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What is the Bayesian Approach?

� The experimenter begins with some prior beliefs 
about the system (or not…).

� And then updates these beliefs on the basis of 
observed data.

� This updating procedure is based upon what is 
known as Bayes’ Theorem:

π(θθθθ | data) / L(data | θθθθ) p(θθθθ)

Posterior distribution 

of the parameters 
given the data

Likelihood of the 

data given the 
parameters

Prior distribution of 

the parameters

Summarising the Bayesian’s Beliefs

� The posterior distribution (or the corresponding 
marginal distributions) are the best summaries of 
the parameters.

� However, point estimates and uncertainty intervals 
are often more interpretable.

� It is the process of summarising the posterior that 
is the source of the computational complexity of 
the Bayesian approach.

� The Markov chain Monte Carlo algorithm is a 
powerful tool for estimating these summary 
statistics of interest.

Bayesian Integration Made Easy

� Bayesian inference is based upon the estimation of 
posterior summaries such as the mean.

� These require integration of the posterior density 

e.g. 

� Expectations of this sort can be estimated by 
drawing samples θθθθ(1),…,θθθθ(n) from the posterior 

distribution, π, and then calculating the sample 

mean.

� This is known as Monte Carlo Integration.

� So, how do we generate a sample from π?
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Bayesian modelling using MCMC

� Suppose that we can construct a Markov chain 
with stationary distribution equal to the posterior 
distribution of interest.

� Then, once the chain has converged, realisations 
can be regarded as a dependent sample from this 
distribution.

� There are now several ways of constructing these 
chains, where we only know the distribution upto
proportionality.

� Metropolis-Hastings, Gibbs sampler, Metropolis-
within-Gibbs, …

WinBUGS

� Bayesian analyses using MCMC algorithms 
typically involve a fair amount of computer 
programming, but…

� Programming isn’t everyone’s cup of tea!!.

� However, there are alternatives…

� WinBUGS is the most widely used package which 
allows a large number of possible models to be 
fitted.
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A brief history

� 1989: Unix version called BUGS.

� 1998: first Windows version, WinBUGS was born.

� Initially developed by the MRC Biostatistics Unit 
in Cambridge and now joint work with Imperial 
College School of Medicine at St Mary's, 
London.

� Windows Bayesian inference Using Gibbs 
Sampling.

� Software for the Bayesian analysis of complex 
statistical models using Markov chain Monte Carlo 
(MCMC) methods.
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Who?

Freely downloadable from: http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

Demographic components 
(fecundity, breeding success, 

survival, etc…)

A biological example throughout
White stork (Ciconia ciconia)

Climate
(Temperature, rainfall, etc…)

15.1 67 

13.3 52 

15.3 88 

13.3 61 

14.6 32 

15.6 36 

13.1 72 

13.1 43 

15.0 92 

11.7 32 

15.3 86 

14.4 28 

14.4 57 

12.7 55 

11.7 66 

11.9 26 

15.9 28 

13.4 96 

14.0 48 

13.9 90 

12.9 86 

15.1 78

13.0 87

2.55

1.85

2.05

2.88

3.13

2.21

2.43

2.69

2.55

2.84

2.47

2.69

2.52

2.31

2.07

2.35

2.98

1.98

2.53

2.21

2.62

1.78

2.30

WinBUGS & Linear Regression

Y

Number
of chicks

per pairs

T Temp. May (°C)
R Rainf. May (mm)

1. Do temperature and rainfall affect the number of chicks?

Yi = α + βr Ri + βt Ti + εi ,   i=1,...,23
εi i.i.d. ~ N(0,σ2)

2. Regression model:

3. Estimation of parameters: α, βr, βt, σ

4. Frequentist inference uses t-tests.

Yi i.i.d. ~ N(µµµµi,σσσσ2), i=1,...,23
µµµµ
i
= αααα + ββββr Ri + ββββt Ti

WinBUGS & Linear Regression
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15.3 88 

13.3 61 

14.6 32 

15.6 36 

... ...

13.0 87

2.55

1.85

2.05

2.88

3.13

2.21

...

2.30

Y

Number

of chicks
per pairs

T Temp. May (°C)
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Estimate Std. Error t value Pr(>|t|)    

temperature 0.031069 0.054690   0.568   0.57629    
rainfall -0.007316 0.002897  -2.525  0.02011 *  

Linear Regression using Frequentist approach

Y =   2.451  +  0.031  T  - 0.007  R
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Linear Regression using Frequentist approach

⇒⇒⇒⇒ Influence of Rainfall only

Estimate Std. Error t value Pr(>|t|)    

temperature 0.031069 0.054690   0.568   0.57629    
rainfall -0.007316 0.002897  -2.525  0.02011 *  

Y =   2.451  +  0.031  T  - 0.007  R

Analysis using WinBUGS

� Three basic parts of a WinBUGS file:

� 1. Model specification:

�BUGS language: Similar to S-Plus/R.

�Graphical language: Using DoodleBUGS
� Illustrate the structure of the problem

� But, some feature of BUGS language cannot be 
represented by DoodleBUGS.

� See manual for further details 

� 2. Data

� 3. Initial values for unknowns θ

Running WinBUGS
What do you need?

1 - a model giving the 

likelihood and the priors

2 - some data of course

3 - initial values to start 

the MCMC algorithm

Running WinBUGS
The model

use the WinBUGS

command 'model'

don't forget to embrace 

the model with {...}

Define the likelihood...

Yi ~ N(α + βr Ri + βt Ti ,σ2)
Note: σ2 = 1/τ

Specify the priors

We use noninformative

priors here

Monitor any other parameter 
you'd like to... e.g. σ2 = 1/τ

Running WinBUGS
Data and initial values

Use 'list' structures (R/Splus syntax)......and 'vector' structures (R/Splus syntax)

Running WinBUGS
Overall

1 - a model giving the 

likelihood and the priors

2 - data

3 - initial values
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• Initialization

1 - check model

2 - load data 

3 - compile model

4 - load initial values

• Run MCMC 

5 - generate burn-in values

6 - parameters to be monitored

7 - perform the sampling to generate posteriors

• Posterior summary

8 - check convergence

9 - display results

Running WinBUGS
At last!!

Running WinBUGS
1. Check model

Running WinBUGS
1. Check model: highlight 'model'

Running WinBUGS
1. Check model: open the Model Specification Tool

Running WinBUGS
1. Check model: Now click 'check model'

Running WinBUGS
1. Check model: Watch out for the confirmation at the foot of the screen
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Running WinBUGS
2. Load data: Now highlight the 'list' in the data window

Running WinBUGS
2. Load data: then click 'load data'

Running WinBUGS
2. Load data: watch out for the confirmation at the foot of the screen

Running WinBUGS
3. Compile model: Next, click 'compile'

Running WinBUGS
3. Compile model: watch out for the confirmation at the foot of the screen

Running WinBUGS
4. Load initial values: highlight the 'list' in the data window
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Running WinBUGS
4. Load initial values: click 'load inits'

Running WinBUGS
4. Load initial values: watch out for the confirmation at the foot of the screen

Running WinBUGS
5. Generate Burn-in values: Open the Model Update Tool

Running WinBUGS
5. Generate Burn-in values: Give the number of burn-in iterations (1000)

Running WinBUGS
5. Generate Burn-in values: click 'update' to do the sampling

Running WinBUGS
6. Monitor parameters: open the Inference Samples Tool
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Running WinBUGS
6. Monitor parameters: Enter 'intercept' in the node box and click 'set'

Running WinBUGS
6. Monitor parameters: Enter 'slope_temperature' in the node box and click 'set'

Running WinBUGS
6. Monitor parameters: Enter 'slope_rainfall' in the node box and click 'set'

Running WinBUGS
7. Generate posterior values: enter the number of samples you want to take (10000)

Running WinBUGS
7. Generate posterior values: click 'update' to do the sampling

Running WinBUGS
8. Summarize posteriors: Enter '*' in the node box and click 'stats'
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Running WinBUGS
8. Summarize posteriors: mean, median and credible intervals

Running WinBUGS
8. Summarize posteriors: 95% Credible intervals

tell us the same story

Estimate Std. Error t value Pr(>|t|)    

temperature 0.031069 0.054690   0.568   0.57629    
rainfall -0.007316 0.002897  -2.525  0.02011 *  

Running WinBUGS
8. Summarize posteriors: Mean and Median

tell us the same story

Estimate Std. Error t value Pr(>|t|)    

temperature 0.031069 0.054690   0.568   0.57629   
rainfall -0.007316 0.002897  -2.525  0.02011 *  

slope.rainfall sample: 1000

   -0.6    -0.4    -0.2

    0.0
    2.0

    4.0
    6.0

    8.0

slope.temperature sample: 1000

   -0.4    -0.2     0.0     0.2

    0.0

    2.0

    4.0

    6.0

    8.0

Re-running WinBUGS
8. Summarize posteriors: click 'density‘ in Sample Monitor Tool pop-up window

slope.rainfall

iteration
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   -0.4

   -0.3
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   -0.1

-2.77556E-17

slope.temperature

iteration
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    0.2
    0.3

Re-running WinBUGS
8. Summarize posteriors: click 'quantiles‘ in Sample Monitor Tool pop-up window

Re-running WinBUGS
1,2,...7, and 8. Summarize posteriors: further options...

• Click ‘history’ to get trace plots and ‘autocor’ to 
get autocorrelation diagnostics

•Run several chains with over-dispersed initial 
values to use the Brooks-Gelman-Rubin statistic to 
check convergence (should be close to 1).

• Click 'coda' to produce lists of data suitable for 
external treatment via the Coda R package. 
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Analysing mark-recapture data 

using WinBUGS

� We focus on the Cormack-Jolly-Seber model.

� We consider data relating to 

population of White storks 

breeding in Baden 

Württemberg (Germany).

� Interest lies in estimating 

adult survival rates.

� Mark-recapture data from 

1956-71 are available.

Analysing mark-recapture data 

using WinBUGS

� Data: m-array

…

…

Analysing mark-recapture data 

using WinBUGS

� The parameters are:

� probability φi that an individual survives to 
occasion i+1 given that it is alive at time i;

� probability pj that an individual is recaptured at 
time j.

Analysing mark-recapture data 

using WinBUGS

� Conditioning on the releases and assuming 
independence among cohorts, the likelihood is a 
product of multinomial probability distributions 
corresponding to each row of the m-array.

� The probability of the m-array cells are complex 
nonlinear functions of the survival and detection 
probabilities.

� For example:

Analysing mark-recapture data 

using WinBUGS

� CJS likelihood coded in WinBUGS

# Define the product-multinomial likelihood

# R[i] is the number of birds released in year i

# matrix q[,] contains the m-array cell probabilities

for (i in 1:ni) {

m[i,1:(nj+1)] ~ dmulti(q[i,],R[i])

}

� Cell probabilities coded in a complex way…

Analysing mark-recapture data 

using WinBUGS

� Priors

# Define the priors for phi

# Time-dependent parameters

# Recall that Beta(1,1) is equivalent to U(0,1)

for (i in 1:ni) {

phi[i] ~ dbeta(1,1)

}

# Define priors for p

# Constant parameters

p ~ dbeta(1,1)
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Time-dependent survival probabilities
Posterior medians and 95% credible intervals
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Rainfall at Kita station (Sahel)
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� Use the logistic link function:

� Minor modifications in the WinBUGS code
# Define the survival probability as a function of the covariate

# with random effects

for (i in 1:ni) {

logit(phi[i]) <- beta[1] + beta[2] * cov[i]

}

# prior for the regression parameters

for (j in 1:2){beta[j] ~ dnorm(0,1.0E-6)

Incorporating covariates

Numerical summaries

mean   sd 2.5%    25%    50%    75%   97.5% 

beta[1]    0.68 0.07   0.54      0.63    0.68    0.73      0.82

beta[2] 0.37 0.09   0.20 0.30    0.36    0.42      0.55

Posterior distribution

Incorporating covariates: Results

0.1 0.2 0.3 0.4 0.5 0.6 0.7
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Incorporating covariates: Issues

� Use the logistic link function:

� +ve: survival estimates in [0,1]

� -ve 1: variation completely determined by 
covariate

� -ve 2: no missing values

� -ve 3: linear or quadratic relationship

� -ve 4: variable selection?

� Incorporate random effects:

� A random effects model has σ2 as the 
parameter to be estimated, with some 
associated prior p(σ2) ~ Γ-1(0.01,0.01).

� They are imputed within the MCMC 
algorithm and integrated out.

1. Variation completely determined by 

covariate
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# Define the survival probability as a function of the covariate

# with random effects

for (i in 1:ni) {

logit(phi[i]) <- beta[1] + beta[2] * cov[i] + epsilon[i]

epsilon[i] ~ dnorm(0,taueps)

}

# prior for the precision

taueps ~ dgamma(0.01,0.01)

# prior for the regression parameters

for (j in 1:2){beta[j] ~ dnorm(0,1.0E-6)}

# monitor the variance (= 1/precision)

vareps <- 1/taueps

1. Random effects in WinBUGS

� 2. Missing values

� 3. Nonparametric modelling

� 4. Variable selection using Reversible Jump MCMC

See paper for details (including the code) 

Further issues

� In practice, we view the missing covariates as 
random variables to which we can assign a 
probability distribution.

� We assume that the change in the covariate 
between adjacent years is normally distributed with 
the same mean and variance for all years:

2. Missing values

� We considered 1 and 5 missing values.

� Little impact on survival probability estimates.

� But, significant change in the inference for the 
regression coefficients.

� Most importantly, with 5 missing values, the 95% 
credible interval contains 0 which brings the effect 
of pluviometry on survival into doubt.

2. Missing values: results

� Positive relationship survival/rainfall

� More in the Bayesian short course & in the 
Population Dynamics session

3. Nonparametric modelling
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� Impact of climate variation 
(rainfall) in the wintering area 
on population dynamics (adult 
survival rates).

� Amount of rainfall each year 
from 10 weather stations 
located around the Sahel
region.

� Identifying the given rainfall 
locations that explain the adult 
survival rates.

4. Recent developments in WinBUGS
Model selection using RJMCMC
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4. White stork survival vs. rainfalls

� Survival vs. multiple covariates on a logit
scale:

� Which rainfalls explain survival variation?

� Method: what β’s are non-zero?

4. Model Selection

� In the classical framework, likelihood ratio tests 
or information criterion (e.g. AIC) are often used.

� There is a “similar’’ Bayesian statistic – the DIC.

� This is programmed within WinBUGS: Jump adds-
on, http://www.winbugs-development.org.uk/rjmcmc.html

� There are 10 possible covariates, hence a total of 
210 possible models (1024!).

� Reversible Jump MCMC is another way of dealing 
with the issue of model discrimination.

4. Results: posterior model prob.

0.02551001000000

0.03090001000001

0.03810001100000

0.04740001010000

0.07630000000000

0.5180001000000

Posterior model
probability

Model
structure

Pluviometry at Kita station

Conclusions

� Bayesian inference based on posterior distribution, 
derived from prior x likelihood via Bayes theorem.

� Bayesian inference through Monte Carlo 
integration: samples of posterior distribution 
obtained from MCMC simulation.

� WinBUGS allows MCMC algorithms to be 
implemented.

� Can be called from other programs (SAS, R, 
MATLAB).

� Great potential in population dynamics studies:

� Random effects, spline smoothing, missing values, …

� Further examples in our paper: Distance Sampling 

and State-Space modelling

� Bayesian session!!

C’est la fin…

Beware of sunburn


