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Evaluation of some random eþ ects
methodology applicable to bird ringing data
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abstract Existing models for ring recovery and recapture data analysis treat temporal

variations in annual survival probability (S ) as ® xed eþ ects. Often there is no explainable

structure to the temporal variation in S1 , . . . , Sk ; random eþ ects can then be a useful

model: S i 5 E(S ) + e i . Here, the temporal variation in survival probability is treated as

random with average value E( e
2
) 5 r

2
. This random eþ ects model can now be ® t in

program MARK. Resultant inferences include point and inter val estimation for process

variation, r
2
, estimation of E(S ) and var(EÃ (S )) where the latter includes a component

for r
2

as well as the traditional component for vÅ ar(SÃ ½ SÃ ). Furthermore, the random eþ ects

model leads to shrinkage estimates, SÄ i , as improved (in mean square er ror) estimators of

S i compared to the MLE, SÃ i , from the unrestricted time-eþ ects model. Appropriate

con ® dence intervals based on the SÄ i are also provided. In addition, AIC has been

generalized to random eþ ects models. This paper presents results of a Monte Carlo

evaluation of inference performance under the simple random eþ ects model. Examined by

simulation, under the simple one group Cormack- Jolly- Seber (CJS ) model, are issues

such as bias of r Ã
2
, con® dence interval coverage on r

2
, coverage and mean square error

comparisons for inference about S i based on shrinkage versus maximum likelihood

estimators, and performance of AIC model selection over three models: S i º S (no eþ ects),

S i 5 E(S ) + e i (random eþ ects), and S1 , . . . , Sk (® xed eþ ects). For the cases simulated,

the random eþ ects methods performed well and were uniformly better than ® xed eþ ects

MLE for the S i .

1 Introduction

The objective of this paper is to evaluate, by simulation, the basic operating

characteristics of some simple random eþ ects inference methodology applicable to
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open model capture- recapture data. The reader is assumed to have a basic

knowledge of dead-recovery (e.g. Brownie et al., 1985) and live-recapture (e.g.

Lebreton et al., 1992) models, referred to here generically just as capture- recapture

(for a current review see Schwarz & Seber, 1999). Basic random eþ ects concepts

and models are well established in general statistical theory under various names,

such as variance components, random eþ ects, random coeý cient models, or

empirical Bayes estimates (see, for example, Efron & Morris, 1975; Casella, 1985;

Searle et al., 1992; Longford, 1993; Carlin & Louis, 1996). There has been only

modest application of random eþ ects in ecology (see, for example, Johnson, 1981,

1989; Burnham et al., 1987; Link & Nichols, 1994; Ver Hoef, 1996; Link, 1999;

Franklin et al., this issue) despite that, these methods are needed, for example, to

estimate correctly process variation in survival probabilities over space or time

(White, 2000). We assume the reader has some familiarity with basic concepts of

random eþ ects, such as process variation versus sampling variation.

The speci® c random eþ ects methodology for capture- recapture evaluated here

is implemented in program MARK (White & Burnham, 1999; White et al., 2002).

In this paper we ® rst summarize the relevant theory (i.e. methods evaluated). Next,

we give the speci® c inferential aspects of random eþ ects methods evaluated here.

Then we give the design of the Monte Carlo simulation study used for this

evaluation. Finally, there are summarized results, such as on bias, e ý ciency,

con® dence interval coverage, and model selection.

This is perhaps the ® rst performance evaluation of a random eþ ects model for

capture- recapture. Consequently, we keep the evaluation simple by restricting it

to simulated data based only on the Cormack- Jolly- Seber (CJS ) time-speci® c

model {S t , pt } wherein estimated survival and capture probabilities are allowed to

be time varying for k + 2 5 t capture occasions, equally spaced in time. However,

this should entail no loss of generality because both relevant theories are quite

general. First, the random eþ ects theory used here is general; it applies to any set

of maximum likelihood estimates, SÃ 1 , . . . , SÃ k regardless of the type of capture-

recapture data analysed. Secondly, time-speci® c models for recovery and recapture

data stem from the same deep, uni® ed theory (Burnham, 1991; Barker, 1997).

2 Inference methods

2.1 Random eþ ects

Our context here is open models capture- recapture wherein k survival probabilities

are estimable, corresponding to k equal length time periods, often years. The basic

time-speci® c CJS model is considered as being conditional on the underlying

estimable survival probabilities, S1 , . . . , Sk. Hence, the MLEs for this model can

be considered in the context of a linear model (conditional by de® nition on S4 )

represented as SÃ4 5 S4 + d4 (these are k 3 1 column vectors). Here, S4 represents the

structural parameters and d 4 is the model’ s stochastic component. Given S4 , the

(large sample) expected value of d 4 is zero, hence we can take E(SÃ4 ½ S4 ) 5 S4 . Also, d 4
has conditional (on S4 ) sampling variance- covariance matrix W, which will be a

complicated function of S4 and other parameters, such as capture probabilities, p,

or ring recovery probabilities, f.

For a random eþ ects model, S4 is modelled as a random vector with expectation

X b 4 and variance- covariance matrix r
2
I; b 4 has r elements. By assumption, the

process residuals, e i 5 S i 2 E(S i), are independent with homogeneous variance r
2 .
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Also, we assume mutual independence of sampling errors d 4 and process errors e4.
We envision ® tting a capture- recapture model (that does not constrain SÃ4 ) to get

the MLE SÃ4 and the usual likelihood-based estimator of W. Only the simplest case

of this random eþ ects theory is used here in the simulations, but we present the

general theory. The special case used here, in the simulations, is the means model;

hence, r 5 1, X is a column vector of k ones, and b 4 is just the scalar parameter

l 5 E(S ).

The basic, unconditional, random eþ ects model is

SÃ4 5 X b 4 + d 4 + e4, VC( d Ã4 + e4) 5 D 5 r
2
I + ES4 (W )

Here, we let VC denote a variance- covariance matrix. The obvious inference issues

are to estimate b 4 , r
2 , an unconditional variance- covariance matrix for b Ã4 , and

compute a con® dence interval on r
2 , on k 2 r 5 df degrees of freedom. A non-

obvious inference issue is the opportunity to use the shrinkage estimator of S4 , SÄ4 .

In a random eþ ects context the shrinkage estimator has a smaller mean square

error than the maximum likelihood estimator (Efron & Morris, 1975), and hence

is to be preferred on that basis.

Shrinkage estimators are neither intuitive, nor easy to explain thoroughly. Shrink-

age estimators are also called empirical Bayes estimators (Carlin & Louis, 1996).

For a simple model with independent MLEs, SÃ i, and only one population-level

structural parameter, E(S ), SÄ i lies between EÃ (S ) and SÃ i. The extent of this shrinkage

towards EÃ (S ) depends upon the variance components proportion

r
2

r
2 + ES {var(SÃ i ½ S i)}

If this proportion is 1, no shrinkage occurs; if it is 0 then for all i, SÄ i º EÃ (S ). An

individual SÄ i may not improve upon the corresponding SÃ i in the sense of being

nearer to S i in a given case. However, overall the shrinkage estimators as a set are

to be preferred as being closer to the true S i if the random eþ ects model applies

with r
2 > 0 (Efron & Morris, 1975; Casella, 1985).

From generalized least squares theory, for r
2 given, the best linear unbiased

estimator of b 4 is

b Ã4 5 (X ¢ D 2 1
X ) 2 1

X ¢ D 2 1
SÃ4 (1)

Assuming normality of SÃ4 (approximate normality suý ces) then from the same

generalized least squares theory the weighted residual sum of squares

(SÃ4 2 X b Ã4 ) ¢ D 2 1(SÃ4 2 X b Ã4 ) has a central chi-squared distribution on k 2 r degrees of

freedom. Therefore, a method of moments estimator of r
2 is obtained by solving

the equation

k 2 r 5 (SÃ4 2 X b Ã4 ) ¢ D 2 1(SÃ4 2 X b Ã4 ) (2)

where b Ã4 comes from equation (1). Note that the critical issue of what is EÃ S4(W ) is

dealt with below.

An aside about the quantity RSS(r
2 ) 5 (SÃ4 2 X b Ã4 ) ¢ D 2 1(SÃ4 2 X b Ã4 ), as a function of

r
2, is in order. It can be shown that in the limit as r

2 goes to ` , RSS(r 2 ) goes to

0. It can also be shown that RSS(r 2 ) is monotonically decreasing in r
2 . Further-

more, the mathematically admissible range of r
2 is 2 k 1 < r

2 < ` , where k 1 is the

smallest eigenvalue of EÃ S4(W ). For r
2

5 2 k 1 , matrix D is singular, hence RSS( 2 k 1 )

is, roughly speaking, ` . For r
2 < 2 k 1 , matrix D is not a valid variance- covariance
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matrix. These properties of RSS(r 2 ) mean there is a unique r
2 > 2 k as the solution

to any equation y 5 RSS(r 2 ) 5 (SÃ4 2 X b Ã4 ) ¢ D 2 1(SÃ4 2 X b Ã4 ).

Solving equation (2) for r Ã 2 requires only a 1-dimensional numerical search; a

unique numerical solution always exists, but may be negative. If r Ã
2 < 0 occurs,

truncate it to 0, i.e. take r Ã
2

5 0. The theoretical unconditional sampling variance-

covariance of b Ã4 is

VC( b Ã4 ) 5 (X ¢ D 2 1
X ) 2 1 (3)

To get a (1 2 a ) 100% con® dence interval on r
2 we solve for r

2
L and r

2
U , respec-

tively, from

v
2
df,1 2 a /2 5 (SÃ4 2 X b Ã4 ) ¢ D 2 1(SÃ4 2 X b Ã4 ) (4a)

v
2
df, a /2 5 (SÃ4 2 X b Ã4 ) ¢ D 2 1(SÃ4 2 X b Ã4 ) (4b)

Here, v
2
df,p is the pth percentile of the central chi-squared distribution on df degrees

of freedom. Unique solutions exist to equations (4a) and (4b), although the lower

con® dence limit can be negative. In fact, even the upper con® dence limit can be

negative. In practice, any negative solutions are replaced by zero.

The shrinkage estimator, SÄ4 , used in this study requires the matrix

H 5 r D
2 1/2

5 r (r 2
I + EÃ S4(W )) 2 1/2

5 (I +
1

r
2
EÃ S4(W )) 2 1/2

evaluated at r Ã . Then SÄ4 5 H(SÃ4 2 X b Ã4 ) + X b Ã4 . An alternative formula uses the projec-

tion matrix

G 5 H + (I 2 H )AD
2 1 (5)

where A 5 X(X ¢ D 2 1
X ) 2 1

X ¢ . Then

SÄ4 5 GSÃ4 (6)

The theoretical, conditional, variance- covariance matrix of the shrinkage estim-

ator is

VC(SÄ4 ½ S4 ) 5 GES4(W )G ¢

its diagonal elements are var(SÄ i ½ S4 ). Because the shrinkage estimator is conditionally

biased we based con® dence intervals on

rÃ mse(SÄ i ½ S4 ) 5 Î vÃ ar(SÄ i ½ S4 ) + (SÄ i 2 SÃ i )
2 (7)

The shrinkage estimator (6) used here is such that the sum of squares of the

shrunk residuals (i.e. SÄ4 2 X b Ã4 ), divided by k 2 r, equals r Ã 2 . This coherent relation-

ship does not hold for the usual shrinkage estimator found in the statistical literature

(Morris, 1983; Louis, 1984). The shrinkage estimator de® ned here is central to

being able to obtain a useful, simple extension of AIC for this random eþ ects

model, because b Ã4 and r Ã
2 are, essentially, computable from SÃ4 . Therefore, the

likelihood value to associate with this random eþ ects model can be obtained based

on the ® xed eþ ects likelihood evaluated at SÄ4 without the need to compute (as via

numerical integration) the proper marginal likelihood of the random eþ ects model.

An important uncertainty about these random eþ ects methods is that we do not

have formulae for the elements of ES4(W ); hence, this optimal weight matrix cannot

be used. We cannot take the exact expectations needed. We will have only an
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estimator of ES4(W ), and it may have inherent biases. In simple cases, approximate

expectations over S4 can be found for var(SÃ i ½ S4 ) and cov(SÃ i , SÃ j ½ S4 ). However, for a

general method we want to just use 2 1 times the matrix of second partial

derivatives of the log-likelihood function, say F, which estimates the Fisher informa-

tion matrix, and then WÃ º EÃ S4(W ) 5 F
2 1 . We have here used this general method

to obtain EÃ S4(W ), used in place of ES4(W ). Given such approximations, and the

overall complexities, of this random eþ ects methodology, Monte Carlo simulation

evaluation is required to determine actual inference performance.

2.2 AIC for random eþ ects

We will have started with a likelihood for a model at least as general as full time

variation on all the parameters, say , (S4 , h 4 ) 5 , (S1 , . . . , Sk , h 1 , . . . , h z ). For the

CJS model, the additional parameters would be just the capture probabilities,

p2 , . . . , pk . However, the formulae given here are meant to apply also to other types

of models, such as band recoveries, which might be parameterized in terms of S i

and fi . Therefore, for generality we denote the additional model parameters

generically as h i . And in general under the model, {S t , h 4 }, we have the MLEs, SÃ4
and h Ã4 , and the maximized log-likelihood, log , (SÃ4 , h Ã4 ) based on K 5 k + F parameters.

Thus, for large sample size, n, AIC for the ® xed eþ ects model is 2 2log , (SÃ4 , h Ã4 ) + 2K

(Burnham & Anderson, 1998).

The log-likelihood value for the ® tted random eþ ects model on S4 comes from

re-optimizing over h 4 at the value of SÄ4 . We denote this random eþ ects log-likelihood

value as

log , (SÄ4 , h Ãh
Ä ) º log , (SÄ4 , h Ã4 (SÄ4 )) 5 max

h4
[log , (SÄ4 , h 4 )]

where SÄ4 essentially `contains’ b Ã4 and r Ã 2 . The dimension of the parameter space to

associate with this random eþ ects model is K re , where

K re 5 tr(G ) + F

G is the projection matrix (6) mapping SÃ4 into SÄ4 , and tr(´) is the matrix trace

function (tr(G ) 5 the sum of the diagonal elements of G ; see, for example, Schott,

1997, p. 4).

The large-sample AIC for the random eþ ects model on S4 is

2 2 log , (SÄ4 , h Ãh
Ä4 ) + 2K re

The small sample corrected version, AICc, for this random eþ ects model is

2 2 log , (SÄ4 , h Ãh
Ä4 ) + 2K re + 2

K re (K re + 1)

n + (K re 2 1)
(8)

In these simulations we used equation (8) with e þ ective sample size, n, as the total

number of animal-release events (Burnham et al., 1994). However, sample sizes in

these simulations were always large enough that the small sample term in equation

(8) was irrelevant.

Results such as equation (8) are, in the literature, giving AIC generalized to

semi-parametric smoothing applications; see, for example, Hurvich & Simonoþ

(1998) and Shi & Tsai (1998). However, those papers are not about random eþ ects

models. Instead, those papers note a generalized AIC where the eþ ective number
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of parameters is the trace of a smoothing matrix. In fact, the mapping GSÃ4 5 SÄ4 is a

type of generalized smoothing. It is known that the eþ ective number of parameters

to associate with such smoothing is the trace of the smoother matrix (see, for

example, Hastie & Tibshinari, 1990, section 3.5; also see pp. 48- 49).

3 Study design

The questions one might ask about inference performance under random eþ ects

models, and information one could desire, are quite general, certainly more so

than the limited simulation evaluation presented here. To clarify the information

we sought, we ® rst present the questions we asked. Then we give the design aspects

of the particular simulation study reported here.

3.1 Inference issues

(Q1) What is the bias of r Ã 2 (i.e. the solution of equation (2))? We address this

in two parts because the truncation of negative values of r Ã 2 back to zero

will induce bias, especially when process variation is zero, even if the

signed variance estimator is unbiased (which can be the case in variance

components estimation).

(Q1a) What is the bias of the signed estimator r Ã
2?

(Q1b) What is the bias of the zero-truncated process variance estimator? To

explore this question we actually use r Ã , i.e. the square root of the zero-

truncated estimator (not possible to do with the signed estimator).

(Q2) What is the relative frequency of cases wherein r Ã 2 < 0?

(Q3) What is the coverage of the nominal 95% con® dence interval on estimated

process variance? This can be done on the scale of r as well as r
2 ; we

focus on r . A secondary question is also considered: what is the frequency

of coverage failures above and below the con® dence interval? For example,

here a coverage failure is said to be `above’ if the con® dence interval is

entirely above true r , hence r is below the lower con® dence limit.

The next set of questions relate to inference about the individual S i . These

inferences are computed as conditional on the actual survival probabilities of a

given case, but we are then evaluating their performance over the Monte Carlo

trials used.

(Q4) What is achieved coverage of the nominal 95% con® dence interval on S i ,

i 5 1, . . . , k? The focus is on average coverage over all k survival probabili-

ties (and whether coverage varies much by occasion, i ). Based on the

MLE under the time-speci® c CJS model, the interval used is

SÃ i 6 1.96sÃ e(SÃ i ½ S4 ). For the shrinkage estimator the interval uses rÃ mse from

equation (7), hence is SÄ i 6 1.96rÃ mse(SÄ i ½ S4 ).

(Q5) What are the relative lengths of these two con® dence intervals? It su ý ces

to compare ratios of average rÃ mse(SÄ i ½ S4 ) to average sÃ e(SÃ i ½ S4 ). An overall

ratio is based on ® rst computing the average of each quantity over all

simulation trails, by occasion, for a set of conditions (occasions, releases,

E(S ), p, and r ), then looking at
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grand average length ratio 5
R k

i 5 1 rÃrÅ mse(SÄ i ½ S4 )

R k
i 5 1 sÃsÅ e(SÃ i ½ S4 )

(9)

If needed, we can also look at length ratio by occasion:

occasion i average length ratio 5
rÃrÅ mse(SÄ i ½ S4 )

sÃsÅ e(SÃ i ½ S4 )
(10)

If the shrinkage estimator is superior, these ratios will be less than one

while con® dence interval coverage remains at, or near, the nominal level.

(Q6) What are the relative mean square errors of the MLE and shrinkage

estimators? Theory says the shrinkage estimator has the smaller mean

square error (MSE). For R Monte Carlo trials (under set conditions; r

indexes trial), the estimated MSEs by occasion are

MSE(SÃ i) 5
R R

r 5 1 (SÃ r,i 2 S r,i)
2

R

MSE(SÄ i) 5
R R

r 5 1 (SÄ r,i 2 S r,i)
2

R

The ratio of interest is

R k
i 5 1 MSE(SÄ i)

R k
i 5 1 MSE(SÃ i)

(11)

and less so, the by-occasion-i ratios,

MSE(SÄ i)

MSE(SÃ i)
(12)

If the ratios given by equation (12) are stable over occasions we can focus

on equation (11).

(Q7) On average, within trial, is the MLE or the shrinkage estimator closer to

the survival probabilities, S r,i , of that trial? The summary statistics used

to investigate this question are

SSE r (SÃ ) 5 +
k

i 5 1

(SÃ r,i 2 S r,i)
2

SSE r (SÄ ) 5 +
k

i 5 1

(SÄ r,i 2 S r,i)
2

Of interest is the ratio

RSSE r 5
SSE r (SÄ )

SSE r (SÃ )
(13)

which will be less than one if the shrinkage estimator is better than the

MLE. Questions (6) and (7) involve similar, but not identical summaries

of results.

The ® nal area of investigation concerns the performance of AIC model selection.

The most fundamental issue was whether AIC for random eþ ects (i.e. formula (8))

would perform satisfactorily. To answer the question we tabulate the performance
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of AICc as regards selection among three models ® t to each simulated data set.

The models ® t were {S t , pt }, {S, pt } (i.e. S i constant), and the random eþ ects

model, which is properly considered intermediate between these two ® xed eþ ects

models. Hence, the question is simply

(Q8) What is the performance here of AICc as regards these three models?

3.2 Simulation design

We simulated single-group live capture- recapture data of the CJS type (Lebreton

et al., 1992) as the basis to address the above questions (other choices are possible,

such as dead recoveries). The Monte Carlo simulations were done as a factorial

treatment design using ® ve factors:

capture occasions (t 5 k + 2), 4 levels (7, 15, 23, 31)

releases of new animals (u) on each occasion, 2 levels (100, 400)

constant capture probability (p) on each occasion, 2 levels (0.6, 0.8)

mean survival probability, E(S ), 2 levels (0.6, 0.8)

process variation, r , 4 levels (0, 0.025, 0.05, 0.1)

All 128 combinations ( 5 4 3 2 3 2 3 2 3 4) of these levels de® ned the points used

in the design space. At each design point we simulated 500 independent data sets.

For cases of r > 0 the S1 , . . . , S k were generated as a random sample from a beta

distribution with mean E(S ) and variance r
2 (such as was done in Burnham et al.,

1995, for random capture probabilities). On each occasion a ® xed number of new

`animals’ (u i º 100 or 400) were released into the population. Data sets were

generated one at a time in SAS (SAS Institute Inc, 1985) and passed directly to

MARK where three models were ® t to each data set: {S t , pt }, {S, pt }, and the

random eþ ects model, which also required the re-optimization of the model {S t , p t}

likelihood over p4 , at ® xed SÄ4 , as noted in Section 2.2.

A ® nal comment on design, in case the reader wonders why the levels for

occasion (t) were 7, 15, 23, 31. For this factor we focused on the number of

estimable S i , which is k 5 t 2 2, under the time-speci® c model, {S t , pt }. We ® rst

decided on 5 as our minimum for k; and we wanted about 30 for our maximum k.

Next we decided to use four levels. Given these choices, an increment to k of 8

was selected. Hence, levels on k are 5, 13, 21, 29, or in terms of occasions t, levels

are 7, 15, 23, 31.

3.3 Maximum likelihood estimation

A critical point here is that all the MLEs were computed without being constrained

to be < 1. This was done simply by using the identity link in MARK along with

the standard likelihood for the CJS time-speci® c model. If the logical constraint

SÃ < 1 is imposed it will have very undesirable eþ ects on the numerically estimated

Fisher information matrix, F, if any instance of SÃ j 5 1 occurs. The basic problem

is that now the partial derivatives with respect to S j end up being very wrong

(usually 0 if a logit link is used). The resultant numerically estimated sampling

variances are biased low. Of course now the variation in the set of MLEs is also

reduced by the imposed constraint. One might think everything would work out

all right in the end, but exploratory results showed this hope to be false.
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Applying the variance-components methods given here to MLEs is not recom-

mended when they are bounded at 1 and any of them fall on this bound. Note,

however, that if all MLEs are well below 1 (on the scale of their standard errors),

then doing the basic ® tting for MLEs bounded, as with use of a logit link function,

or unbounded gives the same results for random eþ ects inferences.

4 Results

To present results, our strategy is to give an overall performance result ® rst (e.g.

over all 128 cases, if appropriate), by question given their ordering in Section 3.1.

Then we partition the inferential statistic(s) by any important factors that aþ ect

the result. Major in¯ uences can be, for example, the value of process variation, r ,

number of capture occasions, and number of releases at each occasion (100 or

400). The total number of Monte Carlo trials (64 000) was large enough that

trivially small diþ erences can be detected as `statistically signi® cant’ . Therefore, we

usually do not present measures of precision on the summary means. In the spirit

of ® rst giving the big-picture result we note that the inference procedures examined

(i.e. the questions in Section 3.1) performed very well.

First, we present information on the expected value of r Ã
2 , the signed estimator

of r
2 , which is the solution of equation (2). Table 1 gives simulation results for

EÃ (r Ã 2 ) by r
2 and occasions, t, the only factors having any noteworthy eþ ects on the

results. There is distinct positive bias when process variation is 0, but little or no

bias in this study for r > 0.025 (except at k 5 5 and r 5 0.025). We had hoped the

signed r Ã
2 would be more nearly unbiased when true r was at or near 0; instead it

has positive bias.

However, the estimator to use in practice for a single data set would be

max{0, r Ã 2 }, for which there must be positive bias, at least at small values of r .

Therefore, we present in Table 2 results on bias of r Ã 5 [max{0, r Ã 2 }]1/2. From Table

2, r Ã has little bias, in this study, when true r > 0.025. An unbiased r Ã when true

r 5 0 probably cannot be achieved.

Comparison of results in Tables 1 and 2, to the extent this is meaningful given

the non-linearities involved, suggests zero-truncation is not a major cause of bias

in r Ã . This observation motivated us to produce Table 3, which gives the proportion

of trials in which r Ã 2 was negative. Especially when r 5 0, we thought perhaps the

proportion of negative signed estimates would be much less than 0.5; it was not.

However, the distribution r Ã
2 is very asymmetric: there are not a lot of negative

Table 1. Mean value of the signed estimator of process variance, r Ã
2, by true r and

number of capture occasions, t 5 k + 2, from simulation; means by r
2 and t are

based on 4000 trials; column means (i.e. by r
2 only) are based on 16 000 trials

True r
2 ( r in parentheses)

(0) (0.025) (0.05) (0.1)

t 0 0.000625 0.00250 0.01

7 0.000107 8 0.000761 0.00249 0.01015

15 0.000044 6 0.000620 0.00253 0.01002

23 0.000029 9 0.000637 0.00251 0.00999

31 0.000027 3 0.000645 0.00251 0.00994

mean 0.000052 4 0.000666 0.00251 0.01002
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Table 2. Mean value of the r Ã 5 [max(0, r Ã 2)]1/2, by true r and number of capture

occasions, t, from simulation; means by r and t are based on 4000 trials;

column means (i.e. by r only) are based on 16 000 trials

True r

t 0 0.025 0.05 0.10

7 0.00916 0.0275 0.0499 0.1007

15 0.00591 0.0249 0.0502 0.1001

23 0.00467 0.0252 0.0501 0.0999

31 0.00462 0.0254 0.0501 0.0997

mean 0.00609 0.0257 0.0501 0.1001

Table 3. Mean proportion of signed estimates, r Ã
2
, that are negative, by true r

and number of capture occasions, t, from simulation; means by r and t are

based on 4000 trials; column means (i.e., by r only) are based on 16 000 trials

True r

t 0 0.025 0.05 0.10

7 0.592 0.339 0.159 0.026

15 0.516 0.144 0.022 0.001

23 0.510 0.076 0.004 0.000

31 0.484 0.047 0.002 0.000

mean 0.526 0.152 0.047 0.007

values that have large absolute values, where `large’ is with respect to the sampling

distribution of the positive values of r Ã 2 . For the record we note here that the proper

lower bound to enforce on r Ã 2 is the negative of the smallest eigenvalue of EÃ S4(W ).

Next, we consider question (3) in Section 3.1: actual coverage of the nominal

95% con® dence interval on r
2 , or equivalently, on r . The endpoints of this interval

are computed based, on r
2 , from formulae (4a) and (4b). Results are then zero-

truncated; hence, we can take the square root of those endpoints, and coverage is

the same whether considered for r
2 or r . Evaluated over all 64 000 computed

con® dence intervals on r , coverage was 94.8%. Coverage averaged by r is shown

below (each mean is based on 16 000 trials), and separately by capture occasions, t :

r %coverage t %coverage

0.000 94.6 7 94.9

0.025 95.0 15 94.9

0.050 95.1 23 94.8

0.100 94.7 31 94.8

The other question about coverage is whether the 5% of intervals that failed to

cover did so with equal `tails’ . We therefore looked at the percentage of intervals

that failed to cover because r was below the lower limit of the interval (denoted as

missed `above’ ), or r was above the interval upper end point (missed `below’ ). The

answer is simple, there was symmetry: 2.63% of misses were below and 2.53% of

misses were above. Even for the 16 000 trials at r 5 0 the results were 2.95% of

misses were below and 2.47% of misses were above.
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The next set of results are about inference on individual survival rates, S i

(questions (4) to (7) in Section 3.1). We believed, and results support, that

shrinkage estimates have smaller mean square error than MLEs under a random

eþ ects model. However, did we then suþ er big losses in con® dence interval

coverage? Thus, coverage (question (4)) was paramount in our thinking, so we ® rst

present results for coverage of intervals computed, based on use of equation (7),

as SÄ i 6 1.96 rÃ mse(SÄ i ½ S4 ), and for MLE-based intervals as SÃ i 6 1.96 sÃ e(SÃ i ½ S4 ) (from the

time-speci® c CJS model). Conditional on a given trial and occasion (i 5 1, . . . , k),

an interval `covers’ if true S i for that trial is in the con® dence interval. These are

the type of conditional intervals one wants for the individual survival probabilities.

Con® dence interval coverage results, averaged over all estimable survival

probabilities (k) within case (500 trials) and then over all 128 cases, are 95.5% for

the shrinkage estimator and 95.0% for the MLE under the time-speci® c CJS model.

No design factors aþ ected the coverage of the MLE-based interval; therefore, we

do not look closer at its coverage results. Coverage of the con® dence interval based

on SÄ was close to the nominal 95% except when r 5 0, wherein coverage was too

high. Coverage was relatively lower for seven occasions, k 5 5, compared to k > 13.

Numbers of releases (u) had only trivial e þ ects on coverage. As Table 4 shows,

coverage based on the shrinkage estimator was essentially 95% for the cases

examined here when r > 0 and k > 5.

The only striking result is that coverage based on SÄ is higher than nominal when

r 5 0 (Table 4). This result is understandable from formula (7), wherein if S i º S

then shrinkage to the common mean is correct and the term (SÄ i 2 SÃ i)
2 is neither

needed nor appropriate. However, when r > 0 (0.025 or more here), this added

term is needed, even when the analysis in a given trial produces r Ã 5 0. For real

data we do not know r and observing r Ã 5 0 does not reliably mean r 5 0. Hence,

we have here an issue in data analysis strategy. We could always use equation (7);

this is probably a good strategy if true r > 0. Or we could use equation (7) unless

r Ã 5 0, in which case we then use the traditional sÃ e(SÄ i ½ S4 ). We will comment more

on this matter below.

Given that con® dence interval coverage is good, we address question (5): what

are the relative lengths of these two con® dence intervals? First we look at results

for the 128 cases based on formula (9), which is the ratio of overall average interval

lengths (shrinkage versus MLE based). A ratio less than one favours the shrinkage-

based method. The mean ratio over all 128 simulation cases is 0.842. However,

this ratio in equation (9) is strongly aþ ected by the value of r :

Table 4. Average percentage coverage for nominal 95% con® dence intervals

on survival probabilities, S i, based on the shrinkage estimator, SÄ i ; results here

are averaged over i and are based on 4000 independent trials by combination

of true r and number of capture occasions, t, and on 16 000 trials for each

column mean

True r

t 0 0.025 0.05 0.10

7 97.8 93.1 92.1 93.7

15 99.5 94.0 94.3 94.8

23 99.7 94.8 94.7 94.7

31 99.8 95.3 95.0 94.8

mean 99.2 94.3 94.0 94.5
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con® dence intervals ratio

r formula (9)

0.000 0.739

0.025 0.799

0.050 0.879

0.100 0.949

There are no other factors that have eþ ects worth noting on this ratio of average

con® dence interval lengths. There is a striking result here. Fitting the CJS model

{S t , p t} to data wherein the S i did not vary over time (r 5 0), the con® dence interval

based on the shrinkage estimator had coverage > 95%, the MLE-based con® dence

interval covered at 95%, and yet the con® dence interval based on the shrinkage

method was, on average, about 25% shorter than the interval based on the MLE.

For the cases having r > 0, coverage of both intervals was about 95%; however,

the con® dence interval based on the shrinkage method was always shorter on

average than that from the MLE analysis. Thus, the analysis strategy issue raised

above is easily resolved as regard to the use of MLE versus shrinkage when a

random eþ ects model is a proper model to consider: random-e þ ects based inference

uniformly beat MLE in these simulations.

A few more analyses are useful. We considered the stability of the ratio of average

con® dence interval lengths by occasion, within the simulation case. Using formula

(10) we computed this ratio of average lengths (from 500 trials). Then we computed

the coeý cient of variation of these k ratios, hence getting one number for each of

the 128 simulation cases. If these CVs are small (5% would be small, we feel) then

our analysis of con® dence lengths based on equation (9) is suý cient to apply to

all occasions, i 5 1, . . . , k. The average of the 128 CVs is 2.0%, and the largest

four CVs are (as %) 3.6, 3.7, 4.2 and 6.0. We conclude that the analysis of the

ratio of average con® dence interval lengths based on equation (9) is su ý cient.

Next, we consider question (6): what are the relative mean square errors of the

MLE and shrinkage estimators? First we used equation (11) to obtain ratios of

average mean square errors over occasions within case; hence, we get one ratio for

each of the 128 cases simulated. A ratio < 1 favours the shrinkage estimator. The

average of those 128 ratios is 0.618. The factor that has the biggest eþ ect, by far,

on this ratio is process variation, r . Average results of equation (11) by r are

average MSE ratios

r formula (11)

0.000 0.192

0.025 0.570

0.050 0.790

0.100 0.919

Because averages conceal as well as reveal we also used formula (12) to compute

this mean square error ratio for all 2176 combinations of factors and occasions

within case. Only three of these 2176 ratios exceeded 1: 1.003, 1.004 and 1.02.

All other such ratios were less than 1. This is additional evidence of the superiority

of the shrinkage estimator as compared with the MLE in this random eþ ects

context.
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Table 5. The proportion of simulation trials that had RSSEr< 1 (formula

(13)) ; if proportion > 0.5 the shrinkage estimator is preferred to the MLE;

results are based on 4000 independent trials by combination of true r and

number of capture occasions, t, and 16 000 trials for each column mean

True r

t 0 0.025 0.05 0.10

7 1.000 0.848 0.725 0.648

15 1.000 0.946 0.854 0.753

23 1.000 0.971 0.914 0.786

31 1.000 0.985 0.935 0.824

mean 1.000 0.937 0.857 0.752

The ® nal question about shrinkage versus MLE is question (7): how do these

two estimators compare within a data set, on average, in terms of the by-trial ratio

of their SSE, RSSE r (formula (13))? The average of such ratios can be unstable,

so for a basis of comparison we tabulated the proportion of the 500 simulation

trials, by case, that had RSSE r < 1. This is the same as the proportion of trials

where SSE r(SÄ ) < SSE r(SÃ ). A proportion between 0.5 and 1 favours the shrinkage

estimator, and the closer the proportion is to 1, the more favoured is the shrinkage

estimator. Averaged over all 128 design points, the proportion of cases wherein

SSE r(SÄ ) < SSE r(SÃ ) occurred was 0.887, and the minimum proportion over all 128

cases was 0.558. Results are strongly dependent on true r and t (occasions), hence

results averaged by these factors are given in Table 5. In terms of this measure of

closeness of the estimator to true S i , the shrinkage estimator wins handily as

compared to the MLE under CJS model {S t , pt }.

The ® nal area of inference explored here is question (8): what is the performance

of AIC for random eþ ects models (formula (8)) when the set of three models

contains the random eþ ects model and the two ® xed eþ ects models, wherein S i

either varies by occasion or is constant. For all three models, capture probability

estimates were allowed to be fully time varying. Use of the random eþ ects model

for S means we use the shrinkage estimator, which we expect, and results here

show, to be more parsimonious than the MLE under model {S t , pt }. Our most

striking ® nding quite surprised us: AIC for the random eþ ects model was always

smaller than AIC for the `parent’ ® xed eþ ects model, {S t , pt }. `Always’ , literally

means here in all 64 000 simulated trials. (We expended great eþ ort to be sure this

was not the result of any programming error.)

We can denote the three AICc values computed here by AIC(.) for the constant

S model, AIC(R E) for the random eþ ects model, and AIC(t) for the time-varying

S model. The diþ erence D 5 AIC(t) 2 AIC(R E) had a minimum and maximum

over all 64 000 trials of 0.022 and 47.938. Because AIC always selected random

eþ ects (i.e. SÄ t) over full time variation MLEs (i.e. SÃ t ) the only other issue is about

AIC-based selection of the constant S model, {S, pt}, versus the random eþ ects

model. Table 6 gives such selection results: how often the random eþ ects model

was selected rather than the simple time-constant survival probability model.

Average results for this selection relative frequency by r 5 0, 0.025, 0.05, 0.1 are,

respectively, 0.257, 0.736, 0.921, 0.987.

One motivation for wanting a random eþ ects model for capture- recapture was

the desire for a parsimonious model intermediate between models {S, pt}, and
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Table 6. The proportion of simulation trials in which AIC selected the random

eþ ects model rather than the constant S model (note, AIC always selected random

eþ ects over S time varying); results are based on 2000 independent trials for

each combination of r , t and l , 8000 trials by r and l , and 16 000 by r value

(column means)

True r

t u 0 0.025 0.05 0.10

7 100 0.303 0.445 0.653 0.914

7 400 0.374 0.760 0.911 0.992

15 100 0.228 0.550 0.892 0.994

15 400 0.350 0.892 0.996 1.000

23 100 0.186 0.632 0.948 1.000

23 400 0.255 0.954 1.000 1.000

31 100 0.158 0.677 0.967 1.000

31 100 0.201 0.976 1.000 1.000

mean 100 0.219 0.576 0.865 0.977

400 0.295 0.896 0.977 0.998

mean 0.257 0.736 0.921 0.987

{S t , p t} when there clearly is time variation in survival probability, but no explainable

structure to that variation. In particular, the situation arises where AIC(.) 8 AIC(t)

and yet using the simpler model, hence a single SÃ º SÅS
Ã , means foregoing separate

estimates for k 2 1 estimable survival parameters. The random eþ ects model with

shrinkage estimates provides the needed intermediate model.

As expected, there are conditions where AIC(.) 8 AIC(t) but AIC(R E) is sub-

stantially less than these other values. Thus, the random eþ ects model gets not

only selected, but convincingly so in the sense that its Akaike weight is nearly 1 in

this set of three models. In these same circumstances, when the model choice is

restricted to the two ® xed eþ ects models, selection relative frequencies tend to be

about 0.5 for each of those models. Table 7 gives cases from the simulation study

where this scenario was common. These cases tended to be ones where process

variance was about the same as mean sampling variance, r
2 8 vÅ ar(SÃ ½ S4 ). A dramatic

example is for the case having t 5 31, E(S ) 5 0.6, r 5 0.025, p 5 0.6, u 5 400:

AÅ IC(.) 5 13.82, AÅ IC(t) 5 13.71, but AÅ IC(RE) 5 0.064.

Table 7. Average D AIC results, over 500 trials, for some cases where D AIC(.) 8 D AIC(t) but D AIC(RE)

is substantial lower

t E(S) r p u D AIC(.) D AIC(RE) D AIC(t)

15 0.6 0.025 0.6 400 5.33 0.084 7.24

15 0.6 0.050 0.6 100 5.19 0.095 7.26

15 0.8 0.025 0.8 100 5.41 0.097 7.05

23 0.6 0.025 0.6 400 9.62 0.070 10.29

23 0.6 0.050 0.6 100 8.95 0.124 10.79

23 0.8 0.025 0.8 100 10.39 0.103 9.91

31 0.6 0.025 0.6 400 13.82 0.064 13.71

31 0.6 0.050 0.6 100 12.64 0.131 14.45

31 0.8 0.025 0.8 100 15.13 0.077 12.93
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5 Discussion

Using random eþ ects as a basis for modelling collections of related parameters is

a long-standing approach in statistics and one that can be very eþ ective (see, for

example, Link, 1999). Use of the random eþ ects approach in capture- recapture

has just started. We strongly support this new dimension of capture- recapture

models (which can be likelihood, frequentist, Bayesian, or empirical Bayes).

However, we also believe that the methodology needs to be better understood as

to any potential pitfalls and as to its operating characteristics. While this thinking

(e.g. what is an estimator’ s bias) is classically frequentist, it should apply as well to

Bayesian approaches if our methods are to be considered scienti® c (see, for

example, Dennis, 1996).

In the spirit of evidence, and the potential for dis-proof, we have herein done a

small Monte Carlo evaluation of one approach to implementing random eþ ects

models. We are not aware of any other such evaluation of random eþ ects modelling

speci® cally in capture- recapture. The results (such as in Tables 1 - 7), taken as a

whole, show the method performed quite well under the conditions of the study,

especially when r
2 > 0.025. Desirable performance characteristics (such as unbiased

r Ã 2 ) may be harder to achieve if r
2 is 0, or quite small; this is an area where more

methodology research could be done. However, we think it reasonable to believe

that for a worthwhile study yielding good data, process variation, r
2 , will not be

too small, relative to average sampling variation and it is for these conditions (of

`good data’ ) that we need eþ ective random eþ ects inference methods.

The simulations generated perfect data; in particular there was no overdispersion

(see, for example, Lebreton et al., 1992; Burnham & Anderson, 1998). In practice

if there is overdispersion, as measured by a scalar often denoted by c, the

estimated sampling variance- covariance must be adjusted by a reliable cÃ , to be not

EÃ S4(W ) 5 F
2 1, but rather cÃ F

2 1. Franklin et al. (this issue) illustrates this practice

with real data.

A key design feature to focus on for `good data’ when applying random eþ ects

is simply k, the number of estimable random eþ ects parameters (could be sites

instead of time intervals). The sample size for estimating r
2 is k. Therefore, one

must not have k too small; k 5 5 (t 5 7) is too small. Even if we knew all the

underlying S i a sample of size 5 is too small for reliable inference about the variation

of these parameters (even if we had a random sample of them, which is not required

here). Inference performance here was good when k > 15. We did not look at

k 5 10, but we would guess inference would be acceptable for k > 10. The bene® ts

(includes shrinkage estimates) of random eþ ects models become greater as the

number of underlying parameters, k, increases.

The other in¯ uential basic design feature is animal sample size. Both numbers

initially released (u i ) and numbers recaptured (these depended on S i and p i) are

important to the performance of inferences from random eþ ects models. We have

no re ® ned design guidelines here. We initially included in our design-factor for

releases a level of u 5 25. This proved to be too few animals to get useful random

eþ ects inferences: sampling variation was relatively so large that all too often the

point estimate of r
2 was 0. We also initially included levels for S and p of 0.4. We

quickly found that these factor-levels, even combined with u 5 100, too often did

not lead to useful random eþ ects inferences, again in the sense that too often

r Ã 2
5 0. This will not cause problems with real data; one simply will ® nd that a

model with constant S is best. But we wanted to focus on design points where
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`interesting’ results would occur for the random eþ ects model, hence we eliminated

some of the initial design points envisioned.

The situation where inferences from a random eþ ects model are most advanta-

geous seem to be for when r
2 is about the same as average sampling variance,

vÅ ar 5 [ R var(SÃ i ½ S i)] /k (note that sampling variance is much in¯ uenced by sample

sizes of animals captured and recaptured, or recovered). If one or the other variance

component dominates the total variation in the MLEs SÃ i then the data strongly

favour either the simple model {S, pt } (vÅ ar dominates), or the general model {S t , pt }

(r 2 dominates), rather than the random eþ ects model. However, it is not a problem,

as regards inference about r
2 , to have large sample sizes of animals, hence small

sampling variances, so that should be one’s design goal. If it then turns out that

sampling variance is similar to process variance, the random eþ ects model will be

quite superior to model {S t , pt }. Thus, in a sense the random eþ ects model is

optimal at the `intermediate’ sample size case. As sample size of animals increases,

the random eþ ects model converges to model {S t , p t}.

Our results show that the random eþ ects inference methods evaluated here

performed well. Hence, we do not further focus on the given results, but rather on

issues we think are problematic. A key such issue is a boundary eþ ect, at least

under what is basically a likelihood approach. If one enforces S < 1 when the

unbounded MLE SÃ exceeds 1 then standard numerical methods (as in MARK)

used to get the observed information matrix fail. As a result, the estimated

information matrix is incorrect for any terms concerning the SÃ that is at the bound

of 1 (and the inverse information matrix is likely wrong in all elements). Experience

shows that, in this case, the resultant point estimate of r
2 can be very diþ erent from

what one gets when the survival parameter MLEs are allowed to be unbounded. The

diþ erence can be substantial. We felt that since the bounded case can lead to

biased (low) sampling variances (and biased SÃ ), we would be better oþ allowing

the MLEs used in the random eþ ects formulae to be the unbiased ones that arise

by using an identity link for S. By so doing we have found r Ã 2 to be unbiased in

most cases examined here (Table 1 or 2). Because the simulations are very time-

consuming we did not also run them for the bounded case.

Note that we do not suggest routinely accepting ® nal inferences that include sur-

vival estimates exceeding 1. In fact, the shrinkage estimates will generally not exceed

1, so using SÄ i not SÃ i will be the needed improved inference. However, to get to this

® nal inference it may be desirable to pass through an imaginary space (S > 1), just

as imaginary numbers can facilitate real solutions to real problems (or just as concep-

tualizing a parameter as a random variable allows the power and beauty of the

Bayesian approach); models only need to possess utility, not full reality.

It is common to use the logit link function when ® tting, as here, generalized

linear models when the parameters are probabilities. Moreover, it is common then

to implement the random eþ ects on the logit (S ) scale, rather than on S directly.

We did not do this for two reasons. First, to do so for this random eþ ects modelling

would, in e þ ect, enforce the constraint S < 1 on the MLEs. As noted, boundary

eþ ect problems then arise with the empirical information matrix. Secondly, and

more important, is that biologists want, and need, r Ã on the scale of survival

probability, S (see, for example, White, 2000) to use in population modelling

eþ orts. Basically, we need inferences about survival, much more than we need

inferences about logit (survival). This latter reason is the important one since with

good data we rarely observe an unbounded MLE of S that exceeds 1. (Note:

MARK will do random eþ ects on logit parameters.)



Evaluation of random eþ ects methodology 261

This boundary eþ ect problem can arise unexpectedly, as with the ring recovery

models parameterized as S and r (Seber, 1970; there, k º r), as opposed to S and

f of Brownie et al., 1985. In this formulation, the likelihood for every multinomial

cell involves terms in 1 2 S. This eþ ectively constrains S < 1 but can cause

undesired boundary eþ ects.

Might the full, proper Bayesian Markov chain Monte Carlo approach to random

eþ ects (see, for example, Brooks et al., this issue; Royle & Link, this issue) eliminate

such boundary eþ ect biases? We do not know; we doubt it (of course, we are taking

this from a frequentist operating characteristic viewpoint, which a Bayesian might

disavow). We have programmed the simple MCMC random eþ ects analysis and

looked at some real data wherein the unconstrained MLE SÃ exceeds 1. It is easy

in the MCMC analysis to allow S to have its distribution over an interval such as

0 to 2 (rather than 0 to 1). We did so and there is a strong eþ ect of the upper

bound on the point estimate (and entire posterior distribution) for r
2 , and for that

particular S. This has implications about operating characteristics of Bayesian

random eþ ects inference.

Since we think the operating characteristics of Bayesian methods should be

documented, and we have software to do it, why did we not do the study? The

simulations reported here took over 4 months of CPU time on what was then a

state-of-the-art PC computer. The Bayesian MCMC analysis of a data set took

about 100 times as much CPU time as the simpler MARK implemented analyses.

Unless we can greatly speed up the MCMC analysis on a single computer, or use

many computers in parallel, we might be looking at years to do the corresponding

Bayesian simulation study.

Another issue to be aware of, as regards the parameter r
2 , is the matter of

distinctly unequal, rather than equal length, time intervals (such as 1 month periods

in summer, 2 months in spring and fall, 4 months in winter). Let the time interval

i have length D i . Then we should parameterize the model as S i 5 (c i)
1/D i where now

each survival probability c i is on the same unit time basis. It may then make

biological sense to consider parameters that are a mean and variation for c 1 , . . . , c k .

But this may just as well not make sense, because the time intervals are intrinsically

not comparable as they may be in very diþ erent times of the annual cycle. It

becomes a subject matter judgement as to whether random eþ ects analysis will be

meaningful with unequal time intervals. It might be necessary to use a more general

® xed eþ ects structural model, rather than E(c i) 5 l , to allow for explainable

temporal eþ ects on survival (but for which we have no measurable explanatory

covariates).

The name `random eþ ects’ can be misleading in that a person may think it

means that underlying years or areas (when spatial variation is considered, rather

than temporal) must be selected at random. This is neither true, nor possible, for

a set of contiguous years. Variance components is a better name, in that at the

heart of the method is the separation of process and sampling variance components.

The issue of what inferential meaning we can ascribe to r Ã 2 is indeed tied to design

and subject matter considerations. However, the shrinkage estimators do not

depend on any inferential interpretation of r Ã
2 ; rather, they can always be considered

as improvements, in a MSE sense, over the MLEs based on full time-varying S t .

The random eþ ects model only requires that the conceptual residuals, S i 2 x4 ¢i b 4 ,

are exchangeable. Hence, these residuals should appear like an iid sample; there

should be no recoverable structural information left in them. There is no required

distributional assumption, such as normality. Indeed, in our simulation, the S i were
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beta-distributed. The formulae used here (Section 2.1) are based only on ® rst and

second moments, except there is an assumption that RSS (r 2 ) (see text near

formula (2)) has a central chi-square distribution. It seemed to be true enough to

lead to good inference results here about r
2 .

Consider the simple case examined in our simulations: E(S ) 5 l . Given the weak

assumption of exchangeability we are just assuming the time variation in the S i

appears as if it were totally random. Thus, a su ý cient summary of this variation

can be the single parameter, r
2 . Essentially, all the information in S 1 to Sk can be

collapsed into just two parameters, l and r
2 . This is exactly what the random

eþ ects model does, but in a heuristic sense, via the intermediary values of SÄ i . And

it is correct to say that the random eþ ects model is intermediate between the

models with S constant and S as being unconstrained time-varying, regardless of

issues about whether the underlying S i are from a random sample of any sort. This

latter issue is relevant to the meaning of any inference one wants to make about r
2

(and l ), but these become context and subject matter issues. In general, since we

cannot select years at random in capture- recapture studies, we have no option

except to use such an estimated r
2 for some sort of cautious, but assumption-

based, inference about temporal variation in survival probabilities.

What of the future of multiple and generalized random eþ ects in capture-

recapture models, such as to males and females jointly with correlated random

variation? It is bright, but probably not to be much found in moment-type equations

such as in Section 2.2. We need easy ways to embed general and ¯ exible random

eþ ects into extant capture- recapture models, without each time deriving estimators.

There are two candidate approaches: Bayesian hierarchical modelling, and likeli-

hood via h-likelihood (Lee & Nelder, 1996, `h’ stands for hierarchical). The

Bayesian approach can be easily used (and has been) to produce results (see, for

example, Royle & Link, this issue), but it is computationally intensive, which makes

simulation evaluation of the method quite demanding. We think some such

evaluations must be done because we have found random eþ ects methods have

pitfalls; we do not expect the Bayesian approach as such will sidestep these pitfalls.

As for model selection, an AIC-like selection criterion does exist for Bayesian

hierarchical models: DIC, deviance information criterion (see Spiegelhalter et al.,

1998). Finally, theoretically, the h-likelihood approach works, but it has not

been tried yet for capture- recapture. It has the advantages of being much faster

computationally and of potentially ® tting easily into program MARK.

Meanwhile, this study provides the needed evidence that the simple but useful

random eþ ects model implemented in MARK can perform well.
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