Part 5. Properties of Procedures

5.1. Introduction

We here assess the performance of the various statistical methods. Theory indicates that
the desirable properties of each method become increasingly better as sample size increases.
In these methods, sample size is not a single value; rather, it is related to the size of the
releases (R,), the capture probabilities (p,), the number of sampling occasions (k), and (to a
lesser degree) the survival probabilities (4,). Furthermore, the methods perform best when
the assumptions are fully met (see Manly 1970, 1971b).

Here we examine performance of estimators in terms of bias, precision, robustness, rela-
tive efficiency, and the effects of heterogeneity (terms to be defined later). The power of tests
used in selecting the proper model and their nominal significance levels are also assessed. We
use the Monte Carlo method and a method based on expectations in Part 5; however, some
analytical results on power of certain tests are given in Part 3.

It is not possible to perform Monte Carlo studies on all, or even a significant fraction, of
the cases of potential interest. A sequence of models has been developed under each of the
four protocols. Each model has several estimators and associated tests. In each instance, k
can reasonably range from two to at least six or eight; and we have seen studies where the
numbers released vary from as few as 60 to as many as 100,000 individuals. Previous studies
have had capture probabilities ranging from 0.01 to 0.8, whereas treatment survival rates have
ranged from 0.3 to nearly 1.0. The parameter space suggested above is far too large for
exhaustive Monte Carlo study (or even analytical-numerical investigation). Furthermore, we
could not afford to tabulate these results, even if adequate computer time allowed the study of
a large number of cases. Therefore, our approach here has been to tabulate the results of a
few representative cases of potential interest.

Our approach in evaluating the statistical properties of various methods is twofold.
First, a powerful Monte Carlo simulation procedure (PROC SIMULATE) is included in pro-
gram RELEASE (see Part 9). Researchers are encouraged to use this procedure in both the
design and analysis phases of their experiments. Second, we present the results of 48 Monte
Carlo studies to give the reader an impression of the performance of various methods. This
material focuses on experiments with two groups where the treatment effect is acute. The
parameters for various simulated models are presented in Table 5.1. In all studies, k = 5,
1,000 replicate data sets were generated, and there were no unplanned losses on capture.
These simulated data sets constitute the basis for much of the material presented in Part 5.
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Table 5.1. ~ Summary of the parameters used in the Monte Carlo studies for four cases. Data
were simulated under both the first and complete capture history protocols.

Case and
parameters True model? Subpopulationb ¢ and ¢ Pri and pg;

CaseA: R, =R, = 5000

Homogeneous H, All0.9 All0.1
Homogeneous Hyy All 0.9, except All0.1
& =08
Homogeneous Hyyp All 0.9, except All 0.1, except
¢ =08 Pia = 0.15
Heterogeneous H, 1 All 0.95 All0.15
All0.8S Al10.05
Heterogeneous H,, 1 Al1 0.95, except Al10.15
¢, =085
2 All 0.85, except All0.05
éy =075
Heterogeneous Hj, 1 All 0.95, except All 0.15, except
éu =085 Pia = 0225
2 All 0.85, except All 0.05, except
du =075 P = 0.075

Case B: Same as case A, except R,; = R; = 1,000
Case C: Same as case A, except Ry = R, = 200
Case D: Same as case C, except all py; and p.; are increased by 0.7

3n the heterogeneous cases, the parameter structure follows models Hy, Hy4, and H,,; however, the assumption
of independence is violated.
PBach subpopulation is of equal size, R,;/2.
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5.2. Estimator Bias

Bias in estimators of model parameters is undesirable. In this chapter we examine the
statistical bias of MLEs under models for the first and complete capture history protocols for
cases where the parameters are homogeneous. Bias is defined as

bias = E(®) -9,

where 4 is a particular parameter (e.g., S or ¢). The exact value of § is known in each of the
Monte Carlo studies and the expected value can be estimated with good precision from the
results of the Monte Carlo studies. The expected value is estimated as

. 1 100
EQ=—+%4h,

1,000 /5,

where J; is the estimate computed from the ith Monte Carlo trial. We used 1,000 replicate
data sets for each Monte Carlo study to ensure that the expected values are estimated pre-
cisely.

Examination of the estimated expected values of the treatment survival probabilities in
Tables 5.2 and 5.3 indicate that bias is negligible if the model assumptions are met. The bias is
generally < 0.004 if the numbers released were > 1,000. An exception is S = $y/$ when
homogeneous first capture history data are generated under model H,,. Here, the biases are
-0.049 and -0.040 under S for model H’y4 (Table 5.2). No estimator for model Hs, exists
under the first capture history protocol, thus, model H "5, is used as an approximation. Gen-
erally the estimator S performs similarly for both first and complete capture history protocols.
When the true model is Hyg, the estimators of S are algebraically identical under the first and
complete capture history protocols. However, estimated values of S under the first and com-
plete capture history protocols in Table 5.2 (case A) under H,4 are not identical because they
are not based on exactly the same Monte Carlo data.

With only 200 releases in each group, bias in Sis larger if the capture probability is low
(Table 5.3, case C). However, the bias remains small (about 1%) if the assumptions of the
model are realized. Comparison of bias in cases C and D in Table 5.3 shows the importance
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Table 5.2. ~ Summary of estimated expected values and standard errors (computed empirically and
theoretically) from Monte Carlo studies of complete and first capture history protocols for case A, R,; =
5,000 and case B, R,; = 1,000. The survival (¢4) and capture (p;) probabilities were allowed to be
homogeneous or heterogeneous. Parameters used to simulate the data are given in Table 5.1.

Estimator performance under model

Capture H,, Hyp,orH'y,

True history Parameter

model protocol variation EGS)  8e®.. @)% EG)? Se(S). 8e(S),
CaseA '
H, Complete Homogeneous  1.000 0.033 0.033 1.002 0.039 0.038
¢ =10 Heterogeneity  1.001 0.030 0032  1.001 0.034 0.036
H,, Complete Homogeneous  0.889 0.031 0030  0.888 0.037 0.035
(S = 0.889) Heterogeneity  0.891 0.028 0030 0.891 0.032 0.034
H,, Complete Homogeneous  1.004 0.034 0.033  0.889 0.036 0.036
(S = 0.3889) Heterogeneity  0.996 0.030 0032  0.890 0.032 0.033
H, First Homogeneous  1.000 0.033 0.033 1.001 0.045 0.043
(s =10) Heterogeneity  1.000 0.030 0032  1.000 0.039 0.042
Hy, First Homogeneous  0.890 0.030 0030 0891 0.040 0.039
(S = 0.3889) Heterogeneity  0.891 0.028 0.030 0.891 0.037 0.039
H,, First Homogeneous  1.006 0.033 0.033  0.840 0.039 0.038
(S = 0.889) Heterogeneity  0.997 0.030 0.032 0825 0.034 0.037
CaseB

H, Complete Homogeneous  1.003 0.074 0074  1.004 0.086 0.086
¢ =10 Heterogeneity  1.004 0.066 0073  1.003 0.074 0.082
H,y, Complete Homogeneous  0.893 0.068 0.068  0.889 0.078 0.079
(S = 0.889) ‘ Heterogeneity  0.894 0.061 0.067 0.895 0.067 0.076
H,, Complete Homogeneous  1.009 0.073 0074  0.889 0.077 0.078
(S = 0.889) Heterogeneity  0.999 0.066 0072  0.895 0.066 0.075
H, First Homogeneous  1.001 0.077 0074  1.002 0.099 0.096
S =10) Heterogeneity  1.009 0.069 0073  1.006 0.069 0.073
H,, First Homogeneous  0.892 0.068 0.068  0.898 0.087 0.089
(S = 0.889) Heterogeneity  0.895 0.065 0.068  0.897 0.085 0.088
H,, First Homogeneous  1.011 0.074 0.074 0.849 0.086 0.086
(S = 0.889) Heterogeneity 0998 0.069 0.072  0.826 0.080 0.083

3Estimates were computed under model H,, for the complete capture history protocol and under model
H’, for the first capture history protocol.
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Table 5.3. - Summary of estimated expected values and standard errors (computed empirically and
theoretically) from Monte Carlo studies of complete and first capture history protocols for case C, Ry, =
200 and case D, R,; = 200. The survival (&) and capture (p;) probabilities were allowed to be
homogeneous of heterogeneous. Parameters used to simulate the data are given in Table 5.1.

Estimator performance under model

Capture H,, Hjp,orH'y

True History Parameter

model protocol variation E (3') s<:(§’)e se(g’).; fg(&)" se(:s")e se(.g‘).,
CaseC
H, Complete Homogeneous  1.011 0.174 0.168  1.014 0.199 0.196
(§ =10 Heterogeneity  1.015 0.157 0166  1.015 0.182 0.187
Hyy Complete Homogeneous  0.911 0.161 0158 0912 0.186 0.183
(8 = 0.889) Heterogeneity ~ 0.905 0.154 0.154  0.908 0.170 0.174
H,p Complete Homogeneous  1.032 0.173 0171 0912 0.184 0.181
(S = 0.889) Heterogeneity  1.012 0.167 0.166  0.908 0.169 0.172
H, First Homogeneous  1.016 0.171 0.169  1.034 0.231 0.225
(=10 Heterogeneity  1.006 0.154 0164  1.022 0.216 0.219
Hyy First Homogeneous  0.896 0.158 0.155  0.905 0.209 0.204
(S = 0.889) Heterogeneity ~ 0.908 0.148 0155 0918 0.201 0.204
H,, First Homogeneous  1.024 0.170 0.170  0.870 0.200 0.199
(5 =0.889) Heterogeneity ~ 1.005 0.157 0.164  0.836 0.183 0.190
Case D

H, Complete:  Homogeneous  1.000 0.038 0038  1.000 0.039 0.038
¢ =10) Heterogeneity  1.001 0.037 0.038  1.000 0.037 0.038
H,, Complete Homogeneous  0.889 0.041 0041  0.889 0.042 0.041
(S = 0.889) Heterogeneity ~ 0.890 0.040 0.041 0890 0.040 0.042
H,g Complete ~ Homogeneous  0.895 0.041 0.041  0.889 0.041 0.041
(S = 0.889) Heterogeneity  0.894 0.040 0041  0.888 0.040 0.041
H, First Homogeneous  0.998 0.037 0.037  1.032 0.261 0.243
(S =10) - Heterogeneity  0.998 0.038 0.038  1.030 0.262 0.247
H,, First Homogeneous  0.889 0.042 0041 0918 0.232 0.223
(S = 0.889) Heterogeneity  0.892 0.041 0041 0915 0.237 0.228
H,, First Homogeneous  0.895 0.040 0.041  0.682 0.193 0.182
(S = 0.889) Heterogeneity  0.900 0.041 0041  0.654 0.183 0.180

3Fstimates were computed under model H,,, for the complete capture history protocol and under model
H’,, for the first capture history protocol.
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of a high capture probability if the numbers released are small. A general conclusion from the
results in Tables 5.2 and 5.3 is that bias in S is probably acceptable in most instances if the
model assumptions are satisfied. In addition, if no treatment effect occurs (model Ho) and
one tries to estimate the treatment survival rate by using models H,4 or Hy,, the estimate of S
will be close to 1.00 on the average.

Although any bias is undesirable, it must be related to the standard error to assess more
correctly its importance. The following table, adapted from Cochran (1963:14), shows the
effect of the ratio bias/standard error on expected 95% CI coverage:

Bias/standard error Expected coverage
0.02 0.95
0.04 0.95
0.06 0.95
0.08 0.95
0.10 0.95
0.20 0.95
0.40 0.93
0.60 091
0.80 0.87
1.00 0.83
1.50 0.68

As an example, consider the bias in S under case C, model H’ 5 for first capture history data
for the constant-parameter case in Table 5.3, where the true model is H,,. The bias is 0.870 -
0.889 = -0.019 and its average standard error is 0.200. Thus, the ratio of bias to standard error
is 0.095; and we determine that a 95% CI would still have an expected coverage of about 95%.

The general conclusion is that bias in Sis relatively small if the assumptions of a particu-
lar model are satisfied. An option (UNBIAS) in PROCs CHMATRIX, LMREAD, and
SIMULATE of program RELEASE allows the computation of bias-adjusted estimators.
However, all results in this chapter are for the unadjusted MLEs. Use of the UNBIAS option
substantially reduces the already small statistical bias (see Chapter 3.4). Bias can be severe if
a poor model, whose assumptions are not met, is used (e.g., case C, model H 4 for first cap-
ture history data for the constant-parameter case in Table 5.3 where the true model is Hy,).
Such model bias can be seen by examining Tables 5.2 and 5.3.

Approximations to the bias of an estimator can be computed using the EXPECT option
in program RELEASE. Results can be obtained in a few seconds using this option, whereas
an adequate Monte Carlo simulation can frequently take several hours. This subject is dis-
cussed briefly in Chapter 5.4 and more fully in Chapter 5.9
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5.3. Measures of Precision

The sampling variance and its square root, the standard error, are measures of the preci-
sion of an estimator. True sampling variance can be estimated in different ways (e.g., empiri-
cally or by using theoretical formulae). The ML method assures us that the estimated variance
or standard error based on theoretical formulae will have good properties as the sample size
increases, if model assumptions hold. Here we assess the performance of the theoretical for-
mulae for estimating sampling variance over a range of smaller sample sizes by first computing
an empirical standard error of the treatment survival rate se(S), based on 1,000 replications
from the Monte Carlo studies. Thus,

. 1 1.
se(S). = [@g(si-s)z] ’

where S is the average of the 1,000 estimates of S. This quantity is a measure of precision of
the estimator of treatment survival rate under a particular model. In contrast, a theoretical
estimate of the sampling variance and standard error is available, based on the model and ML
theory (Section 1.2.1.2). The average of these,

1 I,W)A N
oo 2 8e(S)
=1

§e(§)t = 1.000 -

computed from the Monte Carlo studies, provides a basis for assessing average performance
of the theoretical variance as a measure of precision.

Examination of the estimated standard errors in Tables 5.2 and 5.3 indicates that, on the
average, the theoretical standard errors are satisfactory as a measure of estimator precision,
even in case C and the heterogeneous populations, if the assumptions of the model are met.

5.4. Estimator Robustness

Estimator robustness relates to a large collection of issues. Many questions regarding
the robustness of an estimator are specific to a particular study. In this chapter we present
some general results that may be useful.

Experience with the general Jolly-Seber model and its extensions indicates that the sur-
vival rates (¢) are relatively well estimated, in terms of bias and precision, compared to the
number of births and the population size. Estimates of population size or the estimated
number of marked animals at a particular time may be seriously biased by failure of model
assumptions but the corresponding estimate of survival is not often affected. Generally, the
survival estimators (¢,;) have good properties. Estimators of treatment survival rate (S) are
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ratios of the ¢y, and therefore might also be expected to have good statistical properties.

In general, if a model such as H, or H is the correct model, then estimators of S or the
¢; from other models in the sequence (e.g., Hap, Hay, Hsg,) will be little biased; however, some
precision will be lost. Problems with substantial bias occur when the true model is Hy,, Hoy,
or a more general model in the sequence (e.g., H3g), but the estimation is conducted under a
more restrictive model such as Hy4. Cases A, B, and C in Tables 5.2 and 5.3 illustrate the
situation where data sets were generated under model Hy, (S = 0.889) and estimates of treat-
ment survival were made under model Hy4. The E (S ) under model A 1 for the homogeneous
populations was about 1.00 to 1.030, a bias of 12 to 16%.

The above example indicates the problem of using an inappropriate model. The lack of
estimator robustness forces additional attention on the tests for model selection. Finally,
although estimators of treatment survival were biased by 12-16% in the example above, it must
be noted that this bias was caused by the substantial inequality of capture probabilities (p;,
being 50% higher than p.,). Thus, in this sense, S may be considered to be somewhat robust.

We have not attempted to present measures of robustness when mortality due to a treat-
ment is chronic or indirect. These issues are left to the reader for specific studies. Clearly,
potential bias exists and, in some cases, a better measure of treatment effect is ¢.; - ¢ (Sec-
tion 2.5.2.5).

5.5. Heterogeneity

The models and estimation procedures presented in this monograph assume that all
members of the population have homogeneous parameters at a given time and place. For
example, all animals in the control group have the same probability of survival from dams 3 to
4, ¢c3. Alternatively, one could postulate that each animal has a unique parameter, i.e., f;) for

i =1, .., N at a particular time and place. This situation is referred to as the heterogeneous
case where the parameter 6 itself has a distribution. This distribution is, of course, unknown to
the investigator but the distribution has a conceptual mean and a variance. An example is an
annual survival probability where individuals in the population vary in their innate ability to
survive. The theory for model building to incorporate heterogeneity directly is quite complex
and requires information that is rarely known (e.g., the form and variance of the distribution of
6;).

We here present information on the performance of the models developed for the
homogeneous case when they are used in the analysis of simulated data sets generated to
incorporate heterogeneity in the parameters among animals. We generated data sets to allow
heterogeneity in both the survival (¢,) and recapture (p,;) parameters (Table 5.1), using pro-
gram RELEASE. Use of this approach enables us to ask if the MLEs are robust (insensitive)
to heterogeneity.

Recent studies (e.g., Nichols et al. 1982; Pollock and Raveling 1982; Vaupel and Yashin
1985) have shown that it is the variance among members of the population that is important,
rather than the shape of the distribution. We included this information in the Monte Carlo
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studies by defining two subpopulations of equal size, each with different parameter values (see
Table 5.1).

The estimators S are often less variable with heterogeneous data then with homogene-
ous data (see every comparison between the empirical variance estimates in cases A, B, and C,
Tables 5.2 and 5.3). This result stems from the fact that the effective capture probability, with
heterogeneity, exceeds the mean of the py, i = 2, .., k, for the two subpopulations (this is a
manifestation of Jensen’s inequality). As an example, under the complete capture history pro-
tocol, case A, the mean value of the p,; = 0.1 for model H,4 (Table 5.1); however, the effective
(mean) capture probability is 0.13 under Hy, (ie., P2 = Pya = 0.13). Thus, the estimates
under heterogeneity are less variable then the theoretical ML variance estimates would indi-
cate. This result is important. In general, heterogeneity has little effect on the performance of
the estimators of S or its standard error (Tables 5.2 and 5.3). We did not investigate the possi-
bility of heterogeneity in the treatment effect itself. This might be caused if extreme hetero-
geneity existed in the marked releases in each group and each subpopulation. We suspect that
bias in S could be expected in these extreme situations.

In the presence of heterogeneity, the parameters are weakly dependent upon previous
capture histories. In addition, the assumption of independence is violated, but the effect on
the statistical properties is often quite small. We tentatively conclude that a reasonable
amount of heterogeneity in the survival and capture process will not seriously affect the perfor-
mance of estimators of treatment survival, if the correct model is selected. This pattern is also
generally true for the estimators of the ¢,; parameters.

5.6. Estimator Efficiency

An advantage in considering the sequence of models Hyg4, Hoy, ..., Hy.y 4 under the com-
plete capture history protocol is that assumptions about the equality of parameters across
groups can be relaxed. Under model Hy,, one need not assume that treatment and control
fish have the same capture probability on the second sampling occasion. Similarly, model Hg,
also allows p;3 #p.s on the third sampling occasion. If p;; = p.; and p;s = p. are incorrectly
assumed (e.g., model H,,), bias will result in ¢,; and S. Thus, the choice among alternative
models is important.

A disadvantage in selecting a model that allows relaxed assumptions is that the sampling
variance of the estimators is larger than that for models entailing stronger assumptions. This
loss in precision leads to a consideration of relative efficiency of estimators. The relative
efficiency between two models is measured here by the ratio of their standard errors, with the
convention that the model with the most assumptions (and, therefore, the smaller standard
error) appears in the numerator. An example of the meaning of relative efficiency is the entry
0.79 in the first row in Table 5.4 under case A. The value 0.79 indicates that if model H 4 is
true, but one uses § under model Hj, then the estimated standard error is 1/0.79 = 1.27
times larger than it should be (under H,4).
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Some general conclusions can be drawn from the efficiency information in Tables 5.4-
5.5. First, relative efficiency is similar for large or small numbers released (R,; = 5,000 or
200, cases A and C, respectively). Second, if p,,; is nearly constant over sampling occasions,
there is a substantial loss of efficiency when models with increasingly relaxed assumptions are
considered. Third, the loss of efficiency is severe in models Hyg, Hy, ..., Hy 1 4 compared to
models Hy4 or H,, for the complete capture history protocol. Consideration of the trade-off
between bias and efficiency in the sequence of models, Hyy, Hyp, Hag, ..., Hi. 4, has implica-
tions in the design of experiments (Part 6).

Table 54. — Summary of relative efficiencies (the ratio of standard errors) for S under cases A and C
(see Table 5.1). The Monte Carlo data were generated under model H,, for the first capture history
protocol, assuming homogeneous parameters.

Case A Case C
Model Hu H'” H'” H’w H“, H’” H’” H’“
Hyy 1 0.79 0.58 0.38 1 0.76 055 031
H’y 1 0.74 0.48 1 0.71 0.41
H's \ 1 0.65 1 057
H'y 1 1

Table 5.5. — Summary of estimator efficiency (the ratio of standard errors) of § for cases A and C (see
Table 5.1). The Monte Carlo data were generated under model H,4 for the complete capture history
protocol, assuming homogeneous parameters.

Case A Case C
Model HW ng Hu H&p Hx¢ H’P H” Hap
Hy, 1 0.86 0.27 0.27 1 0.86 0.21 0.21
H,, 1 0.32 0.32 1 0.24 0.24
Hy 1 030 1 028
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5.7. Power of Tests

Statistical tests aid in the rejection of models that are poor for a particular data set. The
Monte Carlo studies generally indicate that bias in the estimators is reasonably small if the
correct model is used. In contrast, it is easy to show substantial bias if a model does not fit the
data (e.g,, an estimator S under H;4 has poor properties if the data are from model Ha,).
Therefore, it is important to assess the power of specific between-model tests. Power is
defined as the probability of rejecting the null hypothesis.

If the null hypothesis is true, the power of the test should be equal to the significance
level chosen (e.g., if @ = 0.05, then the power of the test should be 0.05). Table 5.6 provides
summaries of the power of between-model tests for cases A to D, respectively. The first gen-
eral conclusion is that heterogeneity has little effect on the performance of the between-model
tests. This result is important as we believe heterogeneity is common in field studies of many
biological populations. The power of the between-model tests is excellent for large samples
(e.g, R = R, = 5,000), as shown by the results for case A in Table 5.6. In releases of 1,000
animals per group (case B), the power drops to 0.31 for the test of Ho versus Hy4 and the
power is 0.79 for the test of H,4 versus Hy, for both homogeneous and heterogeneous popula-
tions (Table 5.6).

In the worst example (case C, Table 5.6), the power of tests H, versus H,4 and H;y
versus H, decreases to 0.10 and 0.24, respectively, for both homogeneous and heterogeneous
populations. With releases as small as 200 in each group and low capture probabilities, the
power of between-model tests is poor. However, power for experiments with few animals
released may be reasonable if the capture probabilities are high (case D, Table 5.6).

Interpretation of tests must be done with caution. For example, in case A the test of Hy
versus H 4 has power of 0.05 when Hy, is the correct model. The power is poor because nei-
ther the null nor alternative hypothesis is true; however, there is a treatment effect. Other
model parameters could have been chosen for model Hy, such that a treatment effect would
have been much more easily detected (e.g., piz = 0.05). Thus, the results regarding power of
tests must be interpreted with an understanding of the specific parameter values chosen.
Knowledge of the approximate power of tests can increase the ability to interpret experimental
results (e.g., Chapter 7.4).

The test for an overall treatment effect Hy versus Hy 4 is powerful for data sets with
large numbers of releases (e.g., case A) or where the capture probabilities are high (e.g., case
D) for both first and complete capture history protocols (Table 5.7). The power for tests of
overall treatment effect is poor for Cases B and C. The results in Table 5.7 show little
difference in test power between homogeneous and heterogeneous parameters. These esti-
mates of power are highly specific to the parameter values chosen and the magnitude of the
treatment effect; thus, Table 5.7 gives only a rough impression of the power for some specific
examples.
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Table 5.6. — Estimated power of statistical tests at the 0.05 level of significance for cases A, B, C, and D
of the complete capture history protocol. Parameters used to simulate the data are given in Table 5.1.

True model
Homogeneous parameters Heterogeneous parameters

Test  Models tested? H, Hy, H,, H, Hy, H,,

Case A
LRl  Hgyversus Hy, 0.05 0.93 0.06 0.05 094 0.03
172  Hysversus Hy, 0.05 0.05 1.00 0.04 0.05 1.00
1R2  Hy,versus Hy, 0.04 0.05 0.05 0.05 0.05 0.04
173  Hysversus Hy, 0.06 0.05 0.05 0.06 0.06 0.06
1R3  Hy,versus Hs, 0.04 0.06 0.05 0.05 0.05 0.05

CaseB
1Rl  Hgyversus Hyy 0.06 0.31 0.05 0.03 0.31 0.29
172  H,4versus Hy, 0.04 0.05 0.79 0.05 0.04 0.79
1R2  H,,versus Hy, 0.05 0.05 0.06 0.06 0.05 0.05
1.73 Hyyversus Hy, 0.05 0.0 0.05 0.06 0.04 0.04
1R3  H,,versus Hy 0.05 0.06 0.06 0.05 0.05 0.05

Case C
1R1  Hgversus Hyy 0.06 0.10 0.05 004 0.10 0.04
172  Hyyversus Hy, 0.05 0.05 0.24 0.06 0.06 024
1.R2 Hjpversus Hy, 0.05 0.04 0.05 0.04 0.05 0.04
173  Hjyversus Hy, 0.05 0.06 0.06 0.06 0.05 0.05
1R3  H,,versus Hy, 0.05 0.06 0.05 0.05 0.04 0.04

Case D
1Rl Hjversus Hy, 0.05 0.75 0.71 0.05 0.74 0.71
172  H,,versus Hy 0.05 0.05 0.19 0.05 0.03 0.21
1.R2  H,,versus Hy, 005 0.06 0.05 0.05 0.06 0.05
173" Hyversus Hy, 0.05 0.06 0.06 0.06 0.05 0.05
1.R3  H,,versus Hgy 0.05 0.04 0.04 0.05 0.04 0.04

aNull hypothesis versus the alternative hypothesis.

The ability of the statistical tests to select the correct model is largely dependent upon
the number of fish released and the magnitude of the capture probabilities. For cases A and
D, tests have high power when a treatment effect exists; therefore, the correct model is
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Table 5.7. — Power of the test (@ = 0.05) for treatment effect H,, versus H, (TEST 1) for the Monte
Carlo data simulated for homogeneous and heterogeneous populations. Parameters used to simulate the

data are given in Table 5.1.
True model
First capture history protocol Complete .capture history protocol
Case H, H,, H,, H, H,, H,,
Homogeneous populations
A 0.06 0.80 1.00 0.05 0.71 1.00
B 0.05 0.19 0.52 0.05 0.16 0.46
(o} 0.06 0.08 0.12 0.04 0.06 0.12
D 0.05 0.52 0.60 0.06 043 048
Heterogeneous populations
A 0.03 0.79 100 0.04 0.70 1.00
B 0.05 0.18 0.60 0.05 0.14 045
C 0.05 0.06 0.12 0.04 0.05 0.12
D 0.06 0.52 0.60 0.04 0.40 0.47

selected (Table 5.8). Cases B and C were poor in that insufficient data were available to allow
reliable model selection. Model selection appears poorer for the complete compared to the
first capture history protocol (Table 5.8). Much of this is only due to the fact that more
models are available under the complete capture history protocol, thus, the chance for error is

greater,

Table 5.8. — Summary of the probability of selecting the correct model for the four Monte Carlo cases
(see Table 5.1). Simulation results are based on 1,000 replications, @ = 0.05, for the homogeneous

populations.
True model
First capture history protocol Complete capture history protocol
Case H 0 H 73 H. 2p H 0 H 14 H 2p
A 0.83 0.80 091 0.72 0.68 0.78
B 0.82 0.30 0.64 0.71 0.22 0.69
C 0.80 0.09 0.17 0.71 0.08 0.18
D 0.82 0.66 0.21 0.69 0.54 0.19
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The analytic capabilities (EXPECT and SIMULATE) of program RELEASE should be
used to assess the model selection and power of tests before field experiments are performed.
The information in Table 5.8 provides only a glimpse of the performance of these statistical
methods in selecting a good model, as these results are highly dependent on many factors.
The comparable results for the heterogeneous cases were virtually identical with those for the
homogeneous cases in Table 5.8.

5.8. Confidence Interval Coverage

Asymptotic theory assures that a 95% CI can be established as

S *1.96 se(.§).

However, the actual or achieved coverage may be less than the nominal 95% level due to bias
in S, nonnormal sampling distribution of S, a poor estimate of se(S), or sample sizes that are
too “small” (not asymptotic). The Monte Carlo simulations (see Table 5.1) provide a means
of assessing the coverage achieved.

Achieved coverage is summarized in Table 5.9 for cases A-D for the first and complete
capture history protocols for both homogeneous and heterogeneous data. These results indi-
cate that nominal coverage is achieved, even for the small numbers released in case C, if the
model is correct. Little difference between homogeneous and heterogeneous parameters was
found. Coverage is frequently less than the nominal level if an incorrect model is used (e.g.,
use of model H "5 for the first capture history protocol, when the true model is Hy,.

5.9. Analytical-Numerical Approximations

A method based on expectations, presented in Chapter 3.6, provides a useful alternative
~ to Monte Carlo simulations. This method assumes a model, say H,4, specific values for the
model parameters (p,; and ¢,;), and numbers released R,;. This method can best be described
as analytical-numerical. The numerical step involves the computation of the expected m,;-
array (i.e., E[my; | Ry1]). The computed expected values in the m,,;-array are then treated as
“data.” The analytic step involves the computation of estimates and test statistics using either
the same model (H,4) or another model (e.g., H 34). Thus, the method can be said to be
based on expectations. Papers by Nelson et al. (1980) and Anderson and Burnham (1980)
used this convenient approach in closely related contexts. The entire method can be easily
done using the EXPECT option in PROC SIMULATE of program RELEASE. A typical run
often takes about 11 seconds of microcomputer time, compared with, perhaps, 30-1,000
minutes for a Monte Carlo simulation run.
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Table 5.9. - Summary of achieved confidence interval coverage (in %) on § for several estimators under
the first and complete capture history protocols. Parameters used to simulate the data are given in Table

51.
True model
First capture Complete capture
history protocol history protocol
Case Hy, H,? Hy H,,

Homogeneous populations
A 97 ! 94 94
B 95 89 94 95
C 95 92 95 95
D 95 67 95 95

Heterogeneous populations ‘
A 97 58 v 96 96
B 97 86 97 97
C 96 9% 96 95
D 95 63 95 95

aCoverage was assessed for § under model H “a4 for the first capture history protocol.

The method can be used to obtain quick approximations of estimator bias and precision
and to examine the power of certain tests. This method is quite useful and we recommend it.
However, one would often want to refine insights with later Monte Carlo studies.

A comparison of results on estimator bias and precision is given in Table 5.10 for the
Monte Carlo method and the method based on expectations. It is clear from the information
in Table 5.10 that the quick method provides useful approximaticas in all cases. Computer
runs required to prepare Table 5.10 took about 3 minutes of computer time, while the compar-
able runs for the Monte Carlo results took about 4,859 minutes (81 hours). Still, the Monte
Carlo method has several distinct advantages. First, Monte Carlo studies can examine small-
sample properties of estimators and test statistics, while the quick method is asymptotic.
Second, the empirical sampling distribution can be studied only with Monte Carlo methods.
Third, the numerical-analytical method cannot obtain the correct variances under conditions
of heterogeneity. Finally, achieved confidence interval coverage can only be assessed by the
Monte Carlo method.
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Some results on the power of tests is given in Table 5.11, comparing the method based
on expectations with the Monte Carlo method. Here, in particular, the quick method provides
very useful results. The agreement between the two approaches is good. We recommend the
use of EXPECT in program RELEASE for all but final, refined insights into issues regarding

bias, precision, and test power.

Use of the option EXPECT provides chi-square statistics for a particular test. This chi-
square value is a noncentrality parameter that can be used with its degrees of freedom and
Table 3.4 to assess test power. Interpolation within Table 3.4 is usually satisfactory. Those
wishing a copy of an expanded table can write the senior author.

Table 5.10. — Comparison of the Monte Carlo (MC) method with the method based on expectations
(EXPECT) in estimating E(S) and se(S) for models Ho, H,4, and H,, for cases A and C for the
complete and first capture history protocols.

Model H,y, Model H,, or H 54
E®) se(S) E@) se(S)
True Capture
Case model history MC EXPECT MC® EXPECT MC EXPECT MC? EXPECT
A H, Complete  1.000 1.000 0033 0033 1.002 1.000 0039 0038
H,,  Complete 0889 0891 0.031 0.030 0.888 0.890 0037 0035
H,,  Complete 1004 1.002 0034 0.033 0889  0.888 0036  0.034
C H, Complete  1.011 1000 0174 0.166 1.014 1000 0199 0195
H,,  Complete 0911 0915 0.161 0157 0912 0.909 0186  0.182
H,,  Complete: 1032 0986 0173 0.165 0912 0.869 0.184 0.178
A H, First 1.000 1.000 0033 0.033 1.001 1.000 0.045 0.043
H,,  First 0890  0.889 0.030 0.030 0.891 0889 0040  0.039
H,,  First 1.006 1.004 0.033 0.033 0840 0840 0039 0.038
C H, First 1.016 1.000 0.171 0.210 1.034 1000 0231 0.284
H,,  Finst 0.896 0.873 0.158 0.149 0.905 0.865 0209  0.190
H,,  First 1.024 0.982 0.170 0.160 0.870 0811 0200  0.182

ase(g‘)e from case A, Table 5.2 and case C, Table 5.3.
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Table 5.11. — Comparison of the Monte Carlo (MC) method with the method based on expectations
(EXPECT) in estimating test power (a = 0.05) for cases A and C for the complete and first capture
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history protocols.
Test 1.R1 Hj versus Hyy Test1 Hgoversus Hy
True Capture
Case model history MC? EXPECT McP EXPECT
A Hy Complete 0.93 0.92 071 0.69
H,, Complete 0.06 0.05 - 1.00 1.00
C Hy Complete 0.10 0.07 0.06 0.06
b H,,  Complete 0.05 0.05 0.12 0.10
A  Hy First 0.93 0.93 0.80 0.79
H,, First 0.05 0.05 1.00 1.00
C Hy First 0.10 0.11 0.08 0.08
H,, First 0.04 0.05 0.12 0.14

aPartially from cases A and C, Table 5.6.

bErom Table 5.7.



