% CI yielded by program MARK is [0.17 3 10 2 10, 1], which is not at all

informative (contrary to the Bayesian CIs).

In Table 2 we have reported the posterior mean and posterior 95% credible

interval of c 1(2, 1), p2(1) and p2(2) for diþ erent informative prior distributions on

c 1(2, 1). We have parameterized the Beta distributions by l and k in order to

examine the impact of modi® cations involving only l , the parameter k being ® xed

(or conversely). We also have indicated, for each prior distribution on c 1(2, 1), a

prior 95% credible interval for this parameter determined by implementing Monte

Carlo simulation methods.

The Bayesian estimations of c 2(2, 1), c 2(1, 1), p3(1) and p3(2), as well as the

corresponding posterior credible intervals, have not been reported since they were

practically not aþ ected by the choice of the prior distribution on c 1(2, 1). Therefore,

the Bayesian estimation of these parameters is not sensitive to the diþ erent priors

on c 1(2, 1). However, the Bayes estimates of p1(2) and p2(2) are signi ® cantly

aþ ected by the choice of the priors on c 1(2, 1) (as is clear by comparing the results

in Tables 1 and 2). Most of the observations we have deduced from formula (4)

can be rediscovered in the framework of our capture- recapture data set. First,

whatever the prior, the Bayes estimate of c 1(2, 1) is always located between the

MLE of c 1(2, 1) and [c 1(2, 1)]. Second, when [c 1(2, 1)] 5 0.7 and k varies, the

Bayes estimate of c 1(2, 1) is closer and closer to 0.7, as k increases. The range of

the posterior credible intervals c 1(2, 1) becomes narrower, as k increases. Third,

when k 5 10 and l varies we observe that the Bayes estimate of c 1(2, 1) increases

with l ; note that the range of the credible intervals is stable when l varies.
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The Bayes estimates of c 1(2, 1), p2(2) and p2(2) appear very sensitive to the prior

we put on c 1(2, 1). In particular, it is notable that poor prior information on

c 1(2, 1) (such as k 5 5 or k 5 10), signi® cantly aþ ects the Bayes estimate of these

parameters (compare Tables 1 and 2). Moreover, for moderate values of k ( < 10),

and a moderate increase in l ( 5 0.05), the corresponding increase in the Bayes

estimate of c 1(2, 1) is signi ® cant ( 5 0.03). We also put a uniform distribution on

(c 1(2, 1), c 1(2, 2)) so that these two parameters are constrained with

c 1(2, 1) > c 1(2, 2). Again, this poor prior signi® cantly aþ ects c 1(2, 1). Its Bayes

estimate is 0.64 and its posterior 95% CI is [0.40, 0.85]. For this prior, the

estimations and CIs of p2(1) and of p2(2) are very close to those corresponding to

the prior B e(0.75, 10).

As noted before, poor prior information on c 1(2, 1) can signi® cantly aþ ect the

estimates and the posterior CI of c 1(2, 1), as well as estimates and CI of p2(1) and

p2(2). Instead of reviewing some general guidelines in the case of strong sensitivity

of certain parameters to the choice of the prior (this point of view is well discussed

by Brooks et al., 2000b), we prefer to conclude this section in an orthogonal

direction. Not surprisingly, we have observed that informative prior distributions

on p2(1) and on p2(2) aþ ect the precision of Bayesian estimators of c 1(2, 1) (these

results have not been reported in this paper). Such an observation suggests

examining to what extent some prior information on some nuisance parameters

(namely capture parameters) can signi® cantly perform the Bayesian estimators of

interest (namely movement parameters). Those important issues are the subject of

a subsequent paper.

7 Conclusions

Implementing a Gibbs sampling algorithm that takes advantage of the missing data

structure of the Arnason- Schwarz model allows a complete Bayesian analysis of this

model. Furthermore, complex extensions of this model can be investigated that were

out of reach before. We think that our strategy is probably necessary to approach

models that will relax the assumption (i) of the Arnason- Schwarz model: `animals

behave independently with respect to movement’ . As such, the modelling proposed

by Danchin et al., 1998, highlights the computational challenge we have to accept,

when the assumption (i) has been relaxed. When parameters of interest are capture,

survival and movement probabilities, we have shown that the use of conjugate prior

distributions (here Beta and Dirichlet distributions) proves to be particularly attrac-

tive. Of course the sensitivity of the estimators to this class of prior distributions

will have to be investigated, but our paper con® rms Schwarz & Seber (1999) who

considered that the Gibbs sampler now allows the use of realistic prior.
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