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Abstract. Estimation of population change from count surveys is complicated by var-
iation in quality of information among sample units, by the need for covariates to accom-
modate factors that influence detectability of animals, and by multiple geographic scales
of interest. We present a hierarchical model for estimation of population change from the
North American Breeding Bird Survey. Hierarchical models, in which population parameters
at different geographic scales are viewed as random variables, provide a convenient frame-
work for summary of population change among regions, accommodating regional variation
in survey quality and a variety of distributional assumptions about observer effects and
other nuisance parameters. Markov chain Monte Carlo methods provide a convenient means
for fitting these models and also allow for construction of estimates of derived variables
such as weighted regional trends and composite yearly population indices. We construct
an overdispersed Poisson regression model for estimation of trend and year effects for
Cerulean Warblers (Dendroica cerulea), accommodating nuisance covariates for observer
and start-up effects, and estimating abundance- and area-weighted annual indices at regional
and continent-wide geographic scales. A goodness-of-fit test is also presented for the model.
Cerulean Warbers declined at a rate of 3.04% per year over the interval 1966–2000.
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INTRODUCTION

Observation of population declines has been a pri-
mary motivation for conservation actions (Caughley
1994); information on population status and change is
an essential component of adaptive management and a
variety of ecological studies. Unfortunately, informa-
tion on population status is limited for many animal
populations, and much of the existing information is
controversial because of limitations of the surveys used
to monitor species across their ranges. Few surveys
provide the geographic coverage needed for range-wide
monitoring of any species. Those that do tend to be
deficient with regard to two primary statistical design
issues: estimation of detection rates of animals within
sample units, and poorly defined or incomplete sample
units. Surveys with these limitations are often called
index surveys. The numerical summaries produced by
such surveys are not estimates of population size; their
usefulness for estimation of temporal or spatial vari-
ation in population size depends on the validity of as-
sumptions that may not be testable.

The North American Breeding Bird Survey (BBS;
Robbins et al. 1986) is an index survey used to estimate
population change of migratory birds. Counts on the
BBS are conducted once each year along permanently
located roadside survey routes, which are regarded as
the sample units. No attempt is made to estimate the
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detectability of birds during counts. No estimate of
population size (or population change) from the BBS
can be made unconditionally; instead, all estimates are
model-based, requiring assumptions about consistency
in indices over time and space (Edwards 1998, Link
and Sauer 1998a). Estimation of population change
from index surveys is greatly complicated by such de-
sign inadequacies.

In particular, complications arise in the summary of
count data over time and space. Simple averages of
counts are generally inappropriate summaries of abun-
dance (James et al. 1990), as it is evident that indices
can be influenced by observer (Sauer et al. 1994), en-
vironmental conditions (Robbins et al. 1986), and hab-
itat features (Sauer et al. 1995). The BBS is also subject
to regional differences in numbers of routes and in the
consistency of data collection along routes, so that
some areas have large amounts of data whereas other
areas have very limited data.

To accommodate such complications, Geissler and
Sauer (1990) suggested a ‘‘route regression’’ procedure
to estimate change from repeated surveys such as the
BBS. In their formulation, rates of population change
are estimated on each route using linear regression on
log counts, with modeled effects of covariates accom-
modating differences in detectability associated with
observers. More recently, route-specific estimates of
trend have been obtained using estimating-equations
estimators derived for count data (Link and Sauer
1994), using LOESS (James et al. 1996) and using
negative binomial models (Link and Sauer 1998a). One
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way or another, the essence of the route regression
procedure is the same: route-specific estimates of trend
are combined via weighted averages to obtain estimates
of change at larger geographic scales.

The weightings used in route regression were an im-
portant innovation for summarizing population change
for aggregates of routes. Precision weights accom-
modate variation in the quality of information, dimin-
ishing the contributions of imprecise estimates. Local
abundance weights scale the trends to represent num-
bers of birds per route, so that aggregates can be pro-
duced representing total population change rather than
a simple and misleading average trend. (It is misleading
to summarize an increase of 50% on a route with 100
birds and a decrease of 50% on a route with 10 birds
by a mean trend of zero.) Finally, because the number
of routes varies spatially, estimates of total population
change at large geographic scales are area weighted.

The route regression procedure has been legitimately
criticized as ad hoc for the manner in which the pre-
cision and abundance weightings are calculated (ter
Braak et al. 1994). Empirical Bayes methods suggested
by Link and Sauer (1998a) and Sauer and Link (1999)
offer some improvement on the precision weightings,
but rely on asymptotic approximations and retain the
ad hoc abundance weights in summary analyses. In this
paper, we present hierarchical models for count survey
data; these provide a very natural basis for large-scale
summaries.

Estimation of population change from count survey
data can be carried out using a hierarchical model re-
lating patterns in data to patterns in population param-
eters. Most familiar statistical models have random var-
iables that depend on fixed parameters. In hierarchical
models, the parameters are treated as random variables;
the probability distribution of the parameters is gov-
erned by further parameters, sometimes referred to as
hyperparameters. For count-based surveys, this struc-
ture allows us to model the influence of regions, ob-
servers, and other factors on the distributions of the
parameters influencing counts, rather than on the counts
themselves. This eliminates the need for ad hoc pro-
cedures for accommodating regional differences in pre-
cision of counts in summary analyses.

Hierarchical models are naturally handled using
Bayesian methods, which treat all unobserved and un-
known quantities as random variables. The Bayesian
paradigm requires specification of the sampling distri-
bution of the data conditional on the parameters (as in
classical statistical analysis), and also the specification
of prior distributions for parameters. All Bayesian in-
ference is based on posterior distributions, that is, the
distributions of the parameters conditional on the data.
Calculation of posterior distributions involves integra-
tion of the product of the sampling distribution and the
prior distributions. Objective Bayesian analyses are
conducted using prior distributions that provide little
or no information about the parameters of interest: the

prior is chosen in such a way as to produce a posterior
distribution very similar to the likelihood function. An-
alytical calculation of the posterior is a difficult pro-
cess, and often impossible, for most problems of prac-
tical use.

Markov chain Monte Carlo methods (MCMC; Gilks
et al. 1996) provide alternative means of conducting
analyses of hierarchical stochastic models. MCMC
methods use simulation to evaluate probability distri-
butions, and are thus similar to ordinary Monte Carlo
methods. That is, features of the probability distribu-
tions studied are approximated by corresponding fea-
tures of random samples drawn from the distributions;
the sample mean, variance, and percentiles approxi-
mate the true mean, variance, and percentiles. The dis-
tinction is that ordinary Monte Carlo methods are based
on independent samples from the distributions of in-
terest, whereas MCMC is based on correlated samples,
first-order Markov chains. This correlation requires that
MCMC simulations be based on larger samples to ob-
tain levels of precision comparable to those obtained
using ordinary Monte Carlo methods. However,
MCMC sampling is usually much more easily imple-
mented than ordinary Monte Carlo sampling, because
the probability distribution to be sampled need only be
specified up to a multiplicative constant. In practical
terms, this means that MCMC evaluation of a posterior
distribution can be carried out without performing the
analytically intractable integrals required for full spec-
ification of the posterior distributions.

We describe a hierarchical model for regional anal-
ysis of population change from BBS data, and fit it to
data using Markov chain Monte Carlo methods. As an
application of the procedure, we analyze population
change for Cerulean Warblers (Dendroica cerulea)
from BBS data for the interval 1966–2000.

METHODS

The North American Breeding Bird Survey

The BBS contains design elements common to a
wide variety of multiple-scale surveys. The BBS covers
the United States (excluding Hawaii) and Canada, with
limited coverage in Mexico. It is composed of .4000
roadside survey routes, each of which is 39.43 km in
length. Routes contain 50 evenly spaced sample points,
at which a competent observer conducts a 3-min point
count during which all birds seen and/or heard are re-
corded. The sum of the counts from the 50 points in a
year’s survey is used as an index to abundance along
the route for that year. Counts are conducted once each
year, the same routes are surveyed every year, and gen-
erally the same observer will survey a route for a series
of years. Most, but not all, routes are surveyed every
year; routes in remote areas tend to be less consistently
surveyed. Analyses of BBS data are summarized for
states/provinces and for physiographic strata (e.g.,
Robbins et al. 1986, Link and Sauer 1998a).
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Hierarchical model for analysis of change over
time from BBS data

Attributes to be estimated.—Analyses of BBS data
produce estimates of trend (average rate of yearly pop-
ulation change, for specific time intervals) and year
effects, which are annual departures from the prevailing
pattern of population change. Pattern of change is gen-
erally displayed using annual indices, which are fitted
patterns of population change (based on estimates of
year effects and trends), scaled to an index of regional
abundance.

Nuisance effects to be controlled for.—There is con-
siderable variability in the skills of BBS observers.
Evidence has been presented that there is a temporal
component to this variability, that observers’ counts
are partially explained by the year in which their ser-
vice to the BBS began; loosely speaking, that the pool
of observers has improved. Failure to account for ob-
server effects has been shown to introduce substantial
bias in trend estimation (Sauer et al. 1994). Our model
therefore includes random effects, v, for observers.

It has also been suggested that observers in the BBS
tend to have lower than expected counts in the first
year they conduct a survey (Kendall et al. 1996). Thus,
our model includes a novice observer effect, h.

BBS counts are overdispersed relative to the Poisson
distribution commonly used for counts (Link and Sauer
1997); replicate counts by the same observer on the
same route and in the same year would be more variable
than as indicated by a Poisson model. Failure to account
for overdispersion leads to overstatement of the pre-
cision with which parameters are estimated. We include
random effects « to accommodate extra-Poisson vari-
ation.

Model.—Our model describes counts Yi,j,t by an ov-
erdispersed Poisson regression. Indices i and t represent
stratum and year, with index j referring to unique com-
binations of route and observer; a discussion of prob-
lems associated with distinguishing route and observer
effects is reserved for the Discussion. The expected
value of Yi,j,t, given the values of stratum-specific in-
tercept, slope, and year effects (Si, bi, and gi,t), observer/
route effects (vj), and overdispersion effects («i, j,t), is
denoted by li, j,t and is modeled as satisfying

log(l ) 5 S 1 b (t 2 t*) 1 v 1 h I( j, t)i, j,t i t j

1 g 1 « . (1)i,t i, j,t

Here, t* is a baseline year from which change is mea-
sured, and I( j, t) is an indicator (0–1 variable) for the
event that the count was in the first year of service of
an observer. The observer/route effects, year effects,
and overdispersion effects are treated as mean zero
normal random variables. The use of random effects
to model weak stochastic relations among parameters
is discussed in Link (1999).

Using classical (Frequentist) statistical descriptions,
stratum and novice observer effects are ‘‘fixed effects’’

and all of the other effects in Eq. 1 are ‘‘random ef-
fects.’’ Under the Bayesian paradigm, a slightly dif-
ferent distinction is required, because all unknown
quantities are treated as random variables. Instead of
random and fixed effects, we distinguish parameters
and hyperparameters: the prior distributions of param-
eters are governed by other parameters and hyperpa-
rameters, whereas the prior distributions of hyperpa-
rameters are completely specified. We used standard
noninformative priors for the hyperparameters, as we
will describe.

The hyperparameters Si, bi, and h are given diffuse
(essentially flat) normal distributions. The default used
in program BUGS (Spiegelhalter et al. 1995) specifies
mean zero and standard deviation 1000, a density that
varies by less than 0.005% on the range (210, 10), a
range certain to include the true values of these effects.

Year effects, observer effects, and overdispersion ef-
fects were specified as having mean zero normal dis-
tributions. The observer effects were identically dis-
tributed, all having the same variance . Similarly, the2sv

overdispersion effects were identically distributed with
common variance . The variance of the year effects2s«

was allowed to vary among strata; we denote these
variances by . These variances are hyperparameters,2sg,i

all with flat inverse gamma distributions. The default
for such in BUGS has mean of 1 and variance of 1000;
these are essentially equivalent to flat normal priors on
the log of the precision.

It should be noted that species are not necessarily
encountered on all routes in strata where they occur.
We fit the model to data from routes on which a species
was encountered by at least one observer, so that in
order for Si to reflect typical local abundance within
the stratum (number of birds per route, e.g., Link and
Sauer 1998b), it must be scaled by the proportion of
routes on which the species was ever encountered, zi.

Summaries.—Composite trends and composite an-
nual indices are functions of the model’s parameters
and hyperparameters, combined using abundance
weights reflecting the typical magnitude of counts on
routes in the strata.

We define stratum-specific annual indices by

n 5 z exp(S 1 b (t 2 t*) 1 g ).i,t i i i i,t

These indices reflect stratum-specific relative abun-
dances of the species, adjusted for differences among
observers; ni,t is an index to the number of birds per
route in stratum i at year t. For comparisons among
strata, we take ni,t*, the value for year t*, as a baseline
abundance for stratum i. Indices for stratum totals are
obtained as Ni,t 5 Aini,t, where Ai is the area of the
stratum. Composite indices for collections of strata are
sums of Ni,t’s.

Trend has been defined as an interval-specific geo-
metric mean of proportional changes in population size
(Link and Sauer 1998a), expressed as a percentage.
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Thus the trend from year ta to year tb for stratum i is
100(Bi 2 1)%, where

1/(t 2t )b ani,tbB 5 .i 5 6ni,ta

If Nt 5 Si Ni,t is a composite index, the composite trend
B̄ is calculated analogously, as 100(B̄ 2 1)%, where

1/(t 2t )b aNtbB̄ 5 .5 6Nta

Composite indices Nt represent total numbers of indi-
viduals; it is often useful to scale the index by the total
area, obtaining a summary on the scale of birds per
route, nt 5 Nt /Si Ai. This scaling may help to emphasize
that the numbers reported are indices to abundance,
rather than actual numbers of individuals. The value
nt* provides a baseline abundance at the composite
scale.

It should be noted that Bi, B̄, ni,t, and Ni,t are derived
parameters, that is, functions of the basic parameters
describing the model, rather than basic parameters
themselves. Their posterior distributions are easily
evaluated using the Markov chains produced to study
the parameters from which they are derived. The ease
with which such summaries are evaluated in the context
of hierarchical models, rather than through post hoc
summarization of collections of parameter estimates,
is a major advantage of Bayesian over classical meth-
odology.

The graphical presentation of indices is of special
importance for reporting analyses of count survey data.
We recommend that graphical presentations of indices
include posterior means (a Bayesian point estimate)
and credible intervals (Bayesian confidence intervals,
based on percentiles of posterior distributions). How-
ever, we note that plots of indices against time are often
examined to illustrate temporal variability in popula-
tion size. In Bayesian analyses, posterior means are
optimal in the sense of minimizing quadratic loss in
estimation of groups of related parameters; they are
optimal estimates of individual values, in the context
of the group. However, the collection of posterior
means tends to be underdispersed relative to the col-
lection of true parameters (Ghosh 1992). For the year
effects, this means that the mean squared value of pos-
terior means of gi,t tends to be smaller than the variance
of the normal distribution from which the individual
values are sampled. Consequently, plots of indices
against time may suggest greater stability than is ap-
propriate; the posterior means are excessively
smoothed. A simple expedient is to include plots of
variance-inflated indices, calculated using adjusted
year effects estimates instead of the posterior meansCBĝi,t

of gi,t; the adjusted values are 5 gi,t, where Ci
CBĝ ÏCi,t i

is the ratio of the posterior mean variance for year
effects in stratum i, , to the mean squared value of2sg,i

posterior means of year effects. The superscript ‘‘CB’’

affixed to the adjusted year effects indicates that the
adjusted estimate is a ‘‘constrained Bayes’’ estimate
(sensu Ghosh [1992]; for an application of constrained
Bayes estimation to count survey data, see Link and
Sauer [1996]). Although the posterior means of annual
indices remain the best mean squared error estimates
of individual values, the variance-inflated values are
useful for graphical displays, in that they more appro-
priately portray the magnitude of temporal variability
in the indices.

Fitting the hierarchical model

We used program BUGS (Spiegelhalter et al. 1995)
to fit the hierarchical model. BUGS is a convenient tool
for formulating models and conducting MCMC anal-
ysis using Gibbs sampling and other procedures. Using
MCMC results requires the Markov chain to have
moved from initial values into a stationary distribution;
in practice, this is provided for by discarding early
observations of the chain (the ‘‘burn-in’’). We evalu-
ated the convergence of the Markov chain to the pos-
terior distribution using the Gelman-Rubin diagnostic,
included with BUGS and described in its documenta-
tion (Spiegelhalter et al. 1995).

Example analysis: Cerulean Warblers

The Cerulean Warbler is a migratory species that
breeds in a variety of forested habitats in eastern North
America and winters primarily on the eastern slopes of
the Andes in South America (see Plate 1). As a species
that breeds high in forest canopies, it has been consid-
ered to be vulnerable to habitat changes in its breeding
range. Several studies have documented declines based
on BBS data (e.g., Robbins et al. 1992).

Although the BBS provides considerable data for the
species, most information is based on relatively small
counts on survey routes, raising concerns about the
quality of the results. Here, we analyze Cerulean War-
bler results from the BBS using the hierarchical model,
and we compare results to those of the route regression
procedure (Link and Sauer 1994).

Regions for analysis.—We use Bird Conservation
Regions (BCRs) developed for the North American
Bird Conservation Initiative, based on ecoregions de-
scribed by the Commission for Environmental Coop-
eration (1997),2 as the primary strata for analysis. Gen-
erally, BBS analyses have used physiographic regions
within states/provinces as the strata for analyses (e.g.,
Geissler and Sauer 1990), but because Cerulean War-
blers are encountered at low abundances over much of
their range, we needed to aggregate BCR regions to
obtain sufficient samples of routes for analysis, leading
to these strata: (1) a Lower Great Lakes/St. Lawrence
Plain stratum (BCR 13) that contained peripheral routes
in Boreal Hardwood Transition and Atlantic Northern
Forest strata, (2) Eastern Tallgrass Prairie (BCR 22),

2 URL: ^http://www.bsc-eoc.org/international/bcrmain.html&
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PLATE 1. Adult male Cerulean Warbler (at
least 7 years old), photographied in eastern On-
tario in 1997 by Jason Jones.

(3) Prairie Hardwood Transition (BCR 23), (4) Central
Hardwoods (BCR 24), (5) a combined West Gulf Coast-
al Plain/Ouachitas (BCR 25) that contained a small part
of the Mississippi Alluvial Valley stratum, and (6) a
Piedmont stratum (BCR 29) that also contained por-
tions of the Southeastern Coastal Plain and New Eng-
land/mid-atlantic Coast strata. The Appalachian Moun-
tains were divided into four strata: (7) Appalachian
Mountains East (Maryland, Virginia, and North Car-
olina; BCR 28 East), (8) Appalachian Mountains West
(Ohio, Kentucky, Tennessee, and Alabama; BCR 28
West), (9) Appalachian Mountains North (New Jersey,
Pennsylvania, and New York; BCR 28 North), and (10)
Appalachian Mountains–West Virginia (BCR 28 WVa).

Analysis.—For each region, we used the hierarchical
model and program BUGS to estimate trend and annual
indices. We used data from the entire BBS period of
1966–2000 and generated five independent Markov
chains, each of length 25 000, of which we discarded
the first 5000 values as a burn-in. These replicate chains
were used for the Gelman-Rubin diagnostic (Spiegel-
halter et al. 1995, Brooks and Gelman 1998), which
compares within-chain and between-chain variability,
and provided confirmation that the posterior distribu-
tions were adequately sampled by the MCMC algo-
rithm. Our estimates of posterior distributions were
based on the 100 000 (5 5 3 20 000) sampled values.
We used t* 5 1983 as the ‘‘fixed year’’ for scaling
results. For comparison with results of the hierarchical
analysis, we also conducted a route regression analysis
(Link and Sauer 1994, Geissler and Sauer 1990) of data
using the composite regions.

We evaluated goodness of fit using a posterior pre-
dictive check based on the x2 discrepancy, as described
by Gelman et al. (1995: Chapter 6). For each of the
100 000 sets of parameters sampled under the MCMC

simulation, a replicate data set was generated according
to the model specification. The value

2(Y 2 l )i, j,t i, j,tT(Data, Parameters) 5 O
li, j,t i, j,t

was computed for the original data and each replicate
data set. A Bayesian test of goodness of fit is based on
the frequency with which T (Original Data, Parameters)
exceeds T (Replicate Data, Parameters); this frequency
is the Bayesian P value. For details, see Gelman et al.
(1995: Chapter 6).

RESULTS

There were 8585 counts, produced by 1306 observ-
ers, on survey routes where at least one Cerulean War-
bler was observed during the 1966–2000 interval:
75.9% of the counts are zeros, 12.2% are ones, and
only 3.3% are $5.

Area weights and sample sizes vary greatly among
the 10 strata (Table 1), as do the proportions of routes
on which the species was encountered (zi; Table 1).
Values of zi and baseline abundance ni,t* are low, re-
flecting the rarity of Cerulean Warblers.

The Bayesian goodness-of-fit test yielded a P value
of 0.177; although this result cannot be interpreted as
proof of the adequacy of the model (as is always the
case with goodness-of-fit testing), it compares favor-
ably with a similarly computed P value of 0.042 for
the same model, but with overdispersion effects omit-
ted.

The novice observer effect, h, was estimated as
20.029, with posterior standard deviation (i.e., stan-
dard error) of 0.059; our analysis thus provides little
evidence of the postulated effect for counts of this spe-
cies.
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TABLE 1. Trend estimates by stratum for Cerulean Warblers in Bird Conservation Regions.

Bird conservation region

Stratum descriptions

z† R‡
Area§

(sq. miles)

Hierarchical analysis

Per yr\
(%) 95% CI¶ ni,t*#

Route
regression
trend per

yr (%)

Effi-
ciency
gain††

(%)

Lower Great Lakes/St. Lawrence
Eastern Tallgrass Prairie
Prairie Hardwood Transition
Central Hardwoods
West Gulf Coastal Plain/Ouachitas
Piedmont stratum
Appalachian Mountains East

0.12
0.15
0.26
0.49
0.15
0.13
0.46

(418)
(170)
(127)
(128)
(66)
(277)
(67)

761 863
321 560
219 254
302 897
146 425
381 134

65 586

0.50
25.95
24.23
23.79

213.86
20.52
22.01

(22.32, 3.20)
(211.79, 20.51)
(27.33, 21.12)
(25.32, 22.26)
(220.49, 27.31)
(28.03, 5.20)
(24.52, 0.30)

0.0023
0.058
0.32
0.0020
0.0057
0.016
0.076

1.54
29.52
26.67
26.25

214.99
24.56
21.76

65
31
39
51
21
76

235
Appalachian Mountains West
Appalachian Mountains North
Appalachian Mountains–West Virginia

0.58
0.47
0.85

(99)
(137)
(60)

140 132
138 480

62 911

23.48
20.46
22.65

(25.15, 21.85)
(22.08, 1.10)
(24.23, 20.91)

0.0061
0.059
0.67

23.37
21.44
23.24

2
21

26
Species range 0.28 (1529) 23.04 (24.02, 22.07) 0.061 23.29 30

† Proportion of Breeding Bird Survey routes on which the species was encountered.
‡ Number of routes in stratum.
§ Area of each stratum (1 square mile 5 2.59 km2).
\ Trend estimate (percentage change per year, posterior mean).
¶ 95% credible intervals (2.5th and 97.5th percentiles of posterior distributions.
# Baseline abundance.

†† Estimated gain in efficiency associated with hierarchical analysis (1 2 ratio of squared confidence interval length).

Estimates of population trend (Table 1) indicate that
the population experienced substantial declines. Nine
of the 10 composite strata had negative trend estimates,
and the overall trend was 23.04% per year (Table 1).
These results are similar to those produced by route
regression; however, the efficiency of estimation (as
measured by the ratio of squared confidence interval
length) is typically greater using the more sophisticated
and less ad hoc analytical methods.

The annual indices (Fig. 1) indicate substantial re-
gional differences in patterns of population change.
The composite indices (Fig. 2) reflect total population
change, accounting for regional differences in trend,
abundance, and stratum area. Constrained Bayes esti-
mates in Figs. 1 and 2 provide a more realistic assess-
ment of temporal variation in population size. We note
that estimates based on the route regression procedure
(Fig. 2) appear to be even less variable (i.e., over-
smoothed) than the posterior means, although the over-
all pattern of decline is in evidence in either analysis.

DISCUSSION

There is a wide variety of methods for the analysis
of count data such as those collected in the BBS. Var-
ious overdispersed generalized linear models have been
applied to similar data sets (e.g., ter Braak et al. 1994,
Link and Sauer 1998a), as have generalized additive
models (James et al. 1996, Fewster et al. 2000). Gen-
erally, if these methods adequately incorporate the con-
straints imposed by the data collection and survey de-
sign, they provide similar results (Link and Sauer
1998a). However, accommodating the large differences
in quality of information among regions has always
made aggregation of results at regional scales problem-
atic (e.g., Link and Sauer 1998a).

Hierarchical models provide a natural framework for

estimation and regional summary of surveys such as
the BBS. Our model accommodates regional differ-
ences in precision, with obvious consequences for es-
timation in areas with less information (Table 1). The
MCMC procedure provides a convenient tool for es-
timation of composite results similar to those provided
by route regression estimates. Unlike the route regres-
sion estimators, however, these estimators do not con-
tain ad hoc weights; the weighting factors are part of
the model. The hierarchical model presented here is the
first alternative posed to the route regression method
that contains the summary attributes needed to model
regional population change.

As in all hierarchical analyses, the distributional as-
sumptions placed on the parameters can influence the
results. The smaller variances of the hierarchical model
trend estimates are characteristic of the richer model
structure used; parameter estimation is improved, con-
ditional on the model, by consideration of individual
parameters in the context of related parameters. Any
analysis of regional population change of survey data
such as the BBS places similar constraints on the anal-
ysis (e.g., through choice of weightings of trend esti-
mates from more local geographic scales). Hierarchical
modeling makes these assumptions explicit, and also
allows their evaluation through alternative specifica-
tions of prior distributions.

Bayesian analysis also includes specification of
probability distributions for hyperparameters. In our
analysis, we used standard noninformative (‘‘flat’’) pri-
ors, reflecting the lack of prior information about hy-
perparameters (for a discussion, see Box and Tiao
1992). The choice of noninformative priors has re-
ceived considerable attention in Bayesian literature,
and criticism from one set of partisans in the historical
Bayesian/Frequentist philosophical debate. The prob-
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FIG. 1. Regional time series of annual indices ni,t for Cerulean Warblers (Dendroica cerulea) from hierarchical analysis
of the North American Breeding Bird Survey. Strata are (A) Lower Great Lakes/St. Lawrence Plain (13), (B) Eastern Tallgrass
Prairie (22), (C) Prairie Hardwood Transition (23), (D) Central Hardwoods (24), (E) West Gulf Coastal Plain/Ouachitas (25),
(F) Piedmont stratum (29), (G) Appalachian Mountains East (28 East), (H) Appalachian Mountains West (28 West), (I)
Appalachian Mountains North (28 North), and (J) Appalachian Mountains–West Virginia (28 WVA). Years are shown on x-
axes; y-axes are abundances, scaled to no. birds/route. Solid circles are posterior means; the solid line nearly coincident with
the circles indicates constrained Bayes estimates. Uppermost and lowermost solid lines in each panel provide 95% credible
intervals for annual indices.

lem is essentially this: suppose that a model has a pa-
rameter u, and that a flat prior is specified for u. If the
model were reparameterized using w 5 q(u), the re-
sulting prior on w would not be flat. Of course, a very

similar problem exists when using a Frequentist anal-
ysis in choosing an unbiased estimator. Unbiasedness
is not transformation invariant: the sample variance S2

is unbiased for s2, but S is biased for s. However, in
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FIG. 2. Time series of annual indices nt from the hierar-
chical analysis of Cerulean Warbler population change from
the North American Breeding Bird Survey (solid circles),
with associated 95% credible intervals. The solid line nearly
coincident with the circles indicates constrained Bayes esti-
mates. Years are shown on x-axes; y-axes are abundances,
scaled to no. birds/route. For comparison, the dashed line
indicates annual indices derived from the route regression
analysis.

both cases, the putative problems are of little signifi-
cance unless very small sample sizes are anticipated.

The model that we have presented here has at its
heart a loglinear pattern of population change with
identically distributed year effects accounting for de-
partures from the underlying loglinear pattern. Alter-
native models might be considered with more or less
underlying structure, all within the hierarchical frame-
work described here. For example, one could choose
a model in which yearly effects are modeled as fixed
effects (hyperparameters, in the Bayesian development
presented here) without any underlying loglinear pat-
tern or association. This type of model has the advan-
tage of flexibility for modeling abrupt changes in pop-
ulation size, such as have been documented for Car-
olina Wrens, Thryothorus ludovicianus (Link and Sauer
1998a), but it requires more and better data than for
the model presented here. Our experience with BBS
data indicates that fixed year effects models frequently
cannot be fit at desired geographic scales. Another al-
ternative is to treat year effects as a stationary auto-
regressive process (as in Breslow and Clayton 1993);
this serves to smooth the year effects without speci-
fication of a particular pattern of population change.
All of these alternatives fit neatly within the hierar-
chical modeling approach illustrated here. Migratory
bird management and conservation uses of survey data
most frequently need estimates of population change
and annual indices of abundance; the definitions of
trend and indices presented here are appropriate for
any such formulation.

The model that we used has fixed effects for strata
and random effects for combinations of route and ob-
server. As a matter of interest, it would be desirable to
distinguish random effects for routes within strata and
for observers within routes. The limitations of BBS
data, and specifically of those for low abundance and

uncommon species such as the Cerulean Warbler, pre-
sent problems for such modeling attempts. Because an-
nual counts on routes are not performed by replicate
observers, these route/observer effects are confounded;
distinguishing them is, of necessity, a model-based ex-
ercise. Even in the context of a reasonable model, there
are typically only 4–5 observers per route over the 35-
yr period (Link and Sauer 1998a); there is little infor-
mation for partitioning the variation. Also, evidence
has been presented that the pool of observers is not
temporally stationary; that new observers tend to count
more birds than the observers they replace, even having
controlled for changes in population size (Sauer et al.
1994, Link and Sauer 1998b); and for novice observer
effects. Additional modeling of the observer/route ef-
fects could be conducted in the hierarchical framework
presented here, subject to the limitations of the data.
For instance, using the BBS Cerulean Warbler data, we
modeled temporal changes in the pool of observers
using the observer’s first year of count on the route as
a covariate governing the distribution of random effects
for observer/route combinations. The resulting model
showed the same pattern among observers as evidenced
elsewhere (Link and Sauer 1998b), but introduced only
minor changes to estimates of trend (a shift in estimates
of composite trend by 20.4% per year), and hence is
not reported here.

The BBS is not particularly well suited for moni-
toring Cerulean Warblers. Relatively few individuals
of the species are encountered on survey routes over
much of their range, because the roadside sample only
covers a limited portion of the habitats favored by the
species. The low abundances and limited access to Ce-
rulean Warbler habitat have led to much speculation
about whether the change in the segment of the pop-
ulation that is surveyed by the BBS is representative
of change in the entire population. This deficiency of
the survey could only be addressed by modifying the
survey design to sample habitats away from roadsides.
However, it is interesting to note that population es-
timates derived from BBS data tend to be larger than
estimates based on Atlas data (Rosenberg et al. 2000),
suggesting that roadside counts do not necessarily en-
counter fewer Cerulean Warblers than do observations
not limited to roads.
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