Part 4. Importance of Replication

4.1, Introduction

The importance of replication and methods for the analysis of replicated experiments
are covered in Part 4. The statistical estimation and testing theory for dealing with a single lot
(“replicate”) appears in Parts 2 and 3. Here, a variety of methods is given to extend the
analysis methods to cover replicated experiments. This material is presented in a separate sec-
tion of the monograph because of the importance of replication in experimental research.

4.1.1. Need for Replication and Multiple Lots

We now deal with issues of replication and multiple lots, statistical methods for combin-
ing results over lots, estimation of empirical variances, and some formulae for estimation of
variance components. Repeatability, within measured statistical limits of precision, is funda-
mental for scientific credibility. When sampling variation is substantial, as in these fisheries
experiments, there should be many repeated releases of treatment and control fish.

We define a lot to be the pairing of a batch of treatment fish and a batch of control fish
released (almost) simultaneously. Prior to release, all the fish in a lot should be as similar as
possible (in, for example, species, strain, age, and condition); they should have arisen from a
common source, been handled, marked, and transported as a unit and assigned to treatment
group randomly. A lot, so defined, is analogous to two paired experimental units in standard
statistical terminology. Thus, we are here defining the experimental unit as a batch of fish to
which there is a single application of one treatment condition (see Steel and Torrie 1980 for a
general discussion of an experimental unit).

To demonstrate repeatability (and estimate precision), two sources of variation must be
dealt with. First, there is the within-lot sampling variation, which manifests itself in var(S | S).
" This variation is reduced by increasing either the lot size or the recapture effort or both.
Second, there is the possible statistical variation, from lot to lot, in S itself. The effect of this

variation on the precision of S is reduced (and better estimated) only by having multiple lots.

Multiple lots are desirable because S may vary with environmental conditions. If so, a
sample of those conditions should be observed. This sample of conditions can either be
treated as a random sample, or a design can be imposed in terms of external variables that
might affect S.

Multiple lots are also desirable to detect equipment failures or other methodological
problems. For example, if nine of 10 lots all released under similar conditions produced esti-
mates of S ranging from 0.83 to 0.94, but one of the 10 lots produced S = 0.5, you can check to
see if a methodological problem occurred (and they can occur). If that lot can be shown to be
aberrant, it can be deleted. It is not wise to put all one’s fish in a single lot.
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Finally, some form of repeated experimentation, such as replicated experimental units, is
needed to get empirical estimates of variance. It is not scientifically desirable to use unques-
tioningly a theoretical variance in environmental studies. Theoretical variance estimators
often underestimate the amount of variance occurring in a study. This failure of theory can be
attributed to the failure of one or more assumptions. Lack of independence of fish fates might
inflate variances (failure of assumption 7), and thus cause the estimated theoretical variances
to be too low. Parameter heterogeneity (failure of assumption 12) may result in increased
variation. Finally, if one’s choice of model is not correct, theoretical variances may not be reli-
able (assumption 9). With respect to assumptions 7 and 12, the bias of a parameter estimator
is less affected by the assumption failures than is its theoretical variance.

4.1.2. Replication and Multiple Lots

4.12.1. Replication. — Replicated experimental units are needed in order to estimate
residual (or pure) error. However, it is very difficult (if not impossible) to define replication
unambiguously because it is really a concept about random selection of experimental units,
and the relevant population of experimental units is elusive. Perhaps because of this difficulty,
many texts on statistics do not define replication. Some texts, such as Steel and Torrie
(1980:Chapter 6), define it so generally that replication is a generic term for almost any sort
of repeated experimental unit. Such a general definition is useful; it allows discussion of
different levels of replication that are associated with different sources of variation. We
decided to use a narrow definition of replication despite some inherent difficulties with it.

We define replication to mean repeated, independent experimental units treated identi-
cally so that there are no known differences (which would affect response) between the units
before their responses to the experiment are observed. Differences in the responses of n repli-
cate units must then reflect only residual (unexplained) sampling variation. If one looks
closely enough, however, there will always be identifiable differences among experimental
units before a study. Thus, what constitutes replicate units is really a function of our level of
ignorance about external variables that might affect the outcome for those experimental units.

It is difficult to achieve replication (as we have defined it) in fisheries survival experi-
ments, especially for the purpose of estimating within-lot sampling variation. Replicate lots
should be released at the same time, which often is not possible. If they have been held in
separate holding facilities, such facilities may have had their own effects.

For two, or more, lots to be replicates, they must have the same underlying survival (¢)
and capture (p) parameters. Thus, the same treatment effect S applies to all # replicates and
the variation among Sy, ..., S, is strictly sampling variation. It follows that S,, ..., S, are
independent and identically distributed random variables if replication has been successful.

We would like to have replicate treatment-control releases as a basis for reliably
estimating empirical sampling variances and variance components. Because true replication in
these experiments is so difficult, theoretical sampling variances have often been used. This is
not necessary; it is possible to obtain empirical variances without true replication. Moreover,
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it is more important to have multiple lots than to have true replicates. It suffices to have, for
example, 10 treatment-control lots released one a day every 3 days. Such a design includes no
true replication, but could include either sublots, some natural partitioning of the recapture
data, or both. We discuss these approaches below.

4.1.2.2. Sublots. — A lot consists of many fish, often thousands, so potentially there is
information on empirical variation from just a single lot. To exploit this potential, one must
use multiple, if not unique, marks within a lot.

The optimal case, statistically, occurs when uniquely numbered tags are used. Then the
releases in that lot can be partitioned randomly by tag number into, say, five or 10 sublots and
parameter estimates from each sublot can be computed. A good approach with large lots
would be to partition on the last digit of the number, thus, creating 10 sublots. From these, we
get 10 estimates, S, ..., S10. Because the releases were all from one lot, each S; estimates the
single parameter S. Therefore, the variation among these 10 S; reflects only within-lot sam-
pling variation.

It is necessary to assume the estimators S 15 ey .§n, based on sublots, are independent. By
assumption 7 (fish fates are independent), this is true. However, this assumption could fail. It
is safer to assume lots are independent (assumption 8), but it is difficult to believe one can
achieve true replicates of lots. There is a tradeoff here. We believe sublots will be the better
approximation to (true) replication because then S; = S is very believable and independence
of sublots seems reasonable to us if sublots are large (say 500 to 1,000 or more fish).

4.1.2.3. Multiple lots. — Typically, lots are released at different times, so they cannot be
assumed to be replicates for the purpose of estimating the within-lot sampling variation. This
is because, for the ith treatment-control release, the treatment effect S; may differ from other
lots. We must now consider how these potentially different S; are related to one another in
order to analyze the data. The simplest case is if we can treat the (unknown) S, ..., S, as a
random sample from a distribution with average value E(S) and var(S) = o®. The caseo® = 0
corresponds to all S; being the same, which is what we would expect if the n lots were repli-
cates.

The unknown S; may be viewed as random variables if the multiple lots are released at
random with respect to conditions (environmental and engineering) that affect S. In this case,
we want to estimate the average, S. Indeed, if we know the true S;, i = 1, ..., n, we would use

—_ 1"
S=-’;-ES,-

i=1

as our point estimator, and
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3 (Si- S~
3e(S) = ——-—'j: )

The complication of having only an estimator §,~, often subject to substantial within-lot sam-
pling variation, is not difficult to deal with if the lots are random with respect to variations in
the treatment effect S.

The more complex case is if the multiple lots are released as part of a “designed” study.
They might be released at known river flows, or at predetermined turbine operating condi-
tions. Other design factors can be fish size or releases at different turbines. These design fac-
tors potentially influence the S; and we want to test for that influence and possibly incorporate
it into a model. If the S; were known and were statistically independent over lots, the analysis
could be done as a standard analysis of variance, regression, or covariance. However, we only
have estimates, S;, subject to possibly large sampling variances, var(S; | S;), relative to o>,

4.1.3. Empirical Variance Estimation without Replication

4.13.1. Quasi-likelihood theory. — Likelihood theory relies on a completely specified
probability model. Given that model, one derives a theoretical variance of the ML estimators.
Often, especially with count data, the variation in the data clearly exceeds the postulated
theoretical variation. This is so even when the structure (expected values) of the model seems
quite appropriate for the data. Consequently, the point estimators are still acceptable, but not
their theoretical variances.

In a large class of problems, the ML estimators and their theoretical variances actually
depend only on the expected values and the structure of the theoretical variances implicit in
the probability model. That is, one does not actually need the likelihood to get the ML esti-
mates. In these cases, which include all multinomial models, the ML estimators can be com-
puted by iteratively reweighted least squares; this has been known for a long time (see
Jennrich and Moore 1975; Green 1984). The term quasi-likelihood is due to Wedderburn
(1974) and formally extends standard likelihood theory to allow for excess variation, and
empirical estimation of an variance-inflation factor, ¢. Quasi-likelihood theory justifies the
usual ML estimators as optimal point estimators of the parameters, even when there is excess
variation (over-dispersion) in the data. Recent papers and references on theoretical proper-
ties of quasi-likelihood inference include Healy (1981), Williams (1982), Cox (1983), McCul-
lagh (1983), McCullagh and Nelder (1983), McCullagh and Pregibon (1985), and Royall
(1986). Other investigations have shown likelihood methods are robust in the face of certain
failures of the assumed model (Cox 1961; Huber 1967; Kent 1982; Sprott 1982). Finally, there
are numerous published instances of encountering and coping with over-dispersion in count
data (e.g., Bartlett 1936; Fisher 1949; Armitage 1957; Finney 1971).
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Getting replicate estimators S 1, - Sy 15 One route to empirical sampling variances. The
other approach, justified by quasi-likelihood theory, is analogous to using residuals from a
fitted model. We give here the general idea for multinomial models. Let n4, ..., n, be a
multinomial with a sample size n, = n; +..+ n; and cell probabilities m, (), ..., m(f). Then
the theoretical variance-covariance matrix is $(0) with elements B

var(n;)) =nm(l-m), i=1.,k;
cov(ng, n;) = nmr;, i#j.

The quasi-likelihood approach uses the model as

m (0)
7rlc((’)

where ¢ has variance-covariance matrix

c¥(0) .

Here, ¢ is an unknown variance-inflation factor (a parameter to be estimated) and 4 is an
“a”-dimensional vector of parameters. Using a generalized inverse of $(€) and 1terat1vely
reweighted least squares, one finds the generalized least-squares estimator of 6, which is also
the ML estimator when ¢ = 1 (see McCullagh and Nelder 1983). Given this 9_ one can com-
pute the 7; = x;(9) and = i?(@) The usual chi-square goodness of fit can be computed (it is
analogous to a residual sum of squares), call it x°qor; this chi-square test statistic hask - 1-a
df. The estimator of ¢ is

X cor
k-1-a°

¢ =

Using this ¢, we get an estimator of the actual (empirical) sampling variances, e.g.,

var (n;) = cnm(1-7;).
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This quasi-likelihood method also leads to estimators of the variances and covariances of
the dy, ..., 8, as

c[var (8)]
and
clcov @, 8,1,

where Var (§;) and cov (4, 8;) are the likelihood-theory estimators. Because ¢ is estimated
based on k - 1 - g df, the adjusted variances are also now based on k - 1 - g df (for example, for
purposes of setting confidence intervals).

Quasi-likelihood theory justifies using all the ML theory we present in this monograph
and then, if overdispersion is a problem, estimating ¢ by a method such as the one above and
multiplying ¢ times the theoretical likelihood estimators of variances and covariances of 8. In
general, the variance-inflation method involves estimating ¢ from some residual variation in
the recapture data after a structural model has been selected.

4.1.3.2. Variance-inflation factor method. — In practice, there can be difficulties deciding
on what structural model we should use. However, once that model is chosen, quasi-likelihood
theory justifies the ML estimates and the practice of adjusting their variances and covariances
with ¢. For example, if we selected model H,4 under the complete capture history protocol,
then the goodness of fit statistic for this model is the sum of the chi-squares of TESTs 1.72,
1.R2, .., 1.Rk-1 and TESTs 2 and 3. Divide that total chi-square by its degrees of freedom to
obtain ¢. (An hypothesis test can be made to test whether c is significantly greater than one.)
This sort of procedure has long been used in probit analysis (Finney 1971), and it is recom-
mended by McCullagh and Pregibon (1985). It provides one approach for getting an empirical
sampling variance-inflation adjustment with capture-recapture data when the design does not
include lots or sublots. Exactly how to proceed depends on the design used.

The most restrictive design is to have only one lot and no sublots; hence, only a single
batch mark is used for controls and a different single batch mark for treatment fish. No
release-time replication of any sort is then available. However, the recapture process will usu-
ally lead to multiple counts of some type. These multiple counts can be used to assess the
empirical variation in the experimental data. If there are multiple recapture sites, there then
are at least k - 1 counts. In principle, some components of TEST 1 can be used as a basis for
estimating the variance-inflation factor, c. For example, if we judged model H,4 to be the
correct model in a first capture history protocol, then we can pool the chi-squares of TEST 1
components 1.72, 1.73, ..., 1.Tk - 1 (k - 3 df) as a basis to estimate ¢c. The problem with this is
that there are too few degrees of freedom unless there are 10 or more sites or occasions.
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A practical alternative arises when fish are recaptured in gatewells at large dams: put
recapture effort at all gatewells and use the variation in the treatment-to-control ratios across
gatewells, within a dam, to assess the degree to which variation conforms to theory. If there
are 10 gatewells at a dam, we have a 2 x 10 contingency table of counts for that dam. This
gives 9 df. When data are pooled over even two or three recapture dams, there will be enough
degrees of freedom from large-scale studies to estimate c, and test ¢ = 1. The estimate of ¢ is
of the form

pooled chi-square
pooled df

¢ =

When theoretical variances such as var (S) are then modified to be ¢var (S), these new,
empirically adjusted, sampling variance estimates have the degrees of freedom involved in ¢.

Because we judge it so likely that ¢ > 1, we recommend seriously considering such an
empirical adjustment to theoretical sampling variances if the pooled degrees of freedom
exceed 10 and the pooled chi-square is significant at even the P = 0.2 level. With only a few
(pooled) degrees of freedom available, say, less than five, one wants more stringent evidence
of the need for such an adjustment, i.e., the “usual” 0.05 or even 0.01 significance level.

4.1.4. Example with Multiple Lots

4.1.4.1. Description of the study. — As part of a large study, Long et al. (1975) released
12 pairs of treatment-control lots of young coho salmon Oncorhynchus kisutch at Lower
Monumental Dam on the Snake River, Idaho. The experiment was for the purpose of measur-
ing survival of small salmonids passing through operating turbines with and without perforated
bulkheads. Part of that study involved the release of four lots of young fish on each of 3 days
(13, 17, and 21 April 1974). Test fish were released upstream, and control fish downstream, of
the test structure. This was an unknown capture history protocol with recaptures made at Ice
' Harbor and McNary dams (in that order), hence, k = 3. Marking was by freeze branding;
marks batch-identified each treatment and release date and time. Fish were marked at a com-
mon facility, transported to Lower Monumental Dam, and then randomly allocated (within
each treatment group) to separate holding tanks for each of the four lots released that day.
The four lots released each day are not true replicates because of the possibility of an equip-
ment effect. However, we will refer to the lots released within a day as reps (not replicates but
reps in the sense of repeating the basic experiment).

4.1.4.2. Example data. — In order to illustrate some analysis methods we have extracted,
from Table 1 of Long et al. (1975), the data for turbine unit 2. On a given day, releases were
made in the morning from about 0700 to 0900 hours, one lot after the other. It was later found
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there were equipment problems with the control batch of rep 3. The treatment batch of rep 3
could still be used; however, we are not doing a definitive reanalysis of these data. Rather, we
chose to drop both treatment and controls for rep 3 on each day, and thus have nine paired
releases to illustrate methods. Note that there is also strong evidence that reps 1 and 4
differed from rep 2, but there did not appear to be a day effect (Table 4.1).

Table 4.2 shows the data in CH-matrix form for input into program RELEASE. From
the analyses produced, we extracted the results shown in Tables 4.1 and 4.3; note, however, the
estimate of S, based on the totals in Table 4.1, required a separate computation. For purposes
of analysis by program RELEASE, day 1, rep 1 is considered lot 1. For this lot 1, there were
28,739 treatment fish released. Table 4.2 shows my; = 1,014 (captures at Ice Harbor Dam)
and m,s = 766 (captures at McNary Dam), so m; = 1,780, as shown in Table 4.1. The input
number 26,959 (at & = {1..}) is the difference of 28,739 and 1,780.

The notation and methods used in the first part of the analysis here are from Chapter
2.3. In particular, for any treatment-control pair,

my /Ry
me, /Rcl ’

S =
and the theoretical var (.§ | §) is that for the unknown capture history protocol.

Table 4.1. - Releases, R,;, and total recaptures, m,, for nine lots from Table 1 of Long et al. (1975), plus
the computed S and theoretical Se (§) based on the unknown capture history protocol and model Hyy

‘ Treatment fish Control fish Theoretical
Lot Day Rep? Ry my R, m,. S se (3‘)
1 1 1 28,739 1,780 13,724 970 0.876 0.0344
2 1 2 28,856 1,587 14,577 1,066 0.752 0.0293
3 1 4 28,558 1,722 14,590 1,006 0.875 0.0341
4 2 1 26,395 1,914 14,122 1,125 0910 0.0335
5 2 2 23,710 1,336 14,121 1,229 0.647 0.0251
6 2 4 27,293 1,744 13,665 1,060 0.824 0.0315
7 3 1 31,929 2,270 15,100 1,161 0.925 0.0327
8 3 2 31,663 1,788 15,404 1,252 0.695 0.0251
9 3 4 30,951 2,128 14,856 1,173 0.871 0.0311
Total 258,094 16,269 130,159 10042  0817° 0.0102°

aReps are repeated experiments but not true replicates. Rep 3 was not used due to equipment problems.
These values were computed from the totals rather than being averages over the nine values.
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Table 4.2. ~ Program RELEASE input for analysis of reps 1, 2, and 4, taken on 3 days for turbine unit 2,
Lower Monumental Dam, as reported by Long et al. (1975).

proc title data from Table 1, Long et al. 1975, turbine unit 2;
proc chmatrix nodetail occasions=3, groups=2 lots=9;
/* group 1 is the treatment, group two is the control */

lot 1 ;

11. 1014 548;

1.1 766 422;

1.. 26959 12754;
lot 2 ;

1. 969 606;

1.1 618 460;

1.. 27269 13511;
lot 3 ;

1. 966 578;

1.1 756 428;

1.. 26836  13584;
lot 4 ;

1. 1006 619;

1.1 908 506;

1.. 24481 12997;
lot 5 ;

1. 686 597;

1.1 650 632;

1.. 22374 12892;
lot 6 ;

1. 932 552;

1.1 812 508;

1.. 25549 12605;
lot 7 ;

1. 1198 643;

1.1 1072 518;

1.. 29659 13939;
lot 8 ;

1. 932 698;

1.1 856 554;

1.. 29875 14152;
lot 9 ;

1. 1162 651;

1.1 966 522;

1.. 28823 13683;

proc stop;
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Table 4.3. — Results of model selection tests for the example data of Long et al. (1975); each individual
test has 1 df; totals have 9 df.

TEST 1.R1 TEST 1.72
Lot Day Rep e P b P
1 1 1 11.72 <0.001 0.06 0.812
2 1 2 5552 <0.001 4.69 0.030
3 1 4 12.21 <0.001 048 0.490
4 2 1 6.78 0.009 1.73 0.189
5 2 2 131.85 <0.001 1.97 0.161
6 2 4 26.69 <0.001 0.49 0483
7 3 1 5.08 0.024 2.10 0.147
8 3 2 105.56 <0.001 3.89 0.049
9 3 4 15.63 <0.001 024 0.622
Total 371.03 <0.001 15.64 0.075

4.1.4.3. Model selection. — It is natural to look first at the data summary and estimators
of S under model H 4, which we presented in Table 4.1. However, prior to using model Hyg,
we must examine the available tests of assumptions. For the unknown capture history proto-
col, the only within-lots tests available are TESTs 1.R1 and 1.72. First, look at the nine chi-
square results and the pooled results for TEST 1.72, which here is testing that, for each lot,

Pi2 - Dec2
Pi2 + $ali3a  DPez + Peales

(assuming no losses on capture). These test results are (overall) consistent with this null
hypothesis. Moreover, TEST 1.R1, by comparison, shows that the overwhelming effect cer-
tainly is on ¢; (this judgment is made in terms of the ratio 371.032/15.644 = 23.717, which
roughly will behave like an F-statistic with 9 and 9 df under the null hypothesis that direct and
indirect effects are equal).

More can be done with these data and test results to investigate a rep effect or a day
effect. Analysis of variance can be used on the nine S;. The chi-squares can be pooled by day

or rep. We proceed, however, to use model H;4 and illustrate estimation of S and se(S).

4.1.4.4. Point estimation. — From model Hy4 we have nine estimates, S 1s oo .§9; let the
corresponding true treatment effects be S;, i = 1, ..., 9. We assume that either all S; are the
same (S; =S), or any variations in the S; are random; hence, we treat the S; as random
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variables with mean E(S) and unknown variance ¢®. In cither of these cases, S = E (.§‘ ) is the
parameter of interest and the recommended estimator of S is obtained by pooling over lots
and analyzing the pooled data. The resultant S;.qeq is almost identical to an optimally
weighted average of the separate S;. It is superior to such an optimally weighted average in
that the optimal weights depend on unknown parameters that would have to be estimated. In
this example, given the above assumption about S, ..., S (Which may not be true; this is only
an example of methods),

5 _ 16,269/258,094 _ 0.817.

peoled ™ '10,042,/130,159

From the pooled data, totals by recapture dam are

v Ice Harbor McNary my,

t 8,865 7,404 16,269
5,492 4,550 10,042

The estimate of Var(S) for the unknown capture history protocol uses these sums by dam (see
Chapter 2.3); we find the theoretical standard error for the S .64 to be 0.0102.

The use of standard error of S eq is based on restrictive assumptions: (1) all S; =S,
so there is no variation in treatment effect attributed to unknown (or known) variations in test
conditions over reps and days, and (2) for a given lot the assumption of binomial variation is
true. Both assumptions are likely to fail. In general, theoretical variances tend to underesti-
mate the real sampling variance, so even if all S; = S (this is equivalent to assuming o® = 0),
the se(S;) are too low.

Because sample sizes of treatment and controls are about the same over the nine lots,
we have reason to believe the nine true var(S) are all about the same. It then follows that a
simple average of the S; is going to give about the same value as the pooled estimator, 0.817.
We find

£=1

2 1 9 .
S=3 [2 s;] - 0819.

The corresponding standard error for this average is computed (assuming independence
among lots) from
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=1 £=1

: 1 9 . 1 9 .
[5 > .-] = ),
or, here

12 1 (2 . 2"
[; .2=31 ‘] =3 [.221 [se(S:)] ]
= 0.0103.

Thus, for this example, pooling the nine lots and using the unknown capture history analysis
gives virtually the same result as analyzing the unweighted means of the nine S;.

4.1.4.5. Variance estimation. — Either of the point estimates of S is reasonable; however,
the theoretical standard error estimate of §e(S) = 0.0103 is not reliable and we recommend

against it. A valid estimate of the variance that we should associate with S in this example,
under the assumption that the true S, ..., So can themselves be considered a sample, is

9 . &
»(S: - 5)?
t=1

) = =5w

= 0.0010844,

or §e(S) = 0.0329. The ratio of this empirical standard error (estimate) to the theoretical
standard error (which assumes all S; =S) is

0.03293

ootz >
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This empirical variance of S is based on only 8 df; thus, one might want to test that this

ratio is statxstlcally significantly larger than one. A quick way to make this judgment is to treat
8(3.228) 2 as a realization of a chi-square variable with 8 df. Symbolically, this test statistic is

[empirical var(S)] df
[theoretical Var(S)]

where df is the degrees of freedom of the empirical estimator. Here, this test statistic has the
value 83.4, which is highly significant (P < 0.001). We conclude that the theoretical standard

error for S should not be used; we will, therefore, use the empirical $e(S).

Given that the empirical Se(S) is to be used, the 95% CI for E(S) is_based on the

t-distribution for 8 df. From Table 6.7, the appropriate t-value in S * 5¢(S) is ¢ = 2.306;
hence, the 95% CI limits are 0.817 + 0.076, or 0.741 to 0.893.

4.2. Empirical Variance Estimation

42.1. Estimation of the Variance-Inflation Factor

Here we consider a hypothetical example where practical constraints allowed only the
release of 8,860 fish in one lot at dam 1. Only batch marks (one mark for treatment fish, one
for control fish) were used and recaptured fish were removed at dams 2 and 3 (k = 3); thus,
the first capture history protocol applied.

The biologists initially believed the treatment effect would be acute but quite severe
at § ~ 0.7. From Part 6, the optimal number of treatment fish is R;; = 1.215 R,;. Thus, R,
= 4,860 and R,; = 4,000. Approximately 60% of the recapture effort was planned at dam 2,
and the remaining effort at dam 3. From previous experience, biologists believed pyy = p,2 =
0.12 and p;3 = p.3 = 0.08 could be achieved. This planning, based on model H 14» resulted in
careful consideration of all of the practical details. The resulting data for the single ot are

Group R, Myio Mgz Ty1
t 4860 346 146 492
c 4,000 413 166 579

With £ = 3, TEST 1.72 can be computed to test (approximately) p,, = DPea- In the
example, the result of this test yields x* = 0.13, 1 df, P = 0.72. Thus, model H 14 is supported.
TEST 1.R1 tests ¢y; = ¢., and this is strongly rejected (x® = 39.10, 1 df, P = <0.001). Thus, a
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treatment effect on survival is shown.

The estimate of treatment survival under model Hy4 is 0.699 (se = 0.040). (S = 0.724,
se = 0.081 under model H"5,.) The model selected seems satisfactory and the point estimate
also appears satisfactory. A valid criticism at this point is the measure of precision. The
estimated theoretical standard error is based on multinomial sampling variation and may,
indeed, be too low (i.e., the theoretical se may be underestimated). We have emphasized the
importance of some form of replication so an empirical measure of precision can be obtained.
Here, only one lot of fish was released; however, further analysis may yield insights into the
adequacy of the variance estimate. '

In the example, we find that the recapture data m,,; were recorded for each gatewell in
dams 2 and 3. These data are tabulated below, partitioned by dam and gatewell.

Dam 2 Dam 3
Gatewell t c t [
1 18 24 20 19
2 61 51 29 47
3 89 101 63 51
4 49 57 13 18
5 38 55 12 15
6 91 125 9 16
Total 346 413 146 166

These data can be used to estimate the variance-inflation factor ¢ (as presented in Section
4.1.3). First, the two 2 X 6 contingency tables are analyzed by PROC CHISQ in program
RELEASE.

Dam ¥ df P
2 570 5 034
3 740 5 019

Total 1310 10 022

The estimator of the variance-inflation factor ¢ is ¢ = x?/df = 13.10/10 = 1.31 (from
Section 4.1.3). Thus, se(S) = v 1.31 x the theoretical standard error; or 1.144 x 0.040 = 0.046.
An approximate 95% CI for the example is
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§ + taa108¢(S)

or
0.699 + 2.228(0.046)

or

0.699 = 0.102.

This interval compares with 0.699 + 0.078 if the variance-inflation factor is not incorporated.

In summary, the recapture data m,;; were partitioned by gatewell to allow a type of
empirical variance to be computed using quasi-likelihood methods. Model H,4 was selected,
and the estimated treatment survival rate was 0.699 (se = 0.046). We believe the quasi-
likelihood approach to variance estimation deserves full consideration. However, the use of
replication or multiple lots is the superior procedure to be followed.

4.2.2. Replication Only

In the case of true replication, the underlying parameters (in particular S) are the same
for each replicate and we infer that this is so from the design of the study. If parameters do
not vary over replicates, this simplifies obtaining an optimal point estimate of S and an empiri-
cal variance estimator of S. The closest we can come to replicates is the use of sublots based
on different (or unique) within-lot marks.

For the purpose of discussion, we assume that the data have been thoroughly analyzed to
determine a model, and that, on the basis of that model, Sy, ..., S, have been computed for the
n replicates. By assumption, these estimated effects are independent. Also available are the
corresponding estimated theoretical sampling variances var(S; | S;). We make particular
reference here to the simple estimator (valid under H4)

5:_ 'm/Rn
' rei/Rar’

with sampling variance
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1 1,1 1
E(rs1) Rs1  E(s1) Rer

var(S; | ;) = c(5)?

Here, 7y, and 7 are the total recaptures (r;; and r,;) partitioned by sublot i. The partitioned
releases at dam 1 are R,j, ..., Ryn1; V = t OF C.

To get a best estimate of 3’, pool the data over replicates and analyze the pooled data
under the chosen model. In particular, if model H,4 is used, the optimal estimator of § is

’u/Ru

S = :
rcl/Rcl

General statistical theory also tells us that the above pooled estimator is (asymptotically)
equivalent to the optimal weighted average of the separate Sy, ..., Sp:

n ~
W;S;
~ t=1
S = o
P

£=1

b

where

1
var(S; | S;)

It is partly because these weights are not known, rather they have to be estimated, that we
recommend pooling the replicates to get S. The rest of the reason is that a nonlinear pooling
is often superior to even the optimal linear weighted average.

The formula for the empirical variance of Sis

Swi(S; - )2
var(§) = ;=: .
Zw,-] (n-1)
i=1
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To compute an estimate, Gar(.S:), from this formula, we must know, or estimate, either the
weights, or the relative weights,

Wy
n bl

X Wi

Jj=1

Usually, one thinks of replicates as all having the same sample size. If that is true, then all Ry,
are the same, as are all R,;, and then (whether or not the Ry;; = Ry;) all the weights are the
same, w; = w, so they drop out giving us the usual formula

n ~ ~
X ©:-8)
~ 3, - t=1
var(S) n(n -1)
We recommend equal sizes for all replicates because the relative weights are then known mak-
ing empirical variance estimation easy.

In general, under model H,4, the weight is given by

1 (i), 1 ()],
wi  Ra [% [SAa 1-% (A
where
Ri1 = R4 + Ry,
and
.=Ra'1
% R.x'l.

If the release ratios are kept constant (e.g., at Ry; = Ry ), then all 4; =  are the same and we
can take the relative weights as w; = R;;. In this case, the formula for the empirical variance
of S'is



42. EMPIRICAL VARIANCE ESTIMATION 257

n A a2
YR (S: -S)
SO - S

[ERJI] (n-1)
=1

The optimal release ratios of treatment to control are the same for all replicates because
the true parameters are the same over all n replicates. It should not arise, except by accident,
that the ratios -; differ. Slight differences in the ~; have little effect and it is then better to use
the weight as w; = R;; than to estimate w;.

4.2.3 Random Multiple Lots Only

Replication, as above, is difficult to achieve in these fisheries experiments. The more
likely design is multiple lots. We treat here the case where it is assumed that the S, ..., S, are
a random sample, with S = E(S) and population variance o®.

. From general linear least-squares statistical theory, the optimal linear combination of
the S,' is

n

>

Wy
A
- i=1
S =
EW,' ’

where now

1
o2 + var(.§; 1S .

Wi

Both ¢? and the true sampling variance var(.§,- | S;) are unknown. The notation var(S‘;) and
var(S; | S;) mean the same thing; we merely wish to emphasize here the conditional nature of
the within-lot sampling variation of S;. Note also that only the relative values of these weights

need to be known to compute S.
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The theoretical variance of S is

var(TS:_) =

n

Y Wi

i:l

This requires the absolute weights. Although var(.§; | S;) is estimable if we assume ¢ = 1, it is
still necessary to know o to use the above formula.

An alternative, which leads to an empirical variance estimator, is

When o? = 0, the above reduces to the case of n replicates. Often, it will be better to take
these weights, w;, as equal rather than trying to estimate them (because the estimates are sub-
ject to uncertainty). Thus, a practical formula will often be the simple one of

n . A2
Y (Si-9)

~

= t=1
var(S) = n oD
with
i 1 nooA
== Y.
5 n .'§1 '

This simple formula is reasonable if the var(§,- | S;) are all nearly equal, or if they are all
small relative to o® (for example, if o is an order of magnitude greater than any var(S; | S;)).
In theory, when the S; vary, the var(S; | S;) will not be all equal. However, there is so much
computational difficulty and statistical variation associated with estimating both o and
var(S; | S;) that treating these weights as all equal will often give better results than estimating
them.
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With low sampling effort (so var(§,- | S;) dominates 0?), it suffices to use the approxima-
tion

1
var(S; | S;)

that is, we treat the n lots as if they were replicates because most of the variation in the 3‘; is
sampling variation. Now, again, only the relative values of the weights are needed (so the
value of ¢ is not needed). In this case we recommend the weights be estimated as

A 1

Wy =—= """

That is, replace 3',- in 9ar(§,- | S) by S. For model H,, this corresponds to taking the relative
weights as '

1
A 1 1 1 1
W= |—-—+—-

) i1 Rsa rs1  Rsx

b

then computing the weighted mean and empirical var(S). In general, this procedure
corresponds to using the weights as

% = (@),

which we recommend if var(§; | S;) dominates o2.

If one is unwilling to settle for approximate relative weights, then o must be estimated.
To estimate o? requires a reliable (unbiased) estimate of the var(S; | S;),i = 1, .., n in order to
separate o from sampling variation. Given such estimators, var(S; | S;), the estimate of o®
requires iterative solution of a complicated equation. Because this is a matter of estimating
variance components, we defer its discussion until Chapter 4.3.

42.4. Treatment Effect as a Relative Risk

Inference about the ratio of two proportions arises in many subject areas. In medical
contexts, this problem is referred to as relative risk. There is an extensive literature on relative
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risk (Gart 1985). In our notation, the general statistical model assumed for relative risk is
151 | Re1 ~ bin(Ry1, Sidai1) ,
Teir | Rair ~ bin(Ry1, Asit)

i = 1,..,n. These n independent, paired data sets are replicates if Ay = A;; and S; = S for all
i =1, ..,n. We have dealt with this case. If the A\;; and S; vary, then the MLE of S; is

A~ rs1/Ry
s,-=L/—9i , i=1.,n.
Tei1 /Rein

We referred to this case as random multiple lots.

There is an intermediate case: all S; = S but the )\y; vary. Gart (1985) gives the ML
solution for this intermediate case. The ML estimator of S is not closed-form; rather, it must
be found by numerical iterative methods (program SURVIV can be used to do this computa-
tion). However, the pooled estimator has comparable efficiency:

Y 7/ Y Ray
i=1 =1

f} Tei1/ f} Rai1

s=1 i=1

S =

In medical and pharmacological applications, the sample sizes Ry; and R, are often <100
(and often like the data of Stier and Kynard 1986); certainly such data are one to three orders
of magnitude less than in many fisheries experiments. With such small sample sizes, it may be
worth the effort to find the exact MLE. At small sample sizes, however, there is no guarantee
that the MLE is optimal.

43. Estimation of Variance Components

43.1. Some Theory

Two conceptually distinct types of variation constitute the essence of “variance com-
ponents”: sampling variance and parameter variance across samples. These topics were



4.3. ESTIMATION OF VARIANCE COMPONENTS 261

introduced in Section 1.2.3. Let S; represent the treatment effect for lot i, with n random lots
in a study. Data analysis results in the estimates, S;, i = 1, ..., n. The uncertainty associated
with S; as an estimator of S; is var(S; | S;), the sampling variance of S;. Usually we have
denoted this sampling variance as var(S;); the extended notation here is to emphasize the con-
ditional nature of this sampling variance.

If one knows the values of S, ..., S,, inference is simple:

(ie., E(S) = 5),
&=L i S:-5)°,
n i
and
se(S) = ‘/"n_

Unfortunately, the true S; for lot i is never known. We have only estimators S 15 oo 3',,, each
subject to a possibly different sampling variance. Within the context of the entire study, the
total variation of S; is

var(S;) = o® + var($; | ;).

Often, the sampling variance var(S; | S;) is larger than 2. However, var(S; | S;) depends
on the size of lot i and recapture rates, whereas o? is independent of the sample sizes and
parameters that affect var(S; | S;); o® depends on differences among lots with respect to fish
characteristics and environmental factors (some controllable, some not). If, during a 1-month
study, 10 lots are released, one every 3 days, then it is likely there will be differences in the
parameters S, ..., Syo. The fact that fish in the 10th lot were larger and older at release than
those in lot 1 could have an effect.

In Section 4.2.3, we discussed estimation of E(S) in simple situations when we can avoid
estimating o®. In particular, if all true (as opposed to estimated) sampling variances are the
same then use
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2 1"A
S==%5
”i§1

3

with theoretical (total) variance

2 o2 + E[var(S | S)]

var(S) = "
and the unbiased estimator
. -5y
A pyprd t=1
var(S) = 2o -1)

Even though var(S) is the sum of two conceptually distinct components of variation, we

can, in_ this simple case, estimate var(S) without having separate estimators of ¢® and
E(var(S | S)). This is not always true. In more general situations, it becomes necessary to

estimate o in the processes of computing S and var(S). For this separation of variance com-
ponents to be valid, one must first have a valid estimator of the sampling variance, var(S; | S;).

From the above, when we can assume the var(S‘,- | S;) are all equal, then

2 1 &8 &2 1 lea o
| % = PuET igl S:-S) ] T [231 var(S; IS:’)] . (4.1)
This derives from
Efvar (ﬁ)] _ @ + E[var(S' [5)]

n

and

n

Evar§ | 9)] = = X varBi 1)

i=1

Even when the sampling variances are not all equal, the above provides a (non-optimal) esti-
mator of 62, which can be useful as a starting value for iterative solution of the better estima-
tor below.
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The general theory, as introduced in Section 4.2.3, is to use a weighted procedure, with

weights equal to the reciprocals of the total variance of S;,
1
W= ———"——>,
&+ var (S, IS,)

n A
. WS
E - $=1 ,
Wi
g=1
with theoretical variance
var(S) = —;
Wi
i=1
and empirical variance estimator
n ~ L 2
R 2 Wy (Sz -S )
var(S) = '=:
[Z Wi] (n-1)

When the w; are the true (unknown) weights, then

E[%ar(S)] = var(S).
Therefore, if we have reliable estimators of sampling variance, we can solve the following

equation for o®:
1 M., 8 22
L wi(S8i-S) =1, 42)

n-li=1

>

-
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where S is the weighted average

" 2 ﬁ’c Ai
§==— (43)
> W
t=1
and
~ 1
Wi= 3 . A~ _ - 44

5 + var(S; | S)

. A2 . . . s e .
Because there is only one unknown here, o, numerical solution of this equation is straightfor-
ward. If the best estimator of each var(S; | S;) is the average

- % 3 var(S; |5:), 45)

=1

then the solution is the simple one, o ngen in equation (4.1).
A useful approximate test exists for the null hypothesis Hy: 0® = 0. Compute

@ = (n - 1)vargS! (4.6)
var(S |o? = 0)

where

far(S | 0 = 0) =

Under Hy: 0® = 0, x° is distributed as chi-square with n - 1 df.

A confidence interval can be constructed for o by solving two modified versions of
equation (4.2). Assume that we want a (1 - @)100% CI, where & = oy, + oy and L and U stand
for lower and upper, respectively. Usually we will take a, = ay; hence, for a 95% CI, o = oy
= 0.025. One first looks up the percentile (critical) values for the central chi-square distribu-
tion corresponding to oz, and 1 - ay, ie., find x%n1, o and 3?5114, For example, for 10 df,
000 = 325 and xPi000rs = 20.5. To find the upper limit, 65, on o, solve the equation
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(for opy®)

noon A2 Bata
(5:-5)

1
(s.-S
n-1,§1w' : n-1

, 4.7

where § is the weighted average, as in equation (4.3), and the weights are as in equation (4.4).
To find the lower limit, 6", solve the equation (for 02%)

1 n A -:Z_qu-1,1-a.,
n_lfgw.-[s,--s] == (4.8)

If equation (4.8) does not have a positive solution for o2, then set &Lz = 0.0 and adjust to a
one-sided (1 - @)100% CI by redefining ay = a.

. Sometimes it suffices to have all ffar(.g} | S;) the same. Thus, one replaces each
var(S; | S;) by Var of equation (4.5). Equation (4.1) is then the solution to equation (4.2). The
confidence limits now also have explicit solutions:

B oA 2\2
(S -5

8’L2 - i=1[ '] '{’al' (4.9)
xzn-l,l-ou

and

55,5

a2 t=1 - (4.10)
oy = ———— -var,
X2 n-1, o,
where, for these two equations,
2 1 no.
S==Y8;.
n i§1 )

The estimator of o? obtained by equations (4.2)-(4.4) is not the MLE. The equations for
the MLE are easily derived; they also require iterative solution in general. In the special case
of all var(S; | S;) being the same, the MLE exists in closed form; it is then given by equation
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(4.1) modified to have n, not n - 1, in the denominator of the first term. When the number of
lots is small, then the MLE of o is substantially biased. Of course, this bias can be substan-
tially reduced by a simple adjustment to the likelihood equations. This bias-adjusted MLE
would be acceptable for small n, and is preferred asymptotically as n gets large. However, n
(lots) is unlikely to be large in these release-recapture experiments. Consequently, there is no
compelling reason to use the MLE of o here. We would still use the MLE if we did not want
confidence intervals on 0. Large-sample likelihood theory provides for likelihood intervals,
but those intervals are not reliable for small sample sizes (n) Instead we believe it is better,

when n is small, to base a CI for 0® on the result that ¥ w; (S -S ) has approximately a central
chi-square distribution.

Using asymptotic theory, the relative efficiency of the chi-square based estimator to the
MLE is

2’5 wi-w)? |
1+ = ;

nw)®

here

n

—_1
w—nEw

t=1
1
o2 + var(S; | S;)

Notice that this is just (1 + (cv)? )?, cvbeing the coefficient of variation among the true wy, ...,
w,. This relative efficiency is usually quite high; however, we again emphasize that our reason
for recommending the moment estimator for small n is the more reliable confidence interval
that can then be computed.

4.3.2. Simple Example

Section 1.2.2 introduced variance components and gave a numerical example. The
parameter there is a proportion; the five true p; are 0.13, 0.17, 0.16, 0.13, and 0.16; p = 0.015;
and the estimate of o based directly on these p; is & = 0.0187:

s 1 8 2
=j4“E(Pi-f’-)-

f=1
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In this example, the true sampling variances are the same for all 5 years. Consequently, the
simple method works, equation (4.1):

2 1 8.
P b
= (.16
and
~ 2
. 21 @: -p)
var(p) = ———
®) = =G
= (0.00034969 .
Also,
var(p | 0% = 0) = E var(p;)
1=1
= (0.000300675 .
The estimate of o2 is thus
A2 A e A
& =5 [var@-var(moz = 0)]
= 0.00024508 ,
or, o = 0.0157.

Equations (4.9) and (4.10) can be used to compute the 95% CI on 0. Required quanti-
ties are

Sar 1 2 N
=% 3 Var(p; | p:)

t=1

= 0.0015034,
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(6:-7)" = 00069938,

i=1

x24’0_(y35 = (0.484 )

X24’0.g]5 = 11.1.

Thus, we find

.2 0.0069938

= -0.0015034
o g - 0.001503

= -0.000873

and

~ 2 0.0069938

= -0.0015034
v 0.434

= 0.01295.
That the lower bound is negative shows we cannot be certain o2 is greater than zero here. It

suffices to take the interval on o as 0 to 0.114, with & = 0.0157.
The formal test of Hy: 0% = 0is

4\7argé2
Var(@ | o2 = 0)

_ 4(0.00034969)
0.000300675

= 4,652
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(P = 0.325). We cannot reject that o2 might be zero. The power of this test is low here
because the number of years sampled is small (# = 5) and there is high within-year sampling
variance relative to o®. The ratio of G to the average var(p; | p;) is

0.00024508

0.0015034 _ 0163

Thus, sampling variation far exceeds year-to-year variation in the true p;. This makes it very
difficult to detect changes in the p; over time. Environmental studies commonly suffer from
large sampling variation, making it difficult to detect effects of interest over space or time.

4.3.3. More Complex Example

We generated a large set of data under model H 4 for six lots, to further illustrate infer-
ence about § with multiple random lots. Data for two groups (treatment and control) were
available from six occasions (k = 6) and are summarized in Table 4.4. Ideally, we could ima-
gine that these data were from uniquely marked releases; sublots would then be possible, each
based on the last digit of the tag number. There would then be 10 tables, each similar to Table
4.4, and each with sample sizes about one-tenth of those now shown. Such replication would
allow variances to be estimated empirically and additional tests would be possible to enable a
full scrutiny of the results. We will ignore the possible sublots here and consider only the data
set shown in Table 4.4. ‘

Consider, for this illustration, that these data were collected on the Columbia River
from releases over six biweekly periods. The objective of the experiment is to estimate the
“total project” survival of salmon smolts for a particular dam (here called dam 1) and the pool
upstream from the dam. Total project mortality then includes all deaths of fish in the pool
and deaths associated with the spillways, various turbine units, deflecting barriers, screens, etc.
Therefore, treatment fish are released at a point upstream from the pool and control fish are
released at a later appropriate time just below dam 1 such that control and treatment fish
begin migrating downstream at approximately the same time between dams 1 and 2. Perhaps
the treatment fish in lot 1 were released above the pool on May 1 and 2 and their movements
were monitored at dam 1. When they arrive at dam 1, the control fish are released, perhaps
over a period of 3-8 days, depending on the continued arrival rate of the treatment fish.
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Table 4.4. — Summary of synthetic data generated under model H,, of the first capture history protocol.
Data were generated for six lots where the parameters are ¢y = 095,i =2,..,6, ¢, =095i=1,..,6;
and ¢, = 0.85, 0.80, 0.70, 0.65, 0.75, and 0.80 for lots 1, ..., 6, respectively; and py; = pcy = 0.10, 0.17, 0.12,
0.08, 0.07, and 0.05 for lots 1, ..., 6, respectively.

Number recaptured and removed at dam j, my;

Releases
Lot Group R, j=2 3 4 5 6

1 t 20,000 1,752 1,445 1,256 1,013 918
c 20,000 1,922 1,660 1,461 1,135 1,045

2 t 12,000 1,636 1,296 1,021 849 616
c 12,000 2,014 1,549 1,198 936 786

3 t 27,000 2,302 1,936 1,591 1,241 1,117
¢ 27,000 3,034 2,547 2,177 1,847 1,468

4 t 20,000 1,050 883 804 698 592
c 13,000 986 874 734 670 ‘ 555

5 t 14,000 682 617 573 506 440
c 20,000 1,309 1,173 1,066 912 844

6 t 7,000 293 261 220 191 185
c

7,000 307 288 277 252 197

If the six treatment releases are made at 2-week intervals, it is reasonable to think that
the true treatment survival might vary over the course of the overall experiment. This varia-
tion among the parameters (02) might be caused by flow and other variables affecting the
river, as well as by dam variables such as head, spill, and wicket gate and turbine blade set-
tings.

In this example, we know the true treatment effect (parameter) for each lot (S = 0.895,
0.842, 0.737, 0.684, 0.789, and 0.842 for lots 1 to 6, respectively). Consequently, the best possi-
ble estimates of E(S) and o are

— 1 8
S=-6-2S,-=O.798

t=1
and

2

&= % (S; -5)? = 0.006016

Me

i=1
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or
o = 0.0776.
From these results, we would have
- == 00776
se(S) = = 0.0317,
&=

and, using equations (4.9) and (4.10), with Var =0 (and x%s 0005 = 0.831, X?s0075 = 12.8), a
95%, CI on o is 0.048 to 0.190. These results would arise only if all sampling variances
var(S; | S;) were zero.

. Using model Hy, on the data for all six lots, we used RELEASE to compute .§; and
$e(S; | S;). Those results are shown in Table 4.5.

Table 4.5. - Summary of total releases, estimates of treatment effects, and their standard errors under
model H,, for the synthetic data in Table 4.4.

Loti \ R, 5, se(S; S0 True S,
1 40,000 0.884 0.0123 0.895
2 24,000 0.836 0.0110 0.842
3 54,000 0.739 0.0087 0.737
4 33,000 0.685 0.0134 0.684
5 34,000 0.759 0.0156 0.789
6 14,000 0871 0.0319 0842

Unweighted average 0.796 0.798
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The simplest way to compute an empirical estimate of var(S) from these six estimates of
treatment survival is to use

6 . A
¥ (Si-S)?

~

Gar(E) = 1L(5)(_6)— = 0.0010635,
where
L 1 6 .
S==%8=07%;
6 i=1
hence,
se(S) = 0.0326.
Computing
o 1 8. &
ar = — 3, var(5; | 5y)
6 t=1
= 0.00298

and using equation (4.1), the simple estimate of o? is

%? = (6)(0.0010635) - 0.000298

= 0.006083 ,

or & = 0.078. Equations (4.9) and (4.10) lead to the 95% CI on o as 0.050 to 0.196. Because
the sampling variances are so small here, these results are almost the same as if the six true S;
were known.

Corresponding to these unweighted procedures, there is a simple version of the test of
Hy: o2 = 0: use equation (4.6) with
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. 1 8 ra 252
Gar(s) = 3= % [s,--s] = 0.0010635 ,

i=1

~ 2 -~
tar |0 = 0) = [-61-] 52 dar(S; | 5)
=1

= 0.0000496 .

Thus, the test statistic is

2 = 5(0010635)
0.0000496

= 107.1,

273

which is highly significant. We conclude that there is substantial variation among the popula-
tion parameters in addition to the sampling variation. Often, the estimation of ¢ is as impor-
tant as the separate point estimates of treatment effects.

The theoretically more efficient inference procedures require weighted analyses, as per

equations (4.2), (4.3), (4.4), and (4.7) and (4.8), which themselves require iterative numerical
solution. Solving the relevant equations, we find the weighted analysis gives

& = 0.00638;
& = 0.080.

Then we can find the weighted results below:

S =0.79%,

var(S) = 0.0010304,
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and

far(S | 0% = 0)

I
e
&
Qo

Hence, the weighted test of Hy: o = 0 is given by

2 = (5)(000103)
0.0000258

= 1996.

This weighted chi-square test statistic is much bigger than the unweighted one (of 107.1), but
either one clearly rejects Hy: 0% = 0.

From the weighted analysis, se(S) = 0.0321 and a 95% CI on E(S) is 0.796 *
(2.571)(0.0321) or 0.713 to 0.879. Also, from solving equations (4.7) and (4.8), we get the 95%
CI on o as 0.047 to 0.196 (6 = 0.080). We see that there was no real advantage here to doing
the weighted analysis. Unfortunately, that is not always true, and the only way to be sure isto
do the weighted analysis.

To explore this example further, we generated another simulated six lots where the
released numbers were one-tenth those shown in Table 4.4. Thus, for example, for lot 1,
R, = R, = 2,000. All parameters were lelt unchanged. Thus, the only effect was to increase
the within-lot sampling variances by a factor of 10. The results are shown in Table 4.6. It is
fortuitous that the unweighted average of the S is so close to § = 0.798. Note that the indivi-
dual S; are not as close to S; now as in the original case (Table 4.5).
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Table 4.6. — Summary of total releases and some results from the second simulated six lots under model
H,g, the same parameters apply as for Table 44.

Loti R, S Se(S, 15) True §;
1 4,000 0.880 0.0391 0.895
2 2,400 0.774 0.0321 0.842
3 5,400 0.743 0.0273 0.737
4 3,300 0.677 0.0418 0.684
5 3,400 0.739 0.0476 0.789
6 1,400 0.984 0.1145 0.842
Unweighted average 0.800 0.798

Table 4.7 summarizes the various results (such as S, &), unweighted and weighted (and
the case of all var(S; | S;) = 0), computed based on Table 4.6. The main efficiency of the

weighted analysis is to achieve smaller §e(S) and a more powerful test of the null hypothesis
Hy: 0 = 0 (ie., of Hy: Sy =S =83 =84 =S5 = S¢). These results illustrate that if the
true var(S; | S;) vary substantially, the weighted analysis should be used.

If we further reduced the release numbers, a point would be reached where the sampling
variation would exceed o2 and the test of Hy: 0> = 0 would have low power. One could easily
get data so poor that there would be no evidence that the treatment effects varied. A tradeoff
faces us in environmental studies: having both multiple lots and yet sufficient within-lot sam-
ple sizes to allow demonstrating any important lot-to-lot variation in the treatment effect, or
other parameters (see, for example, Eberhardt 1978; Armour et al. 1983).

Table 4.7. - Comparisons of weighted and unweighted results based on the Monte Carlo study results
for S; in Table 4.6; the values when all var(S; | S;) = 0 are the best possible (hence, “true” values) for

these six lots.
Entity If var(§, |1S) =0 Weighted Unweighted
computed (i.e., “truth”) analysis analysis
o 0.0776 0.0812 0.0959
s 0.798 0.780 0.800
el 0.0317 0.0385 0.0458
oy, 0.048 0.028 0.039
Oy 0.190 0.261 0.269

X 00 30.1 18.5
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4.4. Example with Four Groups and 10 Lots

In this chapter we will extend the synthetic example presented in Chapter 3.10. As
before, we use data simulated under scheme B, V' = 4 groups, k¥ = 6 occasions, and R,; =
1,000 fish released. Here, we extend the example with the inclusion of data for nine other lots.
The parameters used are those in Table 3.5. Summaries of the m,; arrays will not be given,
but the data in Table 3.6 are representative. The data for each lot were generated under the
same parameters. Therefore, there is no variance component issue because 0 = 0. Such data
might arise from a large study using PIT tags and the lots correspond to the last digit of the tag
numbers. '

In this study, there are four groups. The first three are treatment groups (v = 1, 2, 3);
each is then compared to the control group (v = 4). Thus, primary interest lies in the treat-
ment effects S 14, So4, and S a4 (true values are 0.90, 0.75, and 0.70, respectively).

The results of various hypothesis tests are given in Table 4.8. The results of TEST 1.R1
convincingly show a strong treatment effect (i.c., ¢1 # ¢, 110) for all 10 lots. If the test results for

individual lots were less convincing, one might compute ¥ x? = 897.5, with 30 df. The results

=1 :
for TEST 1.72 for each lot do not reject that p;; = p.2, which suggests model H,, (which we
know to be the correct model).

The results of TEST 1.R2 provide no evidence that ¢, and ¢, differ, tending to confirm
that model Hj, is appropriate. The overall test for treatment effect (TEST 1) is highly
significant. Although R, is only 1,000 individuals released, the model selection capability in
this example is quite good because of reasonable recapture rates. We leave it to the reader to
analyze this example with as few as, perhaps, 300 releases in each lot.

The 10 estimates of treatment effect are presented in Table 4.9. Within a lot, the esti-
mates of S are somewhat variable; however, the mean of the 10 estimates is fairly precise for
each of the three treatments. Because these 10 S; are from replication with equal release
numbers, the computing formulae used were

and
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Table 4.8. - Summary of the results of modeling selection tests for the simulated data: scheme B, k = 6,
four groups, 10 lots.

TEST 1.R1 TEST 1.72 TEST 1.R2 TEST 1
Hgvs. Hyy (3 df) Hyyvs. Hyp, (3df) Hyp, vs. Hayy (3 df) H, vs. Hyy (18 df)

Lot I'e P X P X P P P
1 74 <0.001 52.6 <0.001 12 0.75 1284 <0.001
2 939 <0.001 120 <0.001 4.7 020 1259 <0.001
3 86.0 <0.001 54.6 <0.001 1.6 0.66 148.1 <0.001
4 92.0 <0.001 352 <0.001 15 0.68 1375 <0.001
5 91.9 <0.001 26.1 <0.001 13 0.73 131.0 <0.001
6 80.2 <0.001 28.8 <0.001 05 0.92 1278 <0.001
7 104.6 <0.001 60.2 <0.001 1.7 0.63 175.3 <0.001
8 90.3 <0.001 585 <0.001 4.3 0.23 164.3 <0.001
9 87.6 <0.001 47.6 <0.001 28 043 150.3 <0.001
10 99.6 <0.001 39.7 <0.001 3.1 0.37 149.9 <0.001

Table 4.9. - Summary of the estimates of treatment survival rate, under analysis model H,,, for the
simulated data: scheme B, k¥ = 6, four groups, 10 lots. True parameter values are shown at the bottom of
table.

Lot Su 8e(S10) Su §°(§ o) Su Se(Sa)
1 0.8889 0.0561 0.8303 0.0542 0.7315 0.0502
2 0.8597 0.0512 0.6927 0.0453 0.6151 0.0422
3 0.8906 0.0554 0.7339 0.0498 0.7125 0.0489
4 0.9442 0.0563 0.7333 0.0484 0.6881 0.0468
5 0.8226 0.0487 0.6944 0.0441 0.6793 0.0438
6 0.8331 0.0511 0.7204 0.0471 0.7075 0.0466
7 0.9031 0.0531 0.7040 0.0465 0.6981 0.0458
8 0.8746 0.0530 0.7801 0.0500 0.6788 0.0460
9 0.8856 0.0537 0.7169 0.0473 0.6858 0.0461
10 0.9112 0.0536 0.6722 0.0577 0.7113 0.0469
s 0.8814 0.0362 0.7278 0.0465 0.6908 0.0315
Ny 0.90 0.75 0.70
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RELEASE uses these simple unweighted formulae to compute averages and standard errors
over multiple lots. Often, these will not be the appropriate formulae. This summarization
capability is in RELEASE primarily as part of the simulation options. Proper weighted aver-
ages, standard errors, and estimates of variance components for real data must be done
separately by the investigator.



