IV. Capture-Recapture Models with Individual Covariates
INDIVIDUAL COVARIATE MODELS

- \(p \) depends on an explicit covariate which you only observe the values of for individuals that are encountered

- \(\logit(p[i]) = \alpha_0 + \alpha_1 x[i] \)

- For this reason, called “Model Mx” (Kery and Schaub BPA)

- Two diametrically opposite approaches to analysis
 - (1) Horvitz-Thompson estimation (Huggins and Alho used this idea based on conditional likelihood)
 - (2) Model-based “full likelihood”: Put a distribution on \(x[i] \) (Borchers et al. 1998; Royle 2009, Biometrics)
We still have a binomial encounter model:

\[y[i] \sim \text{Binomial}(p[i], K) \]

\[\text{logit}(p[i]) = a + b \cdot x[i] \]

- \(x[i] \) is NOT OBSERVED for uncaptured individuals

Model for the covariate:

\[x[i] \sim \text{normal}(\mu_x, \sigma_x) \] (or similar)
INDIVIDUAL COVARIATES

Model Mx and multi-session models

- Conceptually and technically Model Mx is exactly like “class-structured” models considered previously except Model Mx usually used in context of a continuous covariate.

- Consider having sex-specificity of model parameters

 \[\text{logit}(p[i]) = \alpha_0 + \alpha_1 \times X_{\text{sex}[i]} \]

 \[X_{\text{sex}[i]} = \begin{cases} 0 & \text{if female} \\ 1 & \text{if male} \end{cases} \]

- Xsex is missing for M-n individuals in our augmented data set.

- Put a prior distribution on it....With a discrete covariate, the prior is “class membership”
Example of model Mh

- Microtus data from Williams et al. (2002)

```r
source("microtus.data.R")
head(microtus.data)

[1,]  0  1  1  0  0  37
[2,]  1  0  1  1  0  46
[3,]  1  1  1  0  1  60
[4,]  1  1  1  1  1  49
[5,]  0  0  0  0  1  38
[6,]  1  0  1  0  1  40
```

n = 56 K = 5 sample occasions, x[i] = “body mass” is stored in column 6 of the matrix

Model for x[i]: x[i] ~ Normal(mu, sigma)
Analysis of the Microtus data

- R work session

R script: closed_models_part4.R
Model Mx has been widely adopted for estimation of N in capture-recapture studies to account for spatial heterogeneity in encounter probability, by defining:

\[x = \text{“distance to edge” (DTE)} \]

This is estimated for each captured individual and treated as fixed and known.

Boulanger and McLellen (2001)
Ivan and White (2013)

Problems: variable precision. Biased near edge! Also doesn’t account for trap-level information.
Applying model Mx

- We’ll use \(x = \) distance to centroid (DTC) of trap array, call this “\(x_{dist} \)":

\[
x_{dist}[i] = \text{dist}(sbar[i], x0)
\]

\(x0 = \) mean trap location (centroid of trap array)
\(sbar[i] = \) average location of individual \(i \).

To do the Bayesian analysis by DA we need a prior for \(x_{dist}[i] \) to account for uncaptured individuals. **Could as well just put the prior on \(sbar[i] \) since \(x0 \) is known.**
Prior for $d[i]$ or prior for $s[i]$?

- **Prior for $\text{xdist}[i]$:** What are the possible values for where captureable individuals come from?

- $\text{xdist}[i] \sim \text{dunif}(0, \text{Dmax})$

 $\text{Dmax} = \text{furthest possible capture?}$
library("scrbook")
data(beardata)
nind<-dim(beardata$bearArray)[1]
K<-dim(beardata$bearArray)[3]
ntraps<-dim(beardata$bearArray)[2]
toad<- spiderplot(beardata$bearArray)

Distance to centroid of traps
xdist<-toad$xcent

average location of capture
sbar<- toad$avg.s

Centroid of trap array
x0<- toad$center
ESTIMATING DENSITY

- By putting a prior distribution on xdist[i] this explicitly defines an AREA within which the sampleable population lives. That is, N is all individuals within Dmax of the centroid.
- You will find that the estimated N changes as you change Dmax.
- The DTC/DTE model, with a prior on the distance covariate, simultaneously estimates N and Density.
- Provides resolution to the “unknown area” problem.
- (was not noted by Boulanger and McLellan 2001)
MODEL MX HAS PROBLEMS

(1) Subjective choice of Dmax has a big effect – this model implies that density of individuals decreases as you move away from the centroid.

Area of concentric rings INCREASES as you move away. So a constant frequency of individuals corresponds to lower density.

(2) Use of estimated DTC (or DTE) is biased and estimated with variable precision. Model does not account for that.
Improvement 1: Instead of messing with a prior on \(\text{xdist}[i] \) why not just put the prior on \(\text{sbar}[i] \)? Exactly the same model, just a different prior (via a transformation).

Improvement 2: Instead of distance to \(x_0 \), why not distance to each trap \(x[j] \)?

\[
\text{xdist}[i,j] = \text{dist}(\text{sbar}[i], x[j])
\]

Improvement 3: “sbar” is really a surrogate for “center of activity” – which is unobserved. Make it a latent variable (like Model Mh but with some indirect information)
Improvement 1: Instead of messing with a prior on $\text{xdist}[i]$ why not just put the prior on $\text{sbar}[i]$? Exactly the same model, just a different prior (via a reparameterization).

- $\text{sbar}[i]$ is the average capture location. But it’s really a surrogate for “where individual i lives” – home range center?

- What kind of prior makes sense for this? In the absence of information, how about $\text{sbar}[i] \sim \text{Uniform}($space around trap array$)$???
 $S =$ “space around the trap array”
The prior distribution for “sbar” for the Fort Drum model

- sbar is Uniform(S)
- S defined by: 4 unit buffer around the minimum and maximum x- and y-coordinates
- Try different buffers and verify stabilizing Density = N/area
The model which regards sbar as a variable effectively predicts sbar for each **uncaptured individual**

WinBUGS seems to only carry around 4 significant digits (or else R2WinBUGS rounds to 4 digits, we’re not sure).

The coordinates of sbar for Fort Drum is 4xx.x and 48x.x – the leading 4 and 48 are costing precision for estimating the coordinates of uncaptured bears due to this 4-digit truncation

JAGS does not appear to suffer this problem

If we use BUGS it is imperative that we scale/translate the coordinate system so that we’re not carrying around unnecessary digits (or use JAGS)
Improvement 2: Instead of distance to centroid, why not distance to each trap $x[j]$?

$$xdist[i,j] = \text{dist}(sbar[i], x[j])$$

$$\text{logit}(p[i,j]) = \alpha_0 + \alpha_1 \times xdist[i,j]$$

Note: p now depends on i and j

Traps are just replicate sample occasions, like distinct methods, or sample frames, or observers, but with trap-specific p.
sbar is meant to be an estimate of something, say s, the centroid of activity – “activity center”, home range center, etc..

s is strictly unknown. Regard it as a latent variable.

In BUGS: input initial values for it, remove from “data”

No plug-in estimation bias and heterogeneous variance.
Individual covariate models with distance-to-edge/distance-to-centroid resolve some technical problems with ordinary CR models
- Heterogeneity in p related to variable exposure to trapping
- Putting a distribution on the covariate resolve “unknown area”

Useful as a starting point for developing fully spatial capture-recapture models
- Model location instead of distance
- Distance to each trap
- Treat “s” as a latent variable